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Malignant tumors remain the health problem of highest concern among people worldwide
due to its high mortality and recurrence. Lung, gastric, liver, colon, and breast cancers are
among the top five malignant tumors in terms of morbidity and mortality. In cancer biology,
aberrant signaling pathway regulation is a prevalent theme that drives the generation,
metastasis, invasion, and other processes of all malignant tumors. The Wnt/β-catenin,
PI3K/AKT/mTOR, Notch and NF-kB pathways are widely concerned and signal crosstalks
exist in the five solid tumors. This review provides an innovative summary of the recent
progress in research on these signaling pathways, the underlying mechanism of the
molecules involved in these pathways, and the important role of some miRNAs in tumor-
related signaling pathways. It also presents a brief review of the antitumor molecular drugs
that target these signaling pathways. This review may provide a theoretical basis for the
study of the molecular biological mechanism of malignant tumors and vital information for
the development of new treatment strategies with a focus on efficacy and the reduction of
side effects.
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INTRODUCTION

Malignant tumors are a public health problem of worldwide concern and a leading cause of death for
people in the world. According to a 2017 report by the American Cancer Society, lung cancer (LC),
gastric cancer (GC), liver cancer, colorectal cancer, and breast cancer (BC) remain the top five causes
of cancer deaths (Siegel et al., 2020). The highly invasive nature of cancer cells is the main cause of
high cancer mortality and often leads to cancer progression and metastasis. Therefore, determining
the mechanism underlying the occurrence and development of malignant tumors is of great
importance.

The numerous studies that have been performed in recent decades suggest that signaling
pathways are implicated in the development of cancer. Abnormal pathways drive the
generation, metastasis, invasion, and other processes of all malignant tumors. Among the
five tumors that received the most attention and emerged as crosstalk pathways were Wnt/
β-catenin pathway, PI3K/AKT/mTOR, Notch and NF-kB pathway (Rogers et al., 2008; Ahmed
et al., 2013; Collu et al., 2014; Zheng et al., 2017). Four signaling pathways play important roles
in the occurrence, development and spread of malignant tumors. These pathways include the
secretory glycoprotein (Wnt)/β-serial protein (β-catenin) signaling pathway (Holstein, 2012),
the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian rapamycin
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target protein (mTOR) signaling pathway (Engelman et al.,
2006), the Notch signaling pathway (Kopan and Ilagan,
2009), and the nuclear factor kappa beta (NF-kB) signaling
pathway (Karin, 2006). The Wnt/β-catenin signaling pathway
is engaged in cell multiplication, migration, genetic stability,
and apoptosis, as well as participates in maintaining the
pluripotent state of adult stem cells, which is associated
with tumor generation and development (Holstein, 2012).
PI3K/AKT/mTOR signal transduction pathway can not only
control cell metabolism, movement, survival and
proliferation, but also can affect the growth and spread of
cancer cells. The PI3K/AKT/mTOR pathway dysregulation
are often observed in human cancers (Engelman et al., 2006).
In addition, the Notch signaling pathway has been detected in
human BC, indicating that it acts an indispensable part in BC
occurrence as a result of its participation in cell growth
process (Kopan and Ilagan, 2009). Furthermore, the NF-κB
signaling pathway has been increasingly considered to be a
key factor in many steps of cancer occurrence and
development (Karin, 2006). Therefore, all of these
signaling pathways are frequently seen in malignant
tumors. Meanwhile, an increasing number of new drugs
that target these signaling pathways have been used in the
gene therapy of malignant tumors (Polivka and Janku, 2014).
Therefore, an improved understanding of the above signaling
pathways may improve oncologists’ prognosis ability and
prediction accuracy for treatment response.

MicroRNAs are a group of very conservative small single-
stranded noncoding RNA molecules that, by pairing with
complementary RNA molecules, negatively regulate the
expression patterns of different genes at the post-
transcriptional or translational level, thereby inhibiting
translation through RNA degradation. MiRNAs participate
in many cellular processes, such as transcription, cell growth,
proliferation, inflammation, cell movement, differentiation,
and apoptosis, as well as in the cell cycle (Iqbal et al., 2019).
Mirna can as a tumor suppressor gene (TSG) or oncogene by
regulating the expression levels of several proteins, so that the
abnormal expression patterns of microRNA-related signaling
pathways are associated with the occurrence and
development of human malignant tumors. The miRNA-
based therapies of tumors have been widely reported.
Given that miRNAs are effective modulators of resistance,
they could be a beneficial strategy of therapy, especially for
resistant phenotypes, in conjunction with chemotherapy or
radiotherapy (Yu et al., 2015; Arab et al., 2017). MiRNA-
based therapeutic strategies targeting signaling pathways
have been made to decrease the level of expression of
specific miRNAs and supplement the deficiency in
miRNAs that develops during disease progression.

This review provides an innovative summary of several
signaling pathways that have been associated with the
occurrence and progression of malignant tumors with high
morbidity and mortality worldwide in recent years (Leake
et al., 2012; Rapp et al., 2017; Stotz et al., 2015). Notably, we
describe some key signaling molecules involved in the
pathogenesis of malignant tumors and the drugs targeting

these pathways that have been marketed (Lagadec et al., 2008;
Rakha and Green, 2017). In addition, this article presents an
analysis of the current research related to the role of miRNAs in
cancer invasion and metastasis with the expectation that the
further exploration of miRNA-targeted therapy may help
establish a new spectrum of cancer treatments. The goal of
our study is to help develop and design new drugs that will
extend the lives of patients with the five top-ranked malignancies
and reduce side effects, risks, and drug resistance.

TARGETING WNT/β-CATENIN PATHWAY
FOR CANCER

Wnt/β-Catenin Pathway
The Wnt family is a class of proteins involved in many functions,
including cell survival, stem cell renewal, and organ formation
(Holstein, 2012). The name Wnt is determined by the Drosophila
gene Wingless and the mouse proto-oncogene Int1 (Katoh and
Katoh, 2005). At present, researchers have discovered nearly a
hundred Wnt genes in different species. In humans, 19 Wnt
proteins have amino acid sequence homologies of 27–83% and
the conservative pattern of 23 or 24 cysteine residues. Cysteine-
rich glycoproteins in the Wnt family act as ligands for up to 15
receptors or coreceptors (Li et al., 2006).

