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Abstract

Neuromuscular blocking agents (NMBAs) can be an effective modality to address challenges that arise daily in the
intensive care unit (ICU). These medications are often used to optimize mechanical ventilation, facilitate
endotracheal intubation, stop overt shivering during therapeutic hypothermia following cardiac arrest, and may
have a role in the management of life-threatening conditions such as elevated intracranial pressure and status
asthmaticus (when deep sedation fails or is not tolerated). However, current NMBA use has decreased during the
last decade due to concerns of potential adverse effects such as venous thrombosis, patient awareness during
paralysis, development of critical illness myopathy, autonomic interactions, and even residual paralysis following
cessation of NMBA use.
It is therefore essential for clinicians to be familiar with evidence-based practices regarding appropriate NMBA use
in order to select appropriate indications for their use and avoid complications. We believe that selecting the right
NMBA, administering concomitant sedation and analgesic therapy, and using appropriate monitoring techniques
mitigate these risks for critically ill patients. Therefore, we review the indications of NMBA use in the critical care
setting and discuss the most appropriate use of NMBAs in the intensive care setting based on their structure,
mechanism of action, side effects, and recognized clinical indications. Lastly, we highlight the available
pharmacologic antagonists, strategies for sedation, newer neuromuscular monitoring techniques, and potential
complications related to the use of NMBAs in the ICU setting.
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Introduction
The introduction of neuromuscular blocking agents to
the ICU provides intensivists a unique capability in the
management of critically ill patients. As with any ther-
apy, however, the use of NMBAs has inherent risks, par-
ticularly when providers are unfamiliar with the nuances
of selecting the appropriate agent, monitoring the depth
of neuromuscular blockade, and ensuring adequate skel-
etal muscle recovery once NMBA therapy has ceased.
Optimal neuromuscular blockade management has

challenged clinicians for decades, despite the frequent
use of NMBAs in clinical practice [1]. Complications as-
sociated with the NMBA use can be particularly con-
cerning in the critical care setting, as intensivists
typically administer NMBAs to critically ill patients with
multi-organ system derangements for long periods of
time resulting in greater accumulation of NMB drug and
drug metabolites. The impact of such “off-label” use of
NMBAs in the ICU is still being investigated. The Soci-
ety of Critical Care Medicine (SCCM) developed guide-
lines addressing optimal practice based on the available
evidence to address these concerns [2–4].
While guidelines can help clinicians navigate many

clinical scenarios, these recommendations are often
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limited by the lack of well-designed prospective trials.
Ultimately, a thorough understanding of neuromuscular
blockade management can equip clinicians to deal with
scenarios that fall outside of the scope of medical spe-
cialty guidelines. This review provides up-to-date evi-
dence to aid clinicians in selecting the right scenarios for
establishing neuromuscular blockade in the ICU as well
as choosing the optimal agent for such scenarios. Add-
itionally, we will review methods to determine the level
of neuromuscular blockade, the use of NMBA antago-
nists, and the optimal methods to confirm an adequate
neuromuscular recovery and avoid prolonged residual
weakness in this vulnerable patient population.

Indications
In 2016, a task force comprising 17 members from the So-
ciety of Critical Care Medicine (SCCM) proposed updated
and comprehensive recommendations for the use of
neuromuscular blocking agents in the critically ill patient
(Table 1) [4]. The authors expanded upon previous rec-
ommendations from 2002 [2] while utilizing the Grading
of Recommendations Assessment, Development, and
Evaluation (GRADE) system [5] to comment on the
quality-of-evidence for each recommendation. These rec-
ommendations can be utilized in a variety of critical care
settings that require neuromuscular blockade; however,
these guidelines are limited by the relative paucity of de-
finitive literature investigating neuromuscular blockade in
the unique critically ill patient population.

Facilitation of tracheal intubation
Endotracheal intubation in the ICU is a more challen-
ging endeavor than in the controlled environment of the
operating room (OR), and the risk of a “failed

intubation” is several-fold greater in the ICU [6]. Unlike
the OR where the primary objective of tracheal intub-
ation is to secure the airway after induction of
anesthesia, the procedural objective in the ICU is to se-
cure the airway as a life-saving intervention in a patient
with current or impending respiratory failure [7]. Endo-
tracheal intubation in the critical care setting is associ-
ated with significant complications such as severe
hypotension, hypoxemia, and even cardiac arrest [7–9].
Such complications can occur up to 25% of the time
[10]. Moreover, when managing the difficult airway, the
intensivist rarely has the option to awaken the patient
during the scenario of “failed intubation” as suggested by
the American Society of Anesthesiologists’ (ASA) diffi-
cult airway algorithm [11].
Nonetheless, the use of NMBAs is an important ad-

junct to facilitate tracheal intubation as these drugs can
create better conditions during laryngoscopy [12]. In
addition, the NMBA use can significantly decrease air-
way trauma associated with this procedure and facilitate
securing the airway in fewer attempts [13]. Succinylcho-
line and rocuronium are the two agents typically utilized
when the neuromuscular blockade is desired to rapidly
facilitate tracheal intubation. While succinylcholine pro-
vides rapid and reliable neuromuscular blockade, higher
doses of rocuronium (1.2 mg/kg or 4× the effective dose
that decreases the twitch by 95% from baseline [ED95])
can have a similar mean onset time (although a slightly
wider range of onset times), a characteristic that makes
this agent suitable for rapid sequence induction and in-
tubation (RSII) [14]. Higher doses of rocuronium result
in a much longer duration of action than succinylcho-
line, increasing concerns about its use in the patient with
a difficult airway. However, high-dose rocuronium can

