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In the study of Chen et al. [1] the authors used 3-hydroxybutyric acid (3-OBA) as
a specific GPR81 (hydroxycarboxylic acid receptor-1—HCA1) receptor antagonist. In
their comment, Nezhady and Chemtob [2] comprehensively demonstrated that any direct
evidence for a GPR81 receptor- (or signaling)-antagonizing action is lacking in the scientific
literature. Instead, 3-OBA is an established ligand of the HCA2 receptor [3]. Since Chen
et al. [1] built up their reasoning on experimental data solely obtained with the putative
GPR81-inhibitor 3-OBA, part of their conclusions concerning the involvement of the GPR81
receptor or its downstream signaling may be in question. Nevertheless, we decided not to
retract the study from publication for the following reasons.

Several studies (most of them quoted in the comment by Nezhady and Chemtob [2]
to demonstrate the missing evidence for a GPR81 (HCA1) receptor-antagonizing action
of 3-OBA) provide overwhelming evidence that 3-OBA antagonizes the cellular effects
of extracellularly applied lactate or those of the established specific GPR81 agonist 3,5-
dihydroxybenzoic acid (3,5-DHBA) [4] in various model systems. In particular, Khatib-
Massalha et al. [5] have impressively demonstrated that 3-OBA mimics the effect of GPR81
knockout on lactate-induced upregulation of liver neutrophils and antagonizes lactate
effects in vivo. Moreover, Shen et al. [6] have shown that 3-OBA blunts the hazardous
effect of oxygen and glucose depletion on GPR81-transfected N2A cells, while lactate
reverses this 3-OBA effect. Notably, a MEK inhibitor abolishes this protective 3-OBA action
that might hint at an interference of 3-OBA with the MAP kinase pathway. As a matter
of fact, lactate and the specific GPR81 agonist 3,5-DHBA reportedly increase myotube
diameter in mouse C2C12 skeletal muscle cells in a MEK-inhibitor-sensitive manner [7].
In addition, 3-OBA has been proven to attenuate lactate-induced nuclear accumulation
of β-arrestin2, p300 and CBP and to prevent lactate-induced phosphorylation of LATS1
and YAP, preserving YAP expression, to blunt lactate-promoted HMGB1 acetylation and
to suppress lactate-increased exosomal HMGB1 levels in macrophages [8]. Furthermore,
3-OBA reportedly abolishes while the specific GPR81 agonist 3,5-DHBA mimics lactate
effects in breast cancer cells [9], and finally, 3-OBA has been shown to abrogate lactate-
and 3,5-DHBA-mediated processes in intestinal stem-cell-mediated epithelial development,
mimicking effects of GPPR81 knockout [10].

Although proof of interference of 3-OBA with the HCA1 (GPR81) receptor directly
or with its downstream signaling is missing, as legitimately criticized by Nezhady and
Chemtob [2], this incomplete list of observations indicates that 3-OBA functionally blocks
GPR81-triggered cellular effects. Most importantly, independently of the underlying
mechanisms, the data in the study by Chen et al. [1] are clinically relevant, demonstrating
the synergistic anti-tumor effect of 3-OBA, metformin and PD-1/PD-L1 blockade in vivo.

We want to thank Dr. Nezhady and Dr. Chemtob for bringing this issue to our
attention.
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