Wnt signals transduction through three distinct cellular
pathways, including the Wnt/β-catenin-dependent or
canonical pathway and the Wnt/β-catenin-independent or
noncanonical pathway. The β-Catenin independent pathway
includes the Wnt/Ca2+ pathway and the planar cell polarity
(PCP) pathway. The β-catenin-dependent signaling pathway
is initiated by the binding of the Wnt ligand to lipoprotein
receptor-related protein (LRP)-5/6 receptors, which activate
disheveled (DVL) and in turn induce the recruitment of the
receptor axis inhibition protein Axin, glycogen synthase
kinase-3β (GSK-3β), casein kinase 1 (CK1), and
adenomatous polyposis Escherichia coli (APC) in the form
of a complex (Macdonald et al., 2009). The Wnt-Frizzled-
Axin-LRP-5/6 complex sequesters cytosolic GSK-3β,
preventing it from phosphorylating β-catenin.
Unphosphorylated β-Catenin accumulates in the cytosol
migrating to the nucleus, where it interacts with the T
cell-specific factor (TCF) lymph enhancer-binding factor
and coactivators, such as pygopus and B-cell lymphoma 9,
to turn on Wnt target genes, such as c-myc, cyclin D1, and
cyclin-dependent kinase inhibitor 1. In the lack of the Wnt
molecule, β-catenin in the cytosol is phosphorylated by GSK-
3β and subsequently isolated from the β-catenin destruction
complex (Wu and Pan, 2010). Phosphorylated compounds
enhance β-catenin ubiquitination and lead to subsequent
proteasome degradation. In the atypical Wnt
pentachlorophenol or PCP pathway, the Wnt protein binds
to the frizzled transmembrane receptor on the cell surface,
subsequently activates RHO/RAC small GTPase and Jun
N-terminal kinase (JNK) through DVL, and then assists in
the regulation of the cytoskeleton and gene expression
(Gordon and Nusse, 2006). DVL connects to the
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downstream effector ras homolog family member A and
RHO-associated kinase through the DVL-associated
activator of morphogenesis-1 (Fumoto and Kikuchi, 2019).
In the Wnt/Ca2+ pathway, Wnt proteins are mainly
composed of Wnt1, Wnt5a, and Wnt11. They bind to
frizzled transmembrane receptors and participate in
several cellular processes. These processes involve the
stimulation of the heterodimer G protein to further
activate phospholipase-C (PLC) (Okamoto et al., 2014).
PLC increases intracellular Ca2+ release, decreases cGMP
levels, and activates calcineurin and protein kinase-C or
Ca2+-calmodulin-dependent protein kinase-II (Macdonald
and He, 2012; Jiang et al., 2015). These processes may
spur the nuclear factor of activated T cells and other
transcription factors, such as cAMP response element-
binding protein-1 (Jernigan et al., 2010) (Figure 1). The
Wnt signaling pathway is activated in various cancers, and
these molecules are closely related to its activation.

Wnt signals are activated in the crypt floor, which are crucial
for cell repair and the optimal maintenance of stem cells.
Numerous of evidence indicates that colorectal cancer is under
the effect of Wnt signaling pathway activation, which is related to
the loss-of-function of the tumor regulator APC (Krishnamurthy
and Kurzrock, 2018). The Wnt pathways can cross-talk with the
Notch pathway. This phenomenon provides a reliable idea for
cancer treatment and intervention. Nonetheless, considerable
challenges are encountered in targeting the Wnt pathway.
These challenges include the search for drugs that are effective
in cell repair and tissue homeostasis without impairing the
functional system of normal stem cells (Yang et al., 2016; Li

et al., 2018a; Xing et al., 2019). Next, we retrospect the Wnt/
β-catenin pathway in different cancers. Moreover, we will
introduce the status of research on the effectors and inhibitors
of the Wnt/β-catenin signaling pathway.

Wnt/β-Catenin Pathway and Lung Cancer
The abnormal Wnt/β-catenin pathway drives the generation,
metastasis, invasion, and other processes of LC and plays an
active role in the formation of LC angiogenesis and the stability of
LC stem cells. Abnormalities in the Wnt/β-catenin pathway
involve gene mutations in the Wnt pathway, molecular
modifications, and protein molecular changes in transcription
and translation (Ullah et al., 2013; Santana et al., 2020).
Therefore, targeting the Wnt/β-catenin pathway has become
an effective means to treat LC.

Given that APC is part of the degradation scaffold for
β-catenin, mutations in APC, including cyclin D1 and c-myc,
lead to decreased degradation and increased nuclear
accumulation (Yedid et al., 2016). Studies have shown that
loss of heterozygosity on chromosome 5q and increased levels
of β-catenin at the APC locus have occurred in LC types.
However, LC types are characterized mainly by transcriptional
dysregulation of Wnt ligands rather than specific site mutations
in the APC or β-catenin genes (Wang et al., 2019). For example, a
common feature of certain LC cell lines is the loss of Wnt7a
mRNA (Ohgaki et al., 2004; Nakayama et al., 2014). Elevated
levels of Wnt1 and Wnt2 in some other NSCLCs also have been
reported. The inhibition of Wnt2-induced signaling results in the
down-regulation of the antiapoptotic gene and consequently
initiates apoptosis (Winn et al., 2005; Chen et al., 2018). The

FIGURE 1 | Schematic diagram of theWnt/β-catenin pathway.Wnt signaling is transmitted through at least three different intracellular pathways (A) canonical Wnt/
β-catenin signaling pathway (B) Wnt/Ca2+ pathway (C) Wnt/PCP pathway.
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SRY-like HMG box 2 (Sox2) gene codes for the SOX2
transcription factor which is expressed in the main histological
types of LC (Chen et al., 2012). By inhibiting the expression of
SOX2 in lung cancer, the expression ofWnt1/2,Notch1 and c-myc
genes can be down-regulated and tumor cell apoptosis can be
induced (Nakatsugawa et al., 2011). By contrast, the sustained
β-catenin signaling hinders the differentiation of clara cells into
ciliated cells, whereas the Knockout of β-catenin in basal cells can
inhibit proliferation and prompts apoptosis (Yedid et al., 2016).
Besides,Wnt7b is up-regulated in adenocarcinoma, andWnt5a is
up-regulated in primary squamous cell carcinoma (Ghosh et al.,
2013). In lung metastasis, the overexpression of Wnt5a in the
noncanonical pathway also regulates the expression of fibroblast
growth factor (FGF) 10 and sonic hedgehog and
epithelial–mesenchymal transition (EMT). Matrix
metalloproteinases are the targets of canonical and
noncanonical Wnt signaling pathways and are critical for
tissue remodeling; they are increased in spread tumors (Mao
et al., 2018). In addition to Wnt in vitro, other molecules in the
Wnt/β-catenin pathway are abnormally regulated in LC. For
instance, the overexpression of DVL-3, a signal converter
molecule and a positive regulator of the Wnt/β-catenin
signaling pathway, has been reported in NSCLC. Moreover,
the Wnt pathway antagonists DicKKOPF-3, WNT inhibitor
(Mao et al., 2018), and secreted crimped protein-related
proteins have been reported in different subtypes of LCs (Lee
et al., 2004).

In addition to the genetic studies described above, epigenetic
research has grown rapidly over the past period, especially for
miRNAs (Lee et al., 2004). Increasingly miRNAs have been
discovered that related with various types of LCs. Several
β-catenin interacting proteins have also been found among the
miR-214 targets in lung adenocarcinomas (Qi et al., 2015), and
β-catenin itself is rather affected by miR-3619-5p. Mir-3619-5p
has been reported to inhibit tumor cell growth of A549 and H460
NSCLC by binding to the 3′- UTR region of the β-catenin gene. In
addition, miR-374a targets Wnt5a, and miR-487b can reduce
Wnt5a activity (Qi et al., 2015)]. The type 2B sodium dependent
phosphate transporter (NaPi-IIB) is situated in the apical
membrane of ATII cells (Qi et al., 2015; Zhang et al., 2016).
MiR-410 can activate the Wnt/β-catenin pathway by decreasing
NaPi-IIB levels (Zhang et al., 2016), thus improving the ability of
tumor growth and invasion.