Table 1 Clinical practice guidelines for the sustained neuromuscular blockade in the adult critically ill patient [3]

Clinical practice(s) Strength of Recommendation

• Scheduled eye care with lubrication and eyelid closure Strong recommendation

• Continuous infusion of NMBA rather than intermittent boluses
• Avoid use in status asthmaticus
• Trial of NMBA in life-threatening situations with hypoxemia, respiratory acidosis, and

hemodynamic compromise
• May be used to manage overt shivering in therapeutic hypothermia
• PNS with inclusive clinical assessment may be a useful tool for determining the depth of

blockade
• PNS should not be used alone (without clinical assessments) in patients receiving a

continuous infusion of NMBAs
• Implementation of a structured physiotherapy regimen
• Target blood glucose level < 180mg/dL
• Dose NMBA based on ideal body weight or adjusted boy weight (rather than actual)

Weak recommendation

• PNS can be used with clinical assessment in patients undergoing therapeutic hypothermia
• Protocols should be utilized to guide NMBA administration in patients undergoing

therapeutic hypothermia
• Analgesic and sedative drugs should be used before and during neuromuscular blockade
• Implement measures to reduce risk of unintended extubation in patients receiving NMBAs
• Reduce dosing in patients with myasthenia gravis based on PNS use
• Discontinue NMBAs prior to determining brain death

Good practice based on expert opinion with
insufficient evidence

NMBA neuromuscular blocking agents, PNS peripheral nerve stimulator
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be antagonized with sugammadex (at a dose of 16 mg/
kg) after 3 min in the “can’t intubate/can’t ventilate” sce-
nario [15]. This pharmacologic reversal, however, does
not ensure the avoidance of dangerous periods of hyp-
oxia (or hypoventilation due to opioid or sedative drugs
co-administered), and rapid, appropriate airway manage-
ment targeted at establishing airway patency remains
paramount [16].

Airway management of the ICU patient
Management of the airway of ICU patients presents
multiple and varied challenges, as it is one of the most
commonly performed procedures in this setting. The
identification of the difficult airway is paramount, and
its incidence may be over 11% [17]. Serious adverse
events from attempted tracheal intubation performed in
the ICU patients occur in up to 40% of cases [18]. In
order to identify patients at risk of difficult intubation,
some investigators have recommended development of
simple scores that can be applied at bedside. One such
scale, the MACOCHA Score, consists of a total of 12
points (see Table 2), and combines patient, patient path-
ology, and operator factors to differentiate between diffi-
cult and nondifficult intubation patients in the ICU [17].
Patient factors included are Mallampati score of III or
IV, the presence of obstructive sleep apnea, reduced mo-
bility of the cervical spine, and limited mouth opening.
Patient pathology factors were severe hypoxia and coma,
while the operator factor was the presence of a nona-
nesthesiologist for airway management. The scale for
identification of risk factors for difficult airway/intub-
ation in critically ill patients by nonanesthesiologist
trainees was further refined and validated in a prospect-
ive, observational single-center study [19].
Despite the availability of indicators of difficult airway

in ICU patients, however, a recent French survey found
that 43% of intubating operators were still not fully pro-
ficient in the technique, with 18.8% of them having had
no intubation training, or only basic training, such as
lectures or observation [18]. This survey also reported
that although video laryngoscopy is available in most of

the French ICUs, its use was reserved for management
of the difficult airway patients [18]. Remarkably, the vast
majority (83%) of intensivists had placed less than a total
of 10 laryngeal mask airways, and half had performed
less than 10 intubations using fiberoptic bronchoscopy,
despite the fact that a majority (87%) of clinicians
expressed a desire to participate in high fidelity manne-
quin simulations [20]. A Spanish national survey re-
ported that of the 101 ICUs that responded, three
quarters had no tracheal intubation or no difficult airway
protocols [21]. The authors thus called for the imple-
mentation of changes in the ICU that include prospect-
ive identification of experts in management of the
difficult airway and the development of specific guide-
lines for management of the ICU patient with difficult
airway [21]. In Japan, difficult airway management carts
are largely unavailable in the ICU, and capnography to
confirm correct tracheal tube placement is used in only
slightly over half of the patients [22]. In the UK, 6.3% of
ICU patients were judged to have an increased risk of air-
way complications, but only 19% of them had a plan in
place for management of the difficult airway [23]. In
Australia and New Zealand, only a small minority of ICUs
identify patients with “critical airways,” and only 8% have
specific protocols for care of these high-risk patients [24].
The ICU patient with a difficult airway poses a signifi-

cant challenge not only when the airway needs to be se-
cured; the same precautions and potential for adverse
events remain at the time of tracheal extubation. The
Royal College of Anaesthetists’ 4th National Audit Project
(NAP 4) has reinforced the importance of optimal airway
management in the ICU environment, has underscored
the need for appropriate guidelines and strategies for the
safe extubation of the trachea in patients with a potentially
difficult airway, and has proposed key anesthetic principles
for safe airway management (Table 3) [25].

