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Segmentation of intensity inhomogeneous regions is a well-known problem in image analysis applications. This paper presents
a region-based active contour method for image segmentation, which properly works in the context of intensity inhomogeneity
problem. The proposed region-based active contour method embeds both region and gradient information unlike traditional
methods. It contains mainly two terms, area and length, in which the area term practices a new region-based signed pressure
force (SPF) function, which utilizes mean values from a certain neighborhood using the local binary fitted (LBF) energy model. In
turn, the length term uses gradient information.The novelty of ourmethod is to locally compute new SPF function, which uses local
mean values and is able to detect boundaries of the homogenous regions. Finally, a truncated Gaussian kernel is used to regularize
the level set function, which not only regularizes it but also removes the need of computationally expensive reinitialization. The
proposed method targets the segmentation problem of intensity inhomogeneous images and reduces the time complexity among
locally computed active contour methods. The experimental results show that the proposed method yields better segmentation
result as well as less time complexity compared with the state-of-the-art active contour methods.

1. Introduction

Image segmentation is a fundamental problem in the areas of
computer vision and image processing. It is used to partition
an image into two or more than two nonoverlapping regions
based on textual, intensity, or gradient information. Image
segmentation is a particularly difficult task for numerous
reasons. Firstly, partitioning the image into nonoverlapping
regions and extracting regions of interest requires a tradeoff
between the simplicity of algorithm, selection of parameters,
computational efficiency of algorithm, and accuracy of the
segmentation result. Secondly, image artifacts, such as noise,
intensity inhomogeneity, artifacts involved with the image
acquisition, and poor contrast of image, are very difficult
to account for in segmentation algorithms without high
level of interactivity from the user. Different methods are
devised in a context of the segmentation problem and each
of them has their own advantages and disadvantages. Some
of the common techniques used for image segmentation

are thresholding based segmentation, segmentation based on
image classification, and edge based and region based (region
growing) image segmentation.

Active contour is one of the devised techniques for image
segmentation problem, which segments an image by evolving
a level set curve. In late 1980s, Kass et al. introduced one of the
image segmentation techniques based on active contour [1].
In this method, a curve evolves toward the object boundary
under a force, until it stops at the boundary. To be more
specific, the curve moves toward the object boundaries by
minimizing the energy. The energy functional is based on
different image characteristics, for example, image gradient,
curvature, and image statistical properties.

The existing active contour models are categorized into
two groups: edge-basedmodels [1–4] and region-basedmod-
els [5–14]. Both of these types have their own paybacks and
drawbacks, and the choice between them to use in applica-
tions depends on the different characteristics of the images.
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Figure 1: Intensity inhomogeneity problem in segmentation. (a) Image with intensity inhomogeneity; (b) segmentation results using CV
energy model.

The edge-based model builds an edge indicator function
using image edge information, which can drive the contour
towards the object boundaries [2]. The edge indicator func-
tion based on the image gradient can hardly stop at the right
boundaries, for the images with intense noise or a weak edge.

On the other hand, a region-based model uses statistical
information to construct a region stopping function that can
stop the contour evolution between different regions. One of
the early efforts towards a region-based active contours was
made by the Mumford and Shah segmentation model [5],
which approximates a given image by a piecewise smooth
image. Compared to the edge-based model, the region-based
model can perform better for images with blurred edges. The
region-based model is not sensitive to initialization of the
level set function and can recognize the object’s boundaries
efficiently. Therefore, region-based models, especially the
Chan and Vese (CV) model [6], have been widely applied for
image segmentation.

Although the region-based model is better than edge-
based model in some aspects, it still has limitations. The
traditional region-based models [5, 6], which were proposed
in the context of binary images with the assumption that
each image region is statistically homogeneous, do not work
perfectly for imageswith intensity inhomogeneity. Figure 1(a)
shows an image with white background which contains
intensity inhomogeneous region in it and Figure 1(b) shows
the ineffectiveness of traditional region-based active contour
method in case of image with intensity inhomogeneity.

The traditional region-based models [5, 6], which were
proposed in the context of binary images, do not work
well if the target image contains intensity inhomogeneous
regions in it. Li et al. [11, 12] proposed the LBF model by
embedding the local image information. LBFmodel is able to
segment images with intensity inhomogeneity and is much
more accurate than the previously formulated methods.
The basic idea of LBF was to introduce a Gaussian kernel
function in the energy functional formulation. Although it

segments well the images with intensity inhomogeneity, it
has quite high computational time complexity. Therefore,
segmentation process takes quite a time as compared to old
segmentation methods. Zhang et al. [13] proposed an active
contour method driven by local image fitting (LIF) energy,
which provides almost same segmentation results and has less
time complexity as compared to LBF model.