Wnt/β-Catenin Pathway and Liver Cancer
The inhibitors of the Wnt/β-catenin signaling pathway might be
effective in the hepatocellular carcinoma (HCC) intervention
therapy (Taciak et al., 2018). In a HepG2 cell line, the
knockout of β-catenin under the mediation of RNA
interference decreases proliferation and growth in vitro.
Evidence showing that miRNAs correlated with the expression
of Wnt/β-catenin pathway related genes, such as c-myc, APC,
cyclin D1, and DKK1, are increasing. Ashmawy held that miR-
106b, miR-10a, miR-99a, miR-148a, miR-215, miR-199a, miR-
30e, miR-199a3p, miR-24, miR-122, and miR-125b, are down-
regulated in patients with HCC (Ashmawy et al., 2017). Liu
thought that miR-18a expression is up-regulated relative to that

in adjacent nontumoral liver tissue in human HCC. Up-
regulation of miR-18a expression level improved the spread
and migration ability of HCC cell lines by suppressing
krüppel-like factor4, a factor that negatively regulates
β-catenin expression. Other than miR-18a, Liu also concluded
that upon induction by c-myc silencing, miR-320a expression
levels were upregulated in HCC tissues relative to paired adjacent
non tumorous liver tissues, and the ability to inhibit HCC cell
proliferation and invasion would be enhanced (Lu et al., 2017; Xie
et al., 2017). These data suggest that miR-320a may be exploited
as a target for HCC therapy. Moreover, wnt3 is a target of miR-
1247-5p, and its expression is significantly down-regulated by
miR-1247-5p overexpression. This restrains the invasion and
proliferation of HepG2 cells, induces cell apoptosis in vitro
(Chu et al., 2017). Thus, miR-1247-5p may serve as a target
for HCC therapy (Table 1).

Wnt/β-Catenin Pathway and CRC
Wnt/β-catenin pathway dysregulation also occurs frequently in
CRC. The abnormal activation of this pathway is related to cell
proliferation, invasion behavior, and drug resistance, suggesting
the potential value of targeting Wnt/β-catenin pathway as an
intervention method for CRC. Most CRC patients have at least
one mutation in a Wnt signaling cascade gene such as APC and
β-catenin protein. Gene mutations in β-catenin, GSK-3β, Axin, or
APC leads to abnormal activation of the Wnt/β-catenin pathway,
and simultaneous Wnt overexpression causes abnormal
activation of this pathway (Schmalhofer et al., 2009). The
Wnt/β-catenin pathway regulates E-cadherin by enhancing the
expression level of repressors of this adhesion molecule, involving
the transcriptional factors recombinant snail homolog (SNAI) 1,
zinc finger E-box binding homeobox 1 and SNAI2. This action
therefore leads to metastasis and invasiveness.

Abnormal expression of miRNA is related to the disorder of
cancer-related signaling pathways, Wnt/β-catenin pathway is
included. Further research showed that Smad7 is a protein
necessary for nuclear accumulation of β-catenin. MiR-93
inhibits the Wnt/β-catenin pathway by targeting Smad7 (Tang
et al., 2015). Similarly, miR-185 (Dong-Xu et al., 2015) and miR-
320a expression levels in CRC cells are significantly down-
regulated compared with those in normal colon cells.
Consistently, the enforced expression of miR-101 (Strillacci
et al., 2009) attenuates the promalignant features of CRC,
including cell growth, invasion and hypoxic survival, which
means that miR-101 can be an effective cancer suppressor for
CRC patients. Moreover, several agents targeting this pathway
have been developed for CRC treatment (Table 2). These agents
include retinoic acid and vitamin D. Retinoic acid can suppress
Wnt signaling via interaction with β-catenin or via competing
with TCF. The active form of vitamin D encourages β-catenin
binding to the vitamin D receptor, and reducing the level of
β-catenin. Besides, several monomers of Chinese traditional
herbs, including quercetin and resveratrol, and the green tea
polyphenol epigallocathechin-3-gallate are observed to inhibit
Wnt inhibitory activity (Roa et al., 2019). The inhibitors of Wnt
production are a new type of Porcupine-targeted Wnt
antagonists. For example, LGK974 can bind to and block
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porcupine enzymes. LGK974 inhibits the expansion of the
murine tumor xenograft model via ectopic Wnt1 expression
originating from the mouse mammary tumor virus (MMTV)
(Liu et al., 2013). PRI-724, a second generation β-catenin
antagonist, increases p300/β-catenin binding and stem-cell
differentiation. BBI608 is another small molecule that not only
inhibits the signal transducer and activator of transcription-3 but

also suppresses β-catenin signaling to treat colorectal cancer
(Lenz and Kahn, 2014). BBI608 can be combined with
chemotherapy agents (such as cisplatin, gemcitabine,
paclitaxel, temozolomide, sorafenib and pemetrexed) to treat
patients with CRC. However, when BBI608 was used in the
phase III trial of metastatic CRC, its expected efficacy was not
achieved in the short-term analysis (Ciombor et al., 2015).

TABLE 1 | miRNAs regulate Wnt/β-catenin pathway in liver cancer.

miRNA Regulation Pathway References

miR-18a Upregulating and promoting the proliferation and migration of HCC cell lines by inhibiting KLF4 Wnt/β-catenin pathway Lu et al. (2017)
miR-320a Inhibiting it can up-regulation of the expression levels of β-catenin, c-myc, cyclin D1 and DKK-1 Wnt/β-catenin pathway Xie et al. (2017)
miR-1247-5p Inhibiting the invasion and proliferation of HepG2 cells by targeting Wnt3 Wnt/β-catenin pathway Chu et al. (2017)

TABLE 2 | Some agents target Wnt/β-catenin pathway in colon cancer.

Agents Regulation Reference

Retinoic acid Inhibit Wnt signaling by direct interaction with β-catenin/competition for TCF binding Roa et al. (2019)
Vitamin D Encourages the β-catenin binding to the vitamin D receptor and decreases the amount of

β-catenin
Roa et al. (2019)

Quercetin Suppresses Wnt inhibiting activity Roa et al. (2019)
Resveratrol Suppresses Wnt inhibiting activity Roa et al. (2019)
Green tea polyphenol epigallocathechin-3-
gallate

Suppresses Wnt inhibiting activity Roa et al. (2019)

LGK974 Binds and blocks the porcupine enzyme Liu et al. (2013)
PRI-724 Increase p300/β-catenin binding and stem-cell differentiation Lenz and Kahn (2014)
BBI608 Not only inhibits signal transducer and activator of Stat3 but also suppresses β-catenin signaling Ciombor et al. (2015)

FIGURE 2 | Intracellular signaling via the PI3K/AKT/mTOR pathway.
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TARGETING THE
PHOSPHATIDYLINOSITOL-3-KINASE/
PROTEIN KINASE B/MAMMALIAN
RAPAMYCIN TARGET PROTEIN PATHWAY
FOR CANCER

Phosphatidylinositol-3-Kinase/Protein
Kinase B/Mammalian Rapamycin Target
Protein Pathway
The PI3K enzyme mainly participates in the phosphorylation of the
inositol lipid membrane and mediates signal transduction (Figure 2,
Costa et al., 2018). Two receptor tyrosine kinases (RTKs) and non-
RTKs lead to the activation of PI3K, consequently leading to the
formation of a second messenger, phosphatidylinositol 3, 5-
triphosphate, from phosphatidylinositol 4, 5-diphosphate. PI3K
activation recruits pleckstrin homology domain-containing
proteins, including AKT/PKB kinases (Engelman et al., 2006) to
the cell membrane, therefore driving conformational changes and
resulting in phosphorylation at threonine 308 and at serine 473.
which via the active phosphoinositide-dependent kinase 1 and via
phosphoinositide-dependent kinase 2, respectively. Activated AKT
kinases are capable of phosphorylating tuberous sclerosis protein 1
(TSC1) and tuberous sclerosis protein 2 (TSC2) (Kwiatkowski et al.,
2016). In addition, the activity of the kinase mTOR is negatively
regulated by the TSC1/TSC2 complex, therefore, AKT leads to that
the mTOR complex 1 (mTORC1) are activated, this effect ultimately
leads to lipid synthesis and increased protein and decreased
autophagy, thereby supporting cell expansion and cell
development (Cheng et al., 2015). Particularly, mTORC1
participates in a negative feedback route that prevents AKT over-
activation. The PI3K/AKT/mTORpathway could be up-regulated via
the activation of molecular alterations in AKT subunits, PI3K, and
mTOR or via inhibiting the PI3K regulatory subunit gene of
phosphate and tension homology deleted on chromosome ten
(PTEN), TSC1, TSC2, and serine/threonine protein kinase LKB1
(Moulder et al., 2015).