Facilitation of mechanical ventilation
In the ICU, NMBAs are also commonly used for the fa-
cilitation of mechanical ventilation. The current SCCM
clinical practice guidelines [4] suggest that an NMBA be
administered by continuous intravenous infusion early
in the course of acute lung injury for patients with a par-
tial pressure of oxygen to fraction of inspired oxygen
(PaO2/FiO2) ratio less than 150 (weak recommendation
with moderate quality of evidence). Indeed, patients with
acute respiratory distress syndrome (ARDS) are unlikely
to oxygenate or ventilate optimally with sedation/anal-
gesia regimens alone. Gainnier et al. conducted a multi-
center, prospective controlled randomized trial and
found that the use of NMBAs during a 48-h period in
ARDS patients was associated with a sustained improve-
ment in oxygenation [26]. In the ACURASYS trial, Pap-
pazian et al. found that in patients with severe ARDS,

Table 2 Score calculation worksheet, MACOCHA Scale

Points

(M) Mallampati > 2 5

(A) Obstructive sleep apnea 2

(C) Cervical spine limitation 1

(O) Limited mouth opening 1

(C) Coma 1

(H) Severe hypoxemia 1

(A) Non-anesthesiologist performing intubation 1

Total 12

Adapted from De Jong et al. Am J Respir Crit Care Med 2013 [17]
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early administration of cisatracurium continuously for
48 h improved the adjusted 90-day survival, decreased
the risk of barotrauma, and increased the time off the
ventilator without increasing muscle weakness [27].
However, more recent results from the Reevaluation of Sys-
temic Early Neuromuscular Blockade (ROSE) trial failed to
show reductions in mortality when NMBAs were adminis-
tered in moderate-severe ARDS [28]. While cisatracurium
has been shown to possess anti-inflammatory properties in
animal models [29], its clinically relevant benefit likely in-
volves avoidance of ventilator dyssynchrony and improve-
ments in lung compliance [4]. The results of three recent
meta-analyses have all demonstrated that NMBA adminis-
tration in ARDS patients is associated with reduced baro-
trauma and improved oxygenation; however, the impact on
mortality remains unclear [30–32]. Thus, the NMBA use in
ARDS must be individualized and may be utilized as a part
of an institutional-based protocol.

Additional applications
The neuromuscular blockade has been used in patients
with status asthmaticus. However, this specific applica-
tion’s use has decreased over concerns of severe weak-
ness and critical care myopathy [33–35]. Indeed, the
current SCCM clinical practice guidelines [4] suggest
against the routine administration of an NMBA to pa-
tients with status asthmaticus (weak recommendation
with very low quality of evidence). Interestingly, more

recent investigations have suggested that replacing
neuromuscular blockade with continuous deep sedation
regimens did not change the incidence of muscle weak-
ness in this group of patients, suggesting that prolonged
immobilization and inactivity are key clinical contribu-
tors to this complication rather than solely due to the
administration of NMBAs [34].
In patients with an acute brain injury, a mass occupying le-

sion or subsequent intracranial edema, increases in cerebral
perfusion can cause a deleterious increase in intracranial pres-
sure (ICP). However, the current SCCM clinical practice
guidelines [4] could not recommend whether NMBAs were
beneficial or harmful when used in patients with acute brain
injury and raised ICP (insufficient evidence). Neuromuscular
blockade may be useful in the short-term without negatively
impacting hemodynamic parameters such as ICP, cerebral
perfusion pressure (CPP), and blood pressure [36]. Further-
more, the avoidance of coughing, straining, and ventilator dys-
synchrony during periods of the neuromuscular blockade can
avoid significant increases in ICP and worsening of cerebral
edema [36, 37]. The benefits of NMBAs are limited to end-
points such as reducing oxygen consumption as well as car-
bon dioxide production, although this practice has not been
shown to improve overall outcomes and may increase the
ICU length of stay, risk of pneumonia, and overall costs [37].
As in ARDS, the early use of NMBAs in sepsis may re-

duce in-hospital mortality [38, 39]. Current guidelines
from the Surviving Sepsis Campaign [40] list the admin-
istration of NMBAs as a weak recommendation and sug-
gest that their use may have some benefits if used within
48 h in those adult patients with sepsis-induced ARDS.
In patients who suffer an out of hospital cardiac arrest,

the use of therapeutic hypothermia plays an important
role in survival to discharge [41]. However, the current
SCCM clinical practice guidelines [4] make no recom-
mendation on the routine use of NMBAs for such pa-
tients (insufficient evidence). A complication from
hypothermia is shivering, which leads to the deleterious
consequences of increased metabolic rate and ICP, heat
production, inflammation, and decreased brain tissue
oxygen levels [42]. The American Heart Association
guidelines recommend short-acting NMBAs in conjunc-
tion with appropriate use of analgesia and sedation to al-
leviate shivering in this setting [42, 43]. Indeed, the
SCCM guidelines also suggest that NMBAs be used to
manage overt shivering during therapeutic hypothermia
(weak recommendation, very low quality of evidence).
The only neuromuscular blockade patient manage-

ment recommendation that was rated as “strong” by the
SCCM panel of experts was the use of lubricating drops
or gel along with eyelid closure for patients receiving
continuous infusions of NMBAs [4]. Additionally, target-
ing glucose levels less than 180 mg/dL (10 mM) and the
implementation of a physiotherapy regimen during

Table 3 Key anesthetic principles for airway management
strategies in ICU patients

1. Oxygenation, not intubation, is the priority at all times including
during tracheal extubation.

2. Airway equipment should be purchased with the least experienced
potential user in mind, and not the most experienced (i.e., ideally,
devices should be intuitive and user-friendly, requiring a short training
period).

