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ABSTRACT Here, we introduce the genome of Sebago, a 43,878-bp siphophage
that infects Staphylococcus aureus. Sebago carries 70 proteins and is most closely re-
lated to StauST398, a Phietavirus.

Staphylococcus aureus is a Gram-positive, nonsporulating, commensal microbe that
affects both humans and animals (1). While typically present in the normal flora of

human skin and nares, various strains of S. aureus, such as methicillin-resistant S. aureus
(MRSA), have obtained antibiotic resistance and become leading causes of nosocomial
infections (2). To combat the antibiotic resistance in S. aureus, alternative treatments
using bacteriophage are in development (3). Here we present the complete genome of
Sebago, a siphophage infecting S. aureus.

Sebago was isolated from a filtered (0.2-�m) Minnesota swine barn environmental
swab eluate via an overnight enrichment against S. aureus strain PD17 (Texas swine
nasal isolate; spa type t034) (4). The phage and host propagation were carried out
aerobically at 30°C in tryptic soy broth (TSB) medium (Difco) using the soft-agar overlay
method (5). The genomic DNA for Sebago was purified with the Promega Wizard DNA
cleanup kit according to the modification in the shotgun library preparation protocol
given by Summer (6), with an additional 10 mM EDTA (pH 8.0) and 100 �g/ml
proteinase K treatment for 30 min at 50°C after polyethylene glycol (PEG) precipitation
(to eliminate heat-stable staphylococcal nucleases). To generate 250-bp paired libraries,
we used an Illumina TruSeq Nano low-throughput kit (6). The Illumina MiSeq index
using v2 500-cycle chemistry yielded 372,373 total reads. FastQC (http://www
.bioinformatics.babraham.ac.uk/projects/fastqc/) was used for quality control. FastX-
Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/) was used for trimming. The
Sebago contig was assembled using SPAdes v3.5.0 with 87-fold coverage (7). The
genome was confirmed as complete via PCR (forward primer, 5=-CTGCCAAAGTCTG
TAGCAATAAC-3=; reverse primer, 5=-TTGCTTACTGGCGACTTCTC-3=) and Sanger se-
quencing of the product. Annotation was done in Web Apollo, first calling genes
with GLIMMER v3.0, MetaGeneAnnotator v1.0, and ARAGORN v2.36 for tRNAs
(8–11). Terminators predicted as rho-independent were identified with Trans-
TermHP (12). Functional prediction made use of evidence from TMHMM v2.0,
InterProScan v5.22, and BLAST against the NCBI nonredundant and UniProtKB
Swiss-Prot/TrEMBL databases (13–16). The annotation tools were run in the Galaxy
instance hosted using default parameters by the Center for Phage Technology at
Texas A&M University (https://cpt.tamu.edu/galaxy-pub/) (17). To ascertain the
phage morphology, Sebago samples were negatively stained with 2% (wt/vol) uranyl
acetate and viewed by transmission electron microscopy at the Texas A&M Microscopy
and Imaging Center (18).

Sebago has a 43,878-bp genome with a 94.5% coding density. There are 70
protein-coding genes, with 37 functional predictions made, and no tRNA genes.
Sebago’s 35.3% G�C content is similar to the �33% of its host S. aureus (19).
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PhageTerm predicts a headful packaging mechanism for this phage (20). In
progressiveMauve and BLASTp comparisons, Sebago has 77.4% overall nucleotide
identity and 54 genes similar to those of another S. aureus siphophage, StauST398
(GenBank accession no. JQ973847) (21, 22). StauST398, a Phietavirus, has a genome size,
total number of genes, and G�C content similar to those of Sebago.

Interestingly, in the Sebago genome, the putative tape measure protein (GenBank
accession no. QBQ72253) is adjacent to the predicted tail assembly chaperone
(QBQ72255) and its frameshifted product (QBQ72254), similar to the phage lambda
G/GT chaperone system (23).

Data availability. The genome sequence and associated data for phage Sebago
were deposited under GenBank accession no. MK618716, BioProject accession no.
PRJNA222858, SRA accession no. SRR8869228, and BioSample accession no.
SAMN11360406.
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