The therapeutic targeting of the PI3K/AKT/mTOR pathway has
led to the advancement of some different kinds of drugs, PI3K and
AKT inhibitors, as well as catalytic and allosteric mTOR kinase
inhibitors are included. For example, the mTOR inhibitors Temsiro-
Limus and Everolimus and the PI3K inhibitors Idelalisib and
Copanlisib have been accepted by the FDA for Clinical treatment
of patients with cancer (Janku et al., 2011; Moulder et al., 2011; Janku
et al., 2014). However, many questions related to the inhibitors of the
PI3K/AKT/mTORpathway remain unanswered. They includewhich
drugs or kinds of drugs are ought to be used in a specific cancer
environment and whether the formulation of a reasonable
combination strategy will improve the efficacy of tumor treatment.

Phosphatidylinositol-3-Kinase/Protein
Kinase B/Mammalian Rapamycin Target
Protein and Lung Cancer
Dysregulated PI3K/AKT/mTOR pathway also contributes to LC
initiation and progression, and eukaryotic translation initiation

factor 4E (eIF4E), one of its downstream effectors (Mamane et al.,
2004), has been recognized to function as an oncogene in many
studies. It is not only able to transform cells that are
overexpressed in adenocarcinoma, but also can cause poor
prognosis factors. Increasing evidence supports that the mTOR
pathway plays a part in lung carcinogenesis by binding to eIF4E.
The mTOR pathway is involved in the occurrence and
development of lung cancer. Negative regulators of mTOR
signaling, such as LKB1 and PTEN, are frequently mutated in
LC and are considered tumor suppressors (Phillips et al., 2005).
Studies have shown that the mTOR signaling pathway act a
significant role in behaviors such as aggressiveness and metastasis
of LC. Exposure of NSCLC cells to epidermal growth factors or
hypoxia causes the activation of hypoxia inducible factor-1 (HIF-
1), which ultimately leads to the significant upregulation of C-X-
C motif chemokine receptor 4 (CXCR4) expressions and
chemotactic behavior. Fortunately, activation of HIF-1 α was
inhibited by mTOR inhibitor rapamycin as well as PI3K
inhibitors wortmannin and LY294002, and consequently
upregulation of CXCR4 expression was inhibited (Sarkaria
et al., 2007).

MTOR pathway agents become tempting targets for LC
treatment. For example, many models in vitro and in vivo
have demonstrated the antiproliferative and antitumor effects
of rapamycin (Phillips et al., 2005). CCI-779 is a water-soluble
ester of sirolimus, whereas everolimus is an oral sirolimus
analogue, and studies have suggested that both could be used
to treat lung cancer. And is used for the advanced renal cell
carcinoma therapy (Pandya et al., 2007). PI3K inhibitors have
also emerged as effective agents to inhibit the mTOR pathway.
Although many PI3K inhibitors exhibit preclinical antitumor
activity, they fail to achieve estimated efficacy at the time of
clinical evaluation. For example, the PI3K inhibitors wortmannin
and LY2994002 have been proven to be unable for clinical
treatment in spite of preclinical anticancer ability. Novel PI3K
inhibitors have been developed for the treatment of LC and other
solid tumors, including BKM120, XL147, and GDC-0941, are
ongoing, data regarding LC remain pending (Ekman et al., 2012,
Table 3).

Phosphatidylinositol-3-Kinase/Protein
Kinase B/Mammalian Rapamycin Target
Protein and Gastric Cancer
The molecular characterization of gastric cancers has revealed
that PI3K/AKT/mTOR pathway abnormalities are associated
with a high recurrence rate of gastric cancer, suggesting that
these molecules are potential therapeutic targets (2014). Aberrant
PI3K pathway activation is mediated by mechanisms including
altered genes for AKT and PIK3CA, decreased upstream RTK,
PTEN expression, and other less frequent events. PIK3CA with
mutations and amplification has been seen frequently in gastric
cancer. PTEN negatively regulates PI3K activity under
physiological conditions. It is a TSG located on chromosome
10q23.3 (Markman et al., 2010). The Akt family of genes consists
of the AKT1, AKT2, and AKT3 genes. Different isoform gene
expression leads to difference in function. For example, AKT1
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enhances cellular survival and proliferation ability, the loss of
AKT1 can increase invasiveness. Paradoxically, AKT2 promotes
mesenchymal transformation and cellular invasive behavior, and
the loss of AKT2 expression might weaken ability of metastatic
(Cariaga-Martinez et al., 2013).

Consequently, four major kinds of drugs that target the
PI3K/AKT/mTOR pathway have been identified (Table 3):
PI3K, AKT, PI3K/mTOR, and mTOR inhibitors. The PI3K
inhibitors BKM120 (Yang et al., 2018a), PX-886 (Yang et al.,
2018b), XL147 (Gravina et al., 2016), WX-037 (Haagensen
et al., 2016), BYL719 (Juric et al., 2018), and GDC0032 (Juric
et al., 2018) were designed treat gastric cancer. PI3K/mTOR
inhibitors include P7170 (Jalota-Badhwar et al., 2015), BEZ235
(Kim et al., 2019), XL765 (Gravina et al., 2016), GDC-0980
(Kim et al., 2019), SF1126 (Kim et al., 2019), PF-05212384
(Kim et al., 2019), PF-4691502 (Kim et al., 2019), and VS-558
(Kim et al., 2019). AKT inhibitors include MK-2206 (Hirai
et al., 2010), AZD5363, and GSK690693 (Brown and Banerji,
2017). Although PI3K signaling inhibitors appear promising,
several theoretical shortcomings raise concerns regarding their
clinical efficacy (Engelman, 2009). PI3K inhibitors exhibit
obvious antitumor effect when used alone. Unfortunately,
relevant studies have shown that gastric cancer may become
resistance to combination therapy, so combination therapy
with PI3K signaling pathway inhibitors is unlikely to be useful
for gastric cancer.

Phosphatidylinositol-3-Kinase/Protein
Kinase B/Mammalian Rapamycin Target
Protein and Breast Cancer
Recent life science studies have proposed that aberrant PI3K/
AKT/mTOR signaling pathway activation is the key to the
shortened life cycle of cancer patients and that aberrant
activation of this pathway is a vital mechanism of resistance to
targeted therapies (Droog et al., 2013). It is estimated that
aberrant activation of the mTOR pathway occurs in 70% of all
BC cases. In BC, the genes that encode several process of the
mTOR pathway are altered. On the one hand, mutations or
amplifications of some genes become activated, including those
encoding insulin-like growth factor 1 receptor, PIK3CA, RAC-α,
AKT1, and human epidermal growth factor receptor 2 (HER2).
On the other hand, the expression of genes encoding PTEN and
LKB156 are decreased or even no function (Wu et al., 2015; Luey
and May, 2016). Breast cancer growth depends on a certain level
of estrogen; this conclusion is because nearly 75% of BC cases are
ER+. Themechanism of selective estrogen receptor modulators in
the treatment of patients with ER + BC is to block the binding of
nuclear ERα to estrogen by binding to nuclear ERα, thereby
blocking receptor activation. Tamoxifen is such a drug. However,
the problem of resistance to the drugs is still widespread in
patients with ER + BC (Droog et al., 2013). MTOR pathway is
the primary factor of drug resistance in ER + BC patients. This is
because the estrogen-independent estrogen receptor (ER)

TABLE 3 | PI3K/AKT/mTOR inhibitors in cancers.