3. Devices should have sufficient evidence from reliable research to
support their clinical role.

4. Rescue devices should have a close to 100% success rate to ensure
the minimal number of steps when securing the airway. A device with a
high success rate in routine use may have a lower success rate when
used as a rescue maneuver, especially when the difficult airway is
unexpected. Urgency and operator’s anxiety of impending patient
morbidity or mortality is likely to hinder the success of any device.

5. Devices should be trialed over an adequate period of time (several
weeks or months in most cases, and a sufficient number of times,
preferably more than 50) to ensure that they are used for a variety of
airway problems and by an adequate cross-section of staff.

6. To be successful, extubation should be planned in a similar manner
to intubation. To be more specific, extubation techniques should be
tailored to the type of expected airway difficulties. Preparation for re-
intubation should be part of the extubation management plan with a
clear indication of when an intervention is or is not working and when
to seek alternative methods.

7. Technical and non-technical training in all clinical environments must
follow the implementation of new airway management and oxygen-
ation devices.
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periods of neuromuscular blockade also represent
“weak” recommendations. The SCCM recommendations
are not mandates, and the authors clearly state that ther-
apy should be guided by the patient’s condition, clinician
experience, and equipment available in the ICU [4].
Clinical care providers must maintain an understanding
of clinical pharmacology in order to weigh the clinical
benefits versus the associated risks when deciding when
NMBAs may suit the needs of their specific patient.

Specific neuromuscular blocking agents
NMBAs cause skeletal muscle relaxation by blocking the
transmission of impulses at the neuromuscular junction
(NMJ) [44]. These agents are classified by their mechanism of
action and chemical structure. Based on their methods for
establishing neuromuscular blockade, there are two types: de-
polarizing and non-depolarizing NMBAs. The group of non-
depolarizing NMBAs is further subdivided according to their
structure into benzylisoquinolinium (curare, atracurium, cisa-
tracurium, mivacurium) and aminosteroidal compounds
(rocuronium, vecuronium, pancuronium). Selecting a specific
NMBA in the critically ill patient depends on the indication,
patient’s comorbidities (liver or renal failure), and interactions
with other drugs that may enhance or prolong their action, as
well as physiological changes and risk factors that may affect
the pharmacokinetics of NMBAs such as age-related changes
[44], hypothermia [45–47], sepsis [48–50], and metabolic or
electrolyte disturbances (Table 4) [51].

Benzylisoquinolinium agents
Atracurium is an intermediate-acting NMBA that is me-
tabolized through nonspecific plasma esterase-mediated
hydrolysis as well as Hofmann elimination reaction in

which the compound is degraded based on body pH and
temperature [52]. This breakdown is nonenzymatic and
occurs independent of hepatic and renal function, mak-
ing this agent an attractive option in the intensive care
unit in patients with renal and/or hepatic dysfunction.
The Hofmann elimination reaction produces laudano-
sine, a compound that has been shown to cause seizure-
like activity in high doses but only in animal models
[53]; in fact, this complication has never been reported
in humans at clinically relevant doses [54]. Intubating
doses of atracurium (0.5 mg/kg or 2 × ED95) can cause
clinically relevant histamine release, producing tachycar-
dia, hypotension, and skin flushing [55].
Cisatracurium is the cis-cis isomer of atracurium, a

feature that increases its potency four-fold, without the
associated histamine release; therefore, a smaller dose is
required for tracheal intubation (0.1 mg/kg or 2 × ED95).
This intermediate-acting agent is also metabolized
through organ-independent mechanisms via the Hof-
mann elimination reaction, making this benzylisoquino-
linium drug one of the most commonly utilized NMBAs
in critically ill patients who require neuromuscular
blockade [54, 56, 57]. Sottile and colleagues performed a
large observational study in patients with ARDS and
found that when compared with vecuronium, cisatracur-
ium was associated with increased ventilator-free days
and overall ICU days but was not associated with a dif-
ference in mortality [58], suggesting cisatracurium is the
preferred neuromuscular blocking agent for patients at
risk for, or with, ARDS.
Unlike cisatracurium and atracurium, mivacurium is a

short-acting nondepolarizing NMBA. Mivacurium was
developed in the 1990s and has recently been

Table 4 Neuromuscular blocking agents (adapted from Sturgess, Anaesthesia 2017 [25].)