In this paper, we proposed a region based active contour
method which works well under the intensity inhomogeneity
problem. The proposed region based active contour model
utilizes both edge and region information to segment an
image into nonoverlapping region. It is implemented by
replacing the edge indicator function in the area term of
the edge-based level set method [3] with a new region-
based signed pressure force (SPF) function that utilizes the
image local information obtained using the local binary
fitted (LBF) energy model. By introducing the SPF function
based on local fitted image (LFI), the formulated method is
able to segment images with intensity inhomogeneity. In the
proposed model, region information used in the area term
helps to stop the contour at weak or blur edges while edge
information in the length term accelerates the detection of
those weak or blur edges in corporation of that area term.
As the introduced model contains both edge and region
information it works better than the traditional edge-based
and region-based methods.

Reinitialization, a technique for occasionally reinitial-
izing the level set function to a signed distance function
(SDF) during the evolution, has been extensively used as a
numerical remedy formaintaining stable curve evolution and
ensuring desirable results. From a practical viewpoint, the
reinitialization process can be quite convoluted and expensive
and has subtle side effects [15]. Zhang et al. [7] proposed the
active contour with selective local or global (ACSLG) seg-
mentationmethodwhich uses aGaussian kernel to regularize
the level function after each iteration. It not only regularizes
the level set but also removes the need of reinitialization. In
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the proposed algorithm we also use the Gaussian kernel to
eliminate the need of reinitialization. Regularization using
Gaussian kernel has better smoothing results and no energy
leakage as compared to the area smoothing and penalization
terms used by Li et al. [3].

The proposed segmentation algorithm is applied to syn-
thetic and brain MR images in order to demonstrate the
accuracy, effectiveness, and robustness of the algorithm. A
comparison is shown with previous related methods to show
advantages of the proposed method.

2. Active Contour Method Driven by
Locally Computed Signed Pressure
Force (LCSPF) Function

Li et al. [11, 12] proposed the LBF energy model by employing
the local image information. LBF is able to segment image
with intensity inhomogeneity and provides muchmore accu-
rate results than the traditional region-based methods. The
basic idea is to introduce a kernel function to define the LBF
energy functional. Let 𝐼 : Ω → 𝑅 be an input image and
let 𝐶 be a closed curve, for that the LBF energy functional,
𝐸LBF(𝐶, 𝑓1, 𝑓2), is defined as follows:

𝐸LBF (𝐶, 𝑓1, 𝑓2)
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using steepest gradient descent method [16] we get
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In image segmentation, active contours are dynamic
curves thatmove toward the object boundaries to partition an
image into nonoverlapping regions. To achieve this goal, we
explicitly define an energy functional that can move the zero
level curve toward the object boundaries. Figure 2 illustrates
the above assumptions and notations on the level set function
𝜙 defining the evolving curve 𝐶, where at boundary of curve
𝐶 value of 𝜙 = 0 and our level set function moves inwards
or outwards, based on the signs of the SPF for the further
evolution. We define energy functional containing an edge-
based length term and a region-based area term for function
𝜙 as follows:

𝐸
𝑔,spf (𝜙) = 𝜆𝐿

𝑔
(𝜙) + V𝐴 spf (𝜙) , (4)
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Figure 2: The curve 𝐶 = {𝑥 : 𝜙(𝑥) = 0} propagating in normal N
direction.

where 𝜆 > 0 and V are constants and the terms 𝐿
𝑔
(𝜙) and

𝐴 spf (𝜙) are defined as follows:
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is the univariate Dirac function

and 𝐻
𝜀
is the Heaviside function defined in (9) and (10),

respectively, while 𝑔(𝐼) is edge indicator function and spf(𝐼)
is locally computed SPF function defined in (11) and (14),
respectively. The zero level curve 𝐶 is driven into a smooth
curve from a complicated curve to minimize the function
𝐿
𝑔
(𝜙) which utilizes edge information in regularization

process, while 𝐴 spf(𝜙) contains the locally computed image
intensity information which derives the contour to the weak
and blur edges by distinguishing inhomogeneous regions.

The energy 𝐸
𝑔,spf(𝜙) drives the zero level set toward the

object boundaries. The coefficient V of 𝐴 spf(𝜙) in (4) can be
positive or negative, depending on the relative position of the
initial contour to the object of interest. For example, if the
initial contours are placed outside the object, the coefficient V
in the weighted area term should take a positive value, so that
the contour can shrink faster. If the initial contours are placed
inside the object, the coefficient V should take a negative value
to speed up the expansion of the contours. By the calculus of
variations [16], the Gateaux derivative (first variation) of the
functional 𝐸

𝑔,spf (𝜙) in (4) can be written as
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The function 𝜙 thatminimizes this functional satisfies the
Euler Lagrange equation 𝜕