Compound Target Cancer Clinical symptoms Reference

Wortmannin PI3K Lung cancer and breast cancer
and other solid tumors

Poor solubility, instability, and high toxicity Ekman et al. (2012)

LY2994002 PI3K Lung cancer and breast cancer
and other solid tumors

Poor solubility, instability, and high toxicity Ekman et al. (2012)

BKM120 PI3K Gastric cancer Well tolerated, high toxicity Yang et al. (2018b)
PX-886 PI3K Gastric cancer Instability, and high toxicity Yang et al. (2018a)
XL147 PI3K Gastric cancer Poor solubility, instability, and high toxicity Gravina et al. (2016)
WX-037 PI3K Gastric cancer Haagensen et al. (2016)
BYL719 PI3K Gastric cancer Poor solubility, instability, and high toxicity Juric et al. (2018)
GDC0032 PI3K Gastric cancer Juric et al. (2018)
P7170 PI3K/mTOR Gastric cancer, lung cancer Jalota-Badhwar et al.

(2015)
BEZ235 PI3K/mTOR Gastric cancer Well tolerated, gastrointestinal toxicity Kim et al. (2019)
XL765 PI3K/mTOR Gastric cancer Gravina et al. (2016)
GDC-0980 PI3K/mTOR Gastric cancer, breast cancer Poor solubility, instability, and high toxicity Kim et al. (2019)
GDC-0941 PI3K/mTOR Gastric cancer Poor solubility, instability, and high toxicity Ekman et al. (2012)
SF1126 PI3K/mTOR Gastric cancer Poor solubility, Instability, and high toxicity Kim et al. (2019)
PF-
05212384

PI3K/mTOR Gastric cancer Kim et al. (2019)

PF-4691502 PI3K/mTOR Gastric cancer Kim et al. (2019)
VS-558 PI3K/mTOR Gastric cancer Kim et al. (2019)
MK-2206 Allosteric

AKT
Gastric cancer Well tolerated, high toxicity Hirai et al. (2010)

AZD5363 Catalytic
AKT

Gastric cancer Brown and Banerji
(2017)

GSK690693 Catalytic
AKT

Gastric cancer Poor solubility, instability, and high toxicity Brown and Banerji
(2017)

Everolimus mTOR Breast cancer Tends to have an infection, including bacterial, fungal, and viral infections, as
well as reactivation of hepatitis B virus/increased incidence of fatigue,
asthenia, and anorexia

Janku et al. (2014)
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transcriptional activity is activated by this pathway, making the
ER highly sensitive to activation, so that the possibility of
tamoxifen binding to nuclear ERα was reduced. HER2
expression is closely correlated with enhanced aggressiveness
and significantly worse prognosis in BC and it is a key
biomarker for BC. This is because mTOR signaling can be
activated by HER family receptors, in particular, HER2
expression is critical for over activation of mTOR pathway in
BC. MTOR signaling is associated with tolerance to HER2
therapeutic mechanisms in BC, the case in point is the dual
epidermal growth factor receptors HER1 and HER2, the
antibody-based agent trastuzumab, and the inhibitor lapatinib
(Luey and May, 2016).

Apamycin was the first available mTOR inhibitor for BC
therapy and was originally developed as an
immunosuppressant for transplant recipients. Researchers
classified the new generation of mTOR inhibitors into PI3K/
mTOR inhibitors and mTORC1/2 inhibitors. Besides, more and
more compounds that block the upstream of the mTOR pathway
have been developed. These compounds include AKT and PI3K
inhibitors (Table 3). LY294002 and Wortmannin are the earliest
and most widely studied PI3K pathway inhibitors (Verret et al.,
2019). BC cell model experiments have proved that the inhibitors
have strong anti-tumor effects, and also confirmed that they can
inhibit the PI3K pathway, but unfortunately they have the
disadvantages of poor solubility, instability and high toxicity,
so they are limited to pre-clinical studies (Fruman et al., 2017; Liu
et al., 2017). In the future research, the main issues need to be paid
attention to include whether a relational treatment combination
can completely block or partially inhibit mTOR pathway, and
whether subtype specific or pan-PI3K inhibition can provide
additional benefits for BC patients.

Phosphatidylinositol-3-Kinase/Protein
Kinase B/Mammalian Rapamycin Target
Protein Pathway and Liver Cancer
In cell lines, miR-758-3P repair inhibits cell proliferation,
migration, and invasion. Jiang and his colleagues showed that
miR-758-3P significantly down-regulates the expression of
murine double minute 2 (MDM2) and mTOR while up-
regulating the expression of p53, AKT, and PRAS40 (Jiang
et al., 2017). In addition, effector AKT can regulate
downstream mTOR and inhibits PRAS40, thus eliminating the
inhibitory effect on mTORC1. IGF-1R can regulate behaviors
such as cell progress, migration and invasion in HCC and is
activated via the mTOR pathway. MiR-187 (Han et al., 2017),
miR-497 (Cheng et al., 2017), miR-99a (Han et al., 2017) and
miR-592 (Wang et al., 2017) are targeted IGF1R. Han found that
miR-187 is down-regulated in HCC tissues and cell lines and
reported that the recovery of miR-187 will lead to a significant
halt in the growth of HCC (Han et al., 2017). Moreover, miR-497
and miR-99a could target not only IGF-1R but also 3′-UTR of
mTOR, and their down-regulation was observed in HCC human
tissues and cell lines (Cheng et al., 2017). Wang confirmed that
miR-592 was lowly expressed in HCC cell lines, and affected
metastasis to lymph nodes (Wang et al., 2017). It has been

demonstrated that miR-2965p inhibits HCC cell proliferation,
migration and invasion through targeting AKT2 (Ma et al., 2017).
These findings show that the miR-187, miR-497, miR-99a, miR-
592 and miR2965p can be an effective target for HCC treatment.
Yu showed that miR-142 can directly target transforming growth
factor β (TGF-β), and mTOR is one of the effector pathways of
TGF-β signaling. Additionally, TGF-β signaling also controls cell
viability, growth, EMT, and neoangiogenesis. On the whole, miR-
142 can act as a TSG in HCC, being able to increase TGF-
β-induced HCC development (Yu et al., 2017). Moreover, miR-
23b has been demonstrated to regulate ST7L, a suppressor of the
AKT/GSK-3β/β-catenin signaling in HCC cells (Jiang et al.,
2017). MiR-181A (Han et al., 2017), miR-155-5p (Cheng et al.,
2017), and miR-25 (Wang et al., 2017) are up-regulated in HCC
tissues. HCC plays a carcinogenic part in HCC through targeting
PTEN (Table 4).