Agent ED95
a

(mg/kg)
Onset
time

Infusion dose
(μg/kg/min)

Clinical duration Notes

Succinylcholine 0.5–0.6 30–60
s

NR Dose dependent; 3 ×
ED95 lasts 12–15 min

Transiently increases serum K levels by 0.5 mEq, can be used for
RSII, metabolized by butyrylcholinesterasec

Rocuronium 0.3b 1.5–3
min

5–12 20–70 min Can be used for RSII, eliminated by the liver (90%) and kidneys
(10%)

Vecuronium 0.05 3–4
min

1–2 25–50 min Active metabolites, associated with ICUAW

Mivacurium 0.08 3–4
min

5–8 15–20 Metabolized by butyrylcholinesterasec, associated with histamine
release

Cisatracurium 0.05 4–7
min

1–3 35–50 min Hofmann elimination

Atracurium 0.25 3–5
min

10–20 30–45 min Metabolized by plasma esterase and Hofmann elimination,
associated with histamine release

Pancuronium 0.07 2–4
min

20–40 (not
recommended)

60–120min Active metabolites, associated with ICUAW, vagolytic effect causes
tachycardia

ED95 effective dose that decreases the twitch by 95% from baseline, ICUAW intensive care unit-acquired weakness, NR not recommended, RSII rapid sequence
induction and intubation
aIntubating dose is 2 × ED95
b1.2 mg/kg (4 × ED95) can be used for rapid sequence induction and intubation
cAlso referred to as plasma cholinesterase or pseudocholinesterase
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reintroduced to the US market [59]. Antagonism of
mivacurium-induced neuromuscular blockade with anti-
cholinesterase inhibitors can shorten the duration of
blockade, although paradoxical prolongation of blockade
has been reported, necessitating the need for confirm-
ation of recovery using objective monitoring [60]. Spon-
taneous recovery from mivacurium occurs via
butyrylcholinesterase degradation within 12–20 min after
administration of an intubating dose (0.25 mg/kg or 3 ×
ED95); patients deficient in this enzyme can have pro-
longed effects [59].

Aminosteroidal agents
Rocuronium is an intermediate-acting NMBA and is the
only nondepolarizing drug that is currently utilized in a
rapid sequence induction and intubation. A dose of 1.2
mg/kg (4 × ED95) produces a similar average onset time to
that of succinylcholine, although individual patient re-
sponses can vary [14]. Rocuronium administration is not
associated with histamine release, and it has a little impact
on hemodynamics. It is predominantly cleared through
the biliary route, although a small portion is renally ex-
creted and clearance can be slowed in patients with severe
renal impairment [61]. Metabolism of rocuronium pro-
duces an active metabolite, 17-desacetyl-rocuronium,
which has 5% of the neuromuscular blocking potency of
the parent compound [62]. Allergic reactions may be a
concern with the use of rocuronium as the frequency of
such events is higher than with other nondepolarizing
NMBA and similar to that of succinylcholine [63].
Vecuronium, like rocuronium, is an intermediate-

acting NMBA with a very stable hemodynamic profile.
Unlike rocuronium, higher doses do not result in signifi-
cantly shorter time to onset, precluding the use of vecur-
onium in a rapid sequence induction and intubation.
Patients with hepatic or renal impairment can experi-
ence prolonged effects from vecuronium. Furthermore,
vecuronium is metabolized to 3-desacetyl-vecuronium, a
compound with significant neuromuscular blocking ac-
tivity [64]. Although vecuronium is not associated with
hemodynamic perturbations, its active metabolites and
association with ICU-acquired weakness warrant caution
in the critical care setting.
Pancuronium is a long-acting aminosteroidal NMBA

that can have prolonged effects in patients with organ dys-
function [61, 65]. This agent causes direct sympatho-
mimetic stimulation and antagonizes cardiac muscarinic
receptors [66], often resulting in tachycardia. Pancuro-
nium is metabolized to three metabolites, with 3-OH pan-
curonium being the most clinically relevant: it has 50% of
the neuromuscular blocking potency of the parent com-
pound [67], contributing to the accumulation and pro-
longed duration of action with repeated pancuronium

administration. Therefore, the use of pancuronium in the
critical care setting is discouraged.

Depolarizing agents
As the only depolarizing NMBA available, succinylcho-
line produces neuromuscular blockade by competing
with acetylcholine (ACh) at the postsynaptic nicotinic
receptors. Following the administration, succinylcholine
produces a reliably rapid blockade and can be used to fa-
cilitate rapid sequence induction and tracheal intubation.
Its use is associated with skeletal muscle fasciculations
after administration, and waiting at least 30 s after the
cessation of fasciculations should provide optimal block-
ade for endotracheal intubation [68, 69]. Succinylcholine
is a known trigger for malignant hyperthermia and
causes a transient increase in plasma potassium levels by
0.5–1.0 mEq/L [70, 71]. This hyperkalemic response can
be exaggerated in patients with upregulated extrajunc-
tional nicotinic acetylcholine receptors (nAChRs). The
proliferation of such receptors occurs in patients with
prolonged immobility, acute burns, stroke with paralysis,
spinal cord injury, demyelinating disorders, and even
sepsis [72]. This feature is of particular concern in the
critically ill patient as the duration of ICU stay has been
correlated with the risk of hyperkalemia (potassium ≥
6.5 mEq/L) [73]. Therefore, clinicians must be aware of
recent serum potassium concentration and relevant pa-
tient history regarding neuromuscular pathology prior to
administration of succinylcholine in the ICU.

Reversal agents (pharmacologic antagonists)
In the perioperative setting, pharmacologic antagonism
of neuromuscular blockade is routinely used to restore
baseline function and reduce the risk of postoperative
residual paralysis [74]. Current trends in ICU manage-
ment most often allow for spontaneous recovery, and
pharmacologic reversal is uncommon. Nonetheless,
intensivists should be familiar with the antagonists for
this potentially harmful class of medications in order to
restore neuromuscular function in patients.

Acetylcholinesterase inhibitors
Neostigmine and edrophonium antagonize the action of
NMBAs by preventing the action of the enzyme acetyl-
cholinesterase. This enzyme breaks down ACh in the
neuromuscular junction, and its inhibition results in the
accumulation of ACh that competes with NMBA for
binding sites on postsynaptic receptors. Neostigmine
should not be utilized to reverse moderate levels of
neuromuscular blockade (train-of-four count < 1–3) but
should be reserved for situations with the train-of-four
count > 3 (Table 5). Median recovery time is approxi-
mately 15 min, although significant variability exists
among patients and clinical scenarios [75]. Because the
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increase in ACh also affects muscarinic receptors, an
antimuscarinic drug such as glycopyrrolate is typically
co-administered to avoid side effects such as significant
bradycardia and bronchoconstriction [76].

Sugammadex
Rocuronium and vecuronium can be antagonized with
sugammadex, a gamma-cyclodextrin compound that en-
capsulates and binds these NMBAs. This encapsulation
process occurs in the plasma, creating a concentration
gradient that facilitates the transfer of aminosteroidal
NMBA from the neuromuscular junction back into the
circulation. The tightly bound, inactive sugammadex-
aminosteroidal complex is then excreted in the urine
[77]. Sugammadex has the unique ability to reverse deep
or profound levels of neuromuscular blockade and re-
store neuromuscular function faster than spontaneous
recovery from succinylcholine [78], although this rescue
technique should not supplant prudent airway manage-
ment [16]. It is not approved for use in patients with a
creatinine clearance < 30 ml.min-1; however, several
studies have reported its use in patients with a signifi-
cant renal disease without complications [79–81]. In
addition, the NMBA-sugammadex complex can be re-
moved via standard dialysis techniques [82]. Concern ex-
ists over hypersensitivity reactions following
sugammadex administration [83]; however, the overall
incidence of such events remains low and rarely impacts
routine clinical care [84]. While not currently widely
used in the critical care setting, its use may expand as
new evidence emerges describing its use as a rescue
therapy for residual blockade [85] and its role in redu-
cing the incidence of reintubation [86] and promoting
enhanced recovery protocols in the ICU [87]. In an ef-
fort to reduce the incidence of residual weakness and re-
currence of neuromuscular blockade, we recommend
dosing sugammadex based on actual body weight (rather
than ideal body weight) and utilizing neuromuscular
monitoring to confirm adequate recovery prior to extu-
bating the patient’s trachea.

Determining the level of neuromuscular blockade
Subjective evaluation with a peripheral nerve stimulator
Titrating appropriate levels of neuromuscular blockade
may be essential to avoid prolonged paralysis in the ICU
[88]. While the use of continuous NMBA infusions ra-
ther than intermittent boluses was reported to minimize
the risk of prolonged paralysis [89], current guidelines
also suggest that the use of a peripheral nerve stimulator
(PNS) can be a useful tool, when combined with other
clinical assessment, to determine adequate neuromuscu-
lar blockade. Indeed, a PNS is utilized by a majority of
institutions to guide neuromuscular blockade in the crit-
ical care setting [90]. While expert opinion has driven
such implementation [91, 92], a large randomized, pro-
spective study demonstrated that utilizing a PNS re-
duced the incidence of prolonged muscle recovery and
the overall amount of NMBA administered [93]. Fur-
thermore, the use of a PNS has been shown to achieve
overall cost savings, primarily through less drug being
needed to maintain the desired level of paralysis [94]. An
international panel of experts recently recommended at
least the use of a PNS whenever neuromuscular block-
ade is utilized, although quantitative monitors are the
only means of reliably confirming recovery [95].
Several obstacles and limitations exist when utilizing a

PNS. Significant inter-observer variability can exist when
using a PNS as the providers may visually or tactilely
evaluate the response to train-of-four stimulation [96].
Different muscle groups will have different sensitivity to
NMBA administration, leaving the site of monitoring
particularly important when determining the level of
blockade (Fig. 1) [96]. The detection of fade, a feature
that signifies some degree of the residual blockade and
incomplete restoration of baseline function, is challen-
ging even for the experienced anesthesiologist who eval-
uates multiple train-of-four stimulations daily [97]. Such
challenges are magnified in the ICU setting, as providers
may have little or infrequent experience with using a
PNS. Additionally, patients with significant perspiration
and tissue edema in the ICU can present obstacles to
performing adequate neurostimulation.