TARGETING THE NOTCH PATHWAY FOR
CANCER

Notch Pathway
The Notch signaling pathway is evolutionarily conservative and
was originally thought to have a vital role in all kinds of
developmental processes (Zardawi et al., 2010; Danza et al.,
2013). It is found in the gap that appears on fruit fly wings
and acts an indispensable role in embryonic development (Ai
et al., 2012). The signaling pathway is composed of these parts:
Notch receptor, Notch ligand, and the DNA-binding sequence
CSL (CBF1/Su(H)/lag-1. The Notch pathway in humans
possesses five ligands (Jagged-1, Jagged-2, DLL-1, DLL-3, and
DLL-4) and four receptors (Notch-1, Notch-2, Notch-3, and
Notch-4) (Reichrath and Reichrath, 2020). The Notch ligand is
also a type I transmembrane protein that contains extracellular
repeat sequences similar to the EGF, a Delta/serrate/lag2 motif
that accounts for Notch interplay, and short and highly dispersed
intracellular domains. When a ligand combine with Notch
receptors between two nearby cells, the Notch signaling
pathway is activated to control cell growth and regulate
organogenesis and morphogenesis (Figure 3). Total three steps
of proteolytic cleavage are required in canonical Notch activation
process (Teodorczyk and Schmidt, 2014). First, the Notch single-
chain precursor is cut by Furin protease in the Golgi complex to
form large fragments containing extracellular domains and small
fragments containing intracellular and transmembrane regions.
Mature heterodimer receptors are formed through Ca2+-
dependent noncovalent bonding and transferred to the cell
membrane. When the mature receptor binds to a ligand, it
performs a second cleavage with TACE or a member of the
ADAM de-integrin and metalloproteinase family to release
extracellular fragments. The remaining fragment, which
consists of transmembrane and intracellular regions, is
dissected for the third time by γ-secretase for the release of
the soluble Notch intracellular region (NICD) and transfer to the
nucleus (Suresh and Irvine, 2015). CSL is bound with NCID and
lead to specific gene expression. The Notch signaling pathway
exhibits CSL nondependent activation in addition to CSL-
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TABLE 4 | MicroRNAs regulate PI3K/AKT/mTOR pathway in liver cancer.

miRNA Regulation Pathway References

miR-
758-3P

Down-regulated the expression of MDM2 and mTOR/Upregulated the expression of p53, AKT and
PRAS40

PI3K/AKT/mTOR
pathway

Jiang et al. (2017)

miR-187 Leads to a significant halt in the growth of HCC. PI3K/AKT/mTOR
pathway

Han et al. (2017)

miR-497 Target the 3′-UTR of IGF-1R and mTOR, decrease tumor proliferation and tumor growth PI3K/AKT/mTOR
pathway

Cheng et al. (2017)

miR-99a Target the 3′-UTR of IGF-1R and mTOR, decrease tumor proliferation and tumor growth PI3K/AKT/mTOR
pathway

Han et al. (2017)

miR-592 Down-regulated in HCC tissues and cell lines, and was associated with lymph node metastasis PI3K/AKT/mTOR
pathway

Wang et al. (2017)

miR2965p Inhibited HCC cell proliferation, migration and invasion in vitro by targeting AKT2 PI3K/AKT/mTOR
pathway

Yu et al. (2017)

miR-142 Controls cell vitality, proliferation, (EMT) and neo-angiogenesis target TGF-β PI3K/AKT/mTOR
pathway

Yu et al. (2017)

miR-23b As a suppressor of the AKT/GSK3β/β-catenin pathway in HCC cells by regulating ST7L PI3K/AKT/mTOR
pathway

Jiang et al. (2017)

miR-181A Plays a carcinogenic role targeting PTEN PI3K/AKT/mTOR
pathway

Han et al. (2017)

miR-155-5p Plays a carcinogenic role targeting PTEN PI3K/AKT/mTOR
pathway

Cheng et al. (2017)

miR-25 Plays a carcinogenic role targeting PTEN PI3K/AKT/mTOR
pathway

Wang et al. (2017)

FIGURE 3 | Schematic diagram of the Notch pathway. The Notched mono-precursors are furin-cut in Golgi bodies to form mature Notched receptors and
transferred to the plasma membrane. The Notch is activated when Notch ligands on adjacent cells combined with them, leading to second and third cut by ADAM and
γ-secretes, releasing Notch intracellular domain NICD, which is transferred into the nucleus and combined with CSL to initiate downstream gene expression.
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dependent activation. However, a great majority Notch target
genes exist CSL binding sites. The signal transduction receives
signals from neighboring cells and transfers them to the nucleus,
thus spurring the expression of transcription factors
(Uzhachenko and Shanker, 2016) (Figure 3).

Although Notch signaling does not amplify signals, the cell
differentiation is precisely controlled (Kopan and Ilagan, 2009).
Notch target genes include members of the HES and HEY
families, MMP-2, MMP-9, cyclin D1, Her2, c-myc, and
apoptosis-related genes (Wu et al., 2010; Ranganathan et al.,
2011; Li et al., 2014; De Francesco et al., 2018; Krishna et al.,
2019). The Notch pathway may regulate cell growth,
differentiation, and tumor metastasis exactly through
regulating the expression of these genes (Zardawi et al., 2009;
Zhou et al., 2013). Dysregulated Notch signaling due to
mutations, amplification, or ligand and/or receptor over-
expression is associated with many malignancies. Given that
Notch signaling plays a critical role in cancer genesis and
prognosis, it is a promising approach for cancer therapy to
block Notch pathway.

Notch Pathway and BC
Notch has been identified as an oncogene in mice infected with
MMTV in the past few years. It has also been detected in human
BC and likely plays a significant part in BC development
(Reichrath and Reichrath, 2020). The American Cancer
Association states that BC can be classified into four BC
molecular subtypes with prognostic differences in terms of
patient outcome on the basis of the presence or absence of the
expression of specific biological markers: ERs, progesterone
receptors, and HER2. The Notch system, in cooperation with
the VEGF pathway, engages in the adjusting of angiogenesis and
sprouting in BC (Zhang et al., 2019). Notch expression is
controlled by hypoxia and inflammatory cytokines (IL-1, IL-6,
and leptin). Endothelial cells can develop into tip or stalk cellular
norm under pro-angiogenic signal (Zhang et al., 2019). The
acquisition of the high expression of Notch ligands is
indisputably related to the aggressive clinical behavior of
tumors. BC clinical symptom is accompanied by the high
expression of the Notch-1, Notch-3, and Notch-4 pathways,
and Notch-2 has been considered to be a tumor suppressor in
previous research (Shen and Reedijk, 2021). The evidence of the
essential role of the Notch system in BC originates from MMTV,
wherein Notch-1 and Notch-4 genes have been detected. The
genes Notch-1 and Notch-4 are the major targets of MMTV.
Mutations that induce epithelial mammary oncogenesis are
created through insertion and rearrangement (Guo et al., 2011).

In view of the key role of Notch in BC cell proliferation,
differentiation, invasion, and drug resistance, this pathway has
become a potential target for BC prevention and treatment.
Notch targeting agents have been widely used in clinical trials,
including γ-secretase inhibitors and monoclonal antibodies.
γ-secretase inhibitors are small agent that used frequently
(Suresh and Irvine, 2015; Uzhachenko and Shanker, 2016).
GSI is one of γ-secretase inhibitors, which achieves anti-tumor
effects by reducing the levels of activated Notch and several other
substrate proteins in cells. GSI MK-0752 has been proven to have

a good anti-BC effect in clinical trials (Krishna et al., 2019).
Unfortunately, continuous use of GSI drugs can cause serious side
effects to the body of BC patients. Therefore, GSI drugs are
generally not used alone but combined with chemotherapy to
treat BC. Monoclonal antibody is also a biological drug that can
effectively resist BC, For example, trastuzumab and pertuzumab
have been successfully used to treat patients with metastatic BC
overexpressing HER2 by targeting Notch receptors (Shen and
Reedijk, 2021).

TARGETING THE NF-κB PATHWAY FOR
CANCER

NF-κB Pathway
The NF-κB signaling pathway in cancer has been studied for
decades. The abnormal activation of NF-κB transcription factors
is frequently seen in various solid tumors, such as CRC and
gastric cancer (Lawrence, 2009). NF-κB pathway members and
their regulatory genes response control cancer cell blood vessel
formation, growth, metastasis, and tolerance to drug (Mitchell
et al., 2016).