Table 5 Levels of neuromuscular block

Level of block Depth of block Objective measurement at APM Subjective evaluation with PNS at APM

Level 5 Complete PTC = 0 PTC = 0

Level 4 Deep PTC ≥ 1, TOFC = 0 PTC ≥ 1, TOFC = 0

Level 3 Moderate TOFC = 1–3 TOFC = 1–3

Level 2b Shallow TOFR < 0.4 TOFC = 4, TOF fade present

Level 2a Minimal TOFR = 0.4–0.9 TOFC = 4, TOF fade undetectable

Level 1 Adequate recovery TOFR ≥ 0.9 Cannot be determined

APM adductor pollicis muscle, NMB neuromuscular blockade, PNS peripheral nerve stimulator, PTC posttetanic count, TOF train of four, TOFC train-of-four count,
TOFR train-of-four ratio
aSubjective evaluation of the depth of neuromuscular block is not recommended, but it is included as an interim transition from current practice to the preferred,
objective monitoring-based practice. Reproduced with permission [95]
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Quantitative monitors
While not common practice, handheld quantitative (ob-
jective) monitoring technology is expanding and improv-
ing. The use of these devices is increasing in the
perioperative arena, and their application to guide ad-
ministration of NMBAs and confirm recovery from
neuromuscular blockade perioperatively has recently
been recommended by a panel of experts [95]. Quantita-
tive monitoring carries a distinct advantage over the use
of a PNS in that it objectively measures and calculates
the train-of-four count and ratio, rather than relying on
visual or tactile assessment by clinicians. Transitioning
from subjective evaluation to precisely measuring the
level of blockade with quantitative monitoring represents
a significant improvement in neuromuscular blockade
management in the critical care setting and reduces
inter-observer variability. Additionally, quantitative mon-
itors are the only reliable means to confirm adequate re-
covery from neuromuscular blockade prior to tracheal
extubation, a clinical prerequisite that is vital in the vul-
nerable ICU patient population. Regardless of whether
reversal agents are utilized or if clinicians rely on the
NMBAs’ pharmacokinetics to recover spontaneously, ad-
equate recovery must be documented to avoid complica-
tions of residual paralysis such as oropharyngeal
dysfunction and critical respiratory events [98, 99].
Quantitative monitors can be categorized based on the

mechanism by which the train-of-four count and/or ra-
tio are measured [100]. Acceleromyography (AMG) is
the most commonly utilized quantitative monitor and
relies on Newton’s second law that states force is pro-
portional to acceleration. By measuring the acceleration
of the monitored muscle group, AMG devices can calcu-
late the train-of-four ratio and confirm adequate recov-
ery from neuromuscular blockade. Kinemyography
(KMG) measures the degree of bending of a sensor strip
positioned between the thumb and index finger after
neurostimulation. Both KMG and AMG require the
muscle group being monitored to move freely without
restriction as they utilize integrated piezoelectric motion
sensors to quantify the response to neurostimulation.
Electromyography (EMG) does not require freely moving
muscle groups, as it measures the electrical response of
the muscle upon neurostimulation. This response is pro-
portional to the force of contraction, without requiring
an actual contraction. Because of this characteristic,
EMG may be suitable for confirming recovery for the
neuromuscular blockade in the critical care setting that
commonly utilizes limb restraints (and in clinical

Fig. 1 a Peripheral nerve stimulator over the ulnar nerve of a
patient with limb restraints. b Peripheral nerve stimulator over the
posterior tibial nerve. c Peripheral nerve stimulator over the
facial nerve
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settings in which the use of AMG- or KMG-based moni-
tors is limited). Similar to using a PNS, EMG- and
AMG-based quantitative monitors can also be utilized to
monitor other muscle groups (facial, foot) if the hand is
unavailable (Figs. 2, 3, and 4).

Sedation strategies
A comprehensive review of sedation strategies in the
ICU is beyond the scope of this review. Nonetheless,
vigilance is warranted in maintaining adequate sedation
when NMBAs are utilized in order to avoid unintended
patient awareness and recall. Clinicians must recognize
markers of inadequate sedation such as tachycardia,
hypertension, diaphoresis, and ventilator dyssynchrony.
While the use of processed electroencephalography
(EEG) has been shown to decrease the risk of intraoper-
ative awareness in high-risk surgical patients [101],
current guidelines make no recommendations regarding
the use of such technology in the critical care setting
when NMBAs are administered [4]. However, we
recognize that the utilization of processed EEG monitors
at the bedside of ICU patients receiving NMBA infusions
is becoming more common.