NF-κB is a Rel family transcription factor composed of RelA
(p65), RelB, Rel (c-Rel), NF-κB1 (p50/p105), and NF-κB2 (p52/
p100) (Oeckinghaus et al., 2011). There are three pathways of NF-
κB signal transduction. NF-κB signaling could be activated by
canonical and alternate pathways via an IκB kinase (IKK)-
dependent manner. In the typical pathway, after activating
β-subunit of IKK, the negative regulator of the NF-κB
inhibitor of kappa B-α (IκBα) protein are phosphorylated and
subsequent results in the ubiquitination and proteasome-
mediated degradation of IκBα (Baud and Jacque, 2008;
Perkins, 2012). The event results in the release of the p65/p50
heterodimer and makes the translocation of the NF-κB complex
into the nucleus. The alternative pathway results in the specific
activation of p52: RelB heterodimers and is not required for the
activation of the highly ubiquitous p50: RelA dimers. The
alternative pathway is distinguished from the classical pathway
on the basis of IKK-α homodimers rather than reliance on IKK-γ
and IKK-β activity, the preferred substrate of which is the
precursor of p52-p100/NF-κB2. The activation of IKK-α
dimers results in the degradation of the latter and the nuclear
entry of p52: RelB dimers (Gilmore, 2006). Another pathway that
can make NF-κB activation is based on the activation of casein
kinase 2, which can phosphorylate carboxyl-terminal sites and
thereby make IκBα degradation, independently of IKK. This
pathway is activated only when the skin is exposed to
carcinogenic ultraviolet radiation (Karin, 2006, Figure 4).

NF-κB is an activator of antiapoptotic genes. It could also
monitor tumor angiogenesis and metastatic invasiveness, the
signaling pathways that mediate its activation have shed new
light on chemotherapy and prevention of cancer (Didonato et al.,
2012).

NF-κB Pathway and CRC
NF-κB is related to angiogenesis and EMT formation in CRC and
controls the CRC cells to migrate and invade. Angiogenesis
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represents the occurrence of cancer. Vascular endothelial growth
factor (VEGF) drives the formation of some angiogenesis
regulators, which include the angiogenesis regulator
cyclooxygenase-2, CXCL1, CXCL8, and IL-8 in the NF-κB
pathway. Monoclonal antibodies against VEGF are widely
exploited for CRC therapy. VEGF is also inducible under HIF
(D’ignazio et al., 2016). The HIF pathway regulates immune
responses through cross-talk with NF-κB (Kwon et al., 2010).
This cross-talk was proposed by numerous scholars and also
proved that HIF-1α is inhibited by the NF-κB inhibitor
parthenolide, which results in the down-regulation of hypoxia-
dependent angiogenesis in human umbilical vein endothelial cells
(Thiery et al., 2009). Moreover, in CRC tissues, histological
evidence indicates that the expression of NF-κB (p65) is
correlated with the expression of HIF-1α, VEGF, and vascular
invasion. The role of NF-κB in the angiogenesis of CRC and its
interactions with other signaling pathways provide important
insights into the targeted therapy of CRC (Chu et al., 2012).
Furthermore, NF-κB participates in the EMT of tumor cells. EMT
leads to epithelial mesenchymal cells invasion and metastasis and
is thus significant in advancing CRC metastasis. Matrix
metalloproteinases (MMPs) are proteolytic enzymes that are
capable of degrading the extracellular matrix and promoting
tumor invasion. MMP is overexpressed in CRC and is
involved in the poor prognosis and spread of CRC. The
connection of mechanism between NF-κB and MMP-9 was
studied in consideration of the absence of the β subunit of the
IKK complex in CRC cells (Fukuyama et al., 2007). MMP-9 gene
expression requires the involvement of NF-κB (p65 and IKK

activity). The NIK- and IKK-β-binding protein (NIBP) has taken
part in the regulation of cytokine-induced canonical NF-κB
signaling. Activin A is overexpressed in human CRC,
particularly tumors in stage IV disease, implying that activin A
might play a part in advanced CRC (Patel et al., 2018; Soleimani
et al., 2020). Related reports have pointed out that activin A
induces NF-κB activation with an increase in MDM2 ubiquitin
ligase and the degradation of p21. In general, these findings
further indicate that the NF-κB pathway is a key point of CRC
processes involving EMT and the angiogenic process.

According to the report, Approximately 760 natural and
synthetic molecular inhibitors of the NF-κB pathway have
been developed (Vaiopoulos et al., 2013). A wide array of IKK
inhibitors has been reported, but none have put into clinical
practice. Until now, owing to the broad spectrum of the
inhibitors,the nature of NF-κB inhibitors remains incompletely
defined. However, first-in-class IKK-α-specific inhibitors are
available. NF-κB activity is associated with chemoresistance
and radioresistance, and curcumin was able to block this NF-
κB activity (Sandur et al., 2009).

CONCLUSION AND FUTURE
CONSIDERATIONS

In addition to the above four signaling pathways, there are other
important signaling pathways in the process of tumor
development, such as p53 signaling pathway, Hippo signaling
pathway, Hedgehog pathway, TGF-β pathway and JAK-STAT

FIGURE 4 | Schematic diagram of the NF-κB pathway. When the inflammatory factors such as tumor necrosis factor A/inteeleukin-1/Toll-like Receptors combine
with the related receptors, they cause the configuration changes of the latter receptors, like RIP, NIK, or MEKKs. Then IKKs are activated, which can phosphorylate IκBα,
and ubiquitination under the action of the ubiquitin ligase p-trcp. The ubiquitin ligase p-trcp can be recognized and degraded by 26S proteasome. Therefore, NF-κB can
be released from the cytoplasm of NF-κB/IkBα complex, activate and expose the activate site domain, and rapidly transfer nucleus. Through P50 subunit binding
with target genes, the expression of target genes such as TNF-α,IL-1.
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pathway. P53 signaling pathway is a typical pathway of abnormal
disorder in tumors. Due to the complexity of p53 pathway,
imperfect drug design methods and other restrictive
conditions. Although some drugs targeting p53 have entered
the clinical stage, including APG-115 and UBX-0101, no drugs
are on the market. Hippo signaling pathway is closely related to
tumor immunity. YAP in the Hippo pathway is highly expressed
and functions in the generation of regulatory T cells and plays a
certain role in anti-tumor immunosuppression. On the other
hand, the Hippo pathway can regulate the immune checkpoint
molecule PD-L1, thereby enhancing the body’s immunity (Ma
et al., 2017). Inhibitors targeting the Hedgehog pathway
Vismodegib and Sonidegib were approved by the US Food
and Drug Administration (FDA) in 2012 and 2015,
respectively, for the treatment of basal cell carcinoma (BCC)
and associated blastoma (MB), but to date there is no evidence
that inhibitors of the Hedgehog pathway can treat the five cancers
described above. A variety of TGF-β inhibitors have been
developed to kill tumor cells. Fresolimumab, an inhibitor of
TGF-β, has entered phase I clinical trials in breast cancer.
Galunisertib has also entered phase II clinical trials in HCC.
The JAK-STAT pathway is also involved in the genesis,
progression, metastasis and drug resistance of tumors,
especially STAT3 and STAT5 can continuously activate the
survival, proliferation and invasion of tumor cells, which are
of great interest in cancer biology. Ruxolitinib and Cucurbitacin I
(JSI-24) inhibitors of JAK and STAT have been reported to treat
solid tumors.