Complications from neuromuscular blockade
The use of NMBAs in the ICU setting risks numerous
complications. Most notably, neuromuscular blockade
results in prolonged patient immobility that can lead to
the development of acquired weakness, myopathy, pres-
sure ulcers, nerve injuries, and risk of deep venous
thrombosis (DVT) [42]. Because the critically ill patient

has an increased risk of DVT in their lower extremities
compared with other hospitalized patients, special atten-
tion should be given to this potentially preventable com-
plication [102, 103]. Boddi et al. found in their
multivariate analysis that NMBAs were the strongest in-
dependent predictor for DVT incidence in the ICU
[102]. Special care and consideration should be given to
patients who receive NMBAs with regard to optimizing
DVT prevention.
Multiple studies have shown that there is a correlation

between ICU-acquired weakness (ICUAW) and neuro-
muscular blockade [34, 104, 105]; however, there is a
lack of well-designed clinical trials confirming this rela-
tionship [106]. ICUAW represents a heterogeneous term
that has been used to describe varying conditions such
as critical illness polyneuropathy (CIP), critical illness
myopathy (CIM), and critical illness neuromyopathy
(CINM), a diagnosis that is based on electrophysiologic
testing. The etiology of such states is often multifactor-
ial, and the reported outcomes are also heterogeneous.
A recent meta-analysis suggested a modest association
between NMBA use and ICUAW [107]; however, the
studies that were included with a strong association have
a high risk of bias, and the studies with the lowest risk
of bias that performed multivariable adjustment sug-
gested a small, but not significant association. Neverthe-
less, the authors’ sensitivity analysis showed an increased
risk of CIP in septic shock patients exposed to NMBAs,
and consistent with previous studies [108, 109], the asso-
ciation may be proportional to the severity of the sepsis;
therefore, the authors recommended to be cautious and

Fig. 2 The acceleromyography-based TOFscan device (Drager Technologies, Canada) measuring the response to neurostimulation of the
adductor pollicis muscle
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target early use. Association between the ICUAW and
NMBA use remains controversial. Well-designed trials
should be performed to determine if the use of NMBAs
is an independent cause of ICUAW.
Unintended (or accidental) awareness and recall are

also a major concern during the use of NMBAs [110,
111]. In patient interviews, feelings of dying, being tied
down, and fear were expressed with the concomitant use
of NMBAs. Though the exact regimen of sedation and
analgesia was not known in these patients, this compli-
cation reinforces the importance of providing proper
sedation and not only relying on a single monitor, such
as processed electroencephalography (pEEG). Rather, cli-
nicians must assimilate multiple markers of sedation

such as unexplained tachycardia and hypertension, venti-
lator dyssynchrony, and tearing to avoid this
complication.
Once patients’ tracheas are extubated, the most feared

complication is hypoxemia and the subsequent need for
reintubation. NMBAs have been known to cause adverse
pulmonary outcomes [112] such as decreased inspiratory
flow [113], residual paralysis [114], and impaired airway
protective reflexes [99]. Such clinical features place pa-
tients at increased risk of upper airway obstruction,
pneumonia, and reintubation. Identification of patients
who may be at risk for adverse respiratory events was
highlighted by Stewart and colleagues in 2016 [115].
These investigators found that > 30% of patients in the

Fig. 3 a The electromyography-based TetraGraph device (Senzime AB, Uppsala, Sweden) measuring the response to neurostimulation of the
adductor pollicis muscle. b The electromyography-based TetraGraph device (Senzime AB, Uppsala, Sweden) measuring the response to
neurostimulation of the flexor hallucis brevis muscle
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post-anesthesia care unit had residual neuromuscular
blockade, and this risk was increased with older age, ab-
dominal surgery, and surgery duration greater than 90
min [115]. Patients with obstructive sleep apnea (OSA)
who receive NMBAs may also be at higher risk for post-
operative respiratory complications compared to patients
who do not have OSA [116]. While this risk stratifica-
tion has not been applied to the ICU setting, such clin-
ical predictors may prove useful and applicable in
critically ill patients. Additionally, the use of a “leak test”
has been proposed to identify patients at risk for post-
extubation stridor that can result from laryngeal edema
[117]. While the incidence of this complication has been
found to be as high as 22% [118], a recent prospective,
multicenter trial found it to be less than 10% [119].
Interestingly, these authors propose that the increasing
use of neuromuscular blockers at the time of endo-
tracheal intubation may be a contributing factor to this
decline [119]. Regardless, vigilance is warranted follow-
ing extubation as post-extubation stridor is a significant
predictor of prolonged mechanical ventilation and pro-
longed ICU length of stay [120, 121].

Conclusions
While the administration of NMBAs can prove to be a
life-saving therapy in select critically ill patients, these
medications have unique inherent risks as well. How-
ever, by understanding the pharmacology, dosing, drug
interactions, side effects, and monitoring techniques, cli-
nicians can safely maximize the benefits. As there are
few prospective studies that support improved long-term
outcomes for patients in the ICU, the administration of
NMBAs should be limited to facilitating endotracheal in-
tubation, prevention of shivering following therapeutic
hypothermia, and avoiding increases in intracranial pres-
sure in patients at risk associated with coughing or ven-
tilator dysynchrony. Moreover, residual weakness
following the use of NMBAs in the ICU is a particular

concern, given this vulnerable population. This compli-
cation may occur more frequently in the ICU, given the
abundance of patients with significant organ dysfunction
and delayed drug (NMBA) elimination. We recommend
continuous vigilance when NMBAs are used in critically
ill patients, selecting the most appropriate NMBA for
each individual clinical scenario, evidence-based proto-
cols that ensure adequate sedation and analgesia, appro-
priate equipment for assessing the degree of
neuromuscular blockade, and aggressive physical therapy
regimens during periods of reduced mobility. Such a
multifaceted approach can improve patient safety when
NMBAs are utilized in the ICU and reduce associated
complications.
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