In addition to miRNAs, noncoding RNAs, such as long non-
coding RNAs (lncRNAs) and circular RNAs (circRNAs), have
also attracted extensive attention due to their important
regulatory roles in tumor development involving in Wnt/
β-catenin, PI3K/AKT/mTOR, Notch and NF-KB pathways
(Anastasiadou et al., 2018). LncRNAs are currently considered
to regulate gene expression mainly at transcriptional and post
transcriptional levels. At the transcriptional level, the most
common mechanism of lncRNAs regulating gene transcription
is the direct interaction between lncRNAs and transcriptional
complexes or DNA elements. At the post transcriptional level,
lncRNAs regulates gene expression through the regulation of
mRNA stability, mRNA splicing and modification, mRNA
translation, protein stability and subcellular localization.
Besides, CircRNAs and lncRNAs act as miRNA sponges to
participate in the regulation of gene splicing, transcription and
gene expression. As competitive endogenous ribonucleic acids
(ceRNAs), circRNAs and lncRNAs can compete for miRNA
binding to its response elements (MRes), thus affecting the
expression of miRNA. In the Wnt/β-catenin pathway,
lnc01133 regulates APC expression by acting as a miR-106a-
3p ceRNA to affect Wnt/β-catenin pathway (Yang et al., 2018a).
The researchers found that lncRNA CCAL regulates the
progression of CRC through inhibiting activator protein
APC2α activate Wnt/β-catenin signaling pathway. In addition,
lncRNA BCAR4 has been found to directly interact with and
stabilize β-catenin protein, which promote the progress of CRC.
Interaction between β-catenin and lncRNAs can also influence its
cellular localization, CYTOR by favoring the nuclear localization

of β-catenin to promote CRC metastasis (Schwarzmueller et al.,
2020). Other malignant tumors are no exception, LncRNA
CCAT2 and UCA1 can activate Wnt and promote the
development, migration and invasion of BC. The up regulation
of lnc00968 promotes the growth, migration and invasion of non-
small cell lung cancer cells by activating Wnt/β-catenin signaling
pathway (Hu et al., 2018). A large number of studies have found
that lncRNAs play an important role in PI3K/AKT/mTOR
pathway. Importantly, lncRNAs are involved in the
occurrence, development, metastasis and drug resistance of
solid tumors, lncRNA-SNHG7 can target miR-34a and
regulate PI3K/AKT/mTOR pathway to promote the
occurrence and development of CRC. LncRNA TM4SF1-AS1
promotes the migration and invasion of LC cells by activating
PI3K/AKT/mTOR signaling pathway. LncRNA-HNF1A-AS1, as
a ceRNA, can activate PI3K/AKT/mTOR signal pathway by
competitively binding miR-30b-3p to promote GC metastasis.
This indicates that TM4SF1-ASS1, lncRNA-SNHG7 and
LncRNA-HNF1A-AS1 may be a new target for molecular
therapy of tumors. LncRNA PICSAR appears to function as
miR-588 sponge in HCC cells, activating PI3K/AKT/mTOR
signaling pathway and plays a carcinogenic role. It can be
used as a potential prognostic biomarker and therapeutic
target of HCC. LncRNA HOTAIR enhances the drug
resistance of GC cells by regulating PI3K/AKT signaling
pathway (Liu et al., 2020). In the Notch signaling pathway,
lncRNA FAM83H-AS1 and lncRNA FOXD2-AS1 can regulate
the Notch signaling pathway and promote the development of
CRC (Li et al., 2018b). In the NF-kB signaling pathway, lncRNA
NKILA can interact with NF-kB, participating in the negative
feedback regulation of NF-kB, and acts as a tumor suppressor
gene in BC.

CircRNAs also plays an important role in the occurrence,
migration and invasion of malignant tumors by affecting Wnt/
β-catenin, PI3K/AKT/mTOR and Notch pathways. In HCC,
circRNA DEND4C enhances the expression of TCF4 through
activating Wnt/β-catenin pathway and regulates the malignant
behavior of HCC cells. Overexpression of circ0067934 increases
FZD5 expression by activating miR-1324, which leads to Wnt/
β-catenin pathway is activated. There is evidence that
circ_001946 up-regulates SIRT1 expression, SIRT1 exerts
promotive effects on Wnt/β-catenin cascade by targeting miR-
135a-5p promotes the proliferation of LC cells. Circ_0006427 up
regulates the expression of DKK1 and Wnt/β-catenin signaling
pathway is inactivated (Li et al., 2019). Overexpression of
circ103809 accelerates the progression of BC by regulating
PI3K/AKT/mTOR signaling pathway in vivo and in vitro.
CircRNA APLP2 can activate Notch signaling pathway in
CRC by targeting miR 101-3p to promote proliferation and
metastasis (Arab et al., 2017). In view of the importances of
lncRNAs and circRNAs in signaling pathways, it suggests that
lncRNAs and circRNAs may be potential targets for cancer
treatment and diagnostic indicators for predicting therapeutic
response.

Currently, scientists have designed an increasing number of
drugs targeting signaling molecules. In clinical practice,
molecular targeted therapy does reduce the toxic side effects of
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drugs to greatly improve the quality of patient survival, and can
substantially prolong the survival time of patients, which brings
new hope to many patients with cancer (Alzahrani, 2019). But
targeted drugs still have certain limitations. First, not all patients
are suitable for the use of targeted agents, only those patients with
appropriate genetic mutations will respond to the targeted drug.
And, there are many rare mutations that have not yet been
developed for drugs. In addition, there is a subset of patients
no responding to the targeted drugs, even if they have the
corresponding mutation. The most common in the clinical is
the rapid development of resistance in tumor cells to targeted
drugs (Alzahrani, 2019), and its mechanisms are various, for
example, crosstalk between signaling pathways, reactivation of
downstream signals, and activation of alternative pathways and
so on. The establishment of compensatory cell signaling pathway
is an important mechanism that is, after one signaling pathway
inhibited by drug; another signaling pathway is possibly activated
to stimulate cell proliferation. Therefore, several molecularly
targeted drugs are often used in combination or with other
therapeutic modalities in clinical practice to improve drug
efficacy and circumvent drug resistance. For example,
Rapamycin inhibitors of PI3K/AKT/mTOR signaling pathway
and SMO inhibitors of hedgehog signaling pathway significantly
delayed the development of drug resistance in Medulloblastoma
(Krishnamurthy and kurzrock, 2018; Buonamici et al., 2010). It
has also been shown that the combination of drugs targeting
signaling pathways and drugs interfering with autophagy to treat
tumors can also achieve better therapeutic outcomes. Preclinical
studies have found that the combination of the autophagy
inhibitor hydrochloroquine (HCQ) and the targeting AKT
drug MK2206 can treat solid tumors. In addition, the
combination of signaling pathway targeted drugs with
immunotherapy drugs is also an effective way to circumvent
drug resistance (Alzahrani, 2019).

In fact humans have an extremely limited knowledge of
signaling pathways. At present, in the internet age, big data is
considered to be a powerful tool to broaden and deepen people’s
understanding of targeted drugs. We guess, if gene sequences of
every cancer patient in the world and the therapeutic effects by
drugs targeting one or more genes mutations are documented and
shared, for patients with the same genetic mutation, the key genetic
mutations will be more quickly identified and the best treatment to
the patient will be formulated. In addition, by big data, scientists
could further understand the molecular mechanisms in the genesis
and development of tumors, which is very helpful for developing a
new generation of targeted drugs. Thus, it seems a powerful
measure for pushing molecular targeting research, which has
shown great promise but has always been hard to see in
practice. At that, as the cost of gene sequencing drops, more
cancer patients are willing to have their genes sequenced, the
explosion of genomic data makes this idea a reality.
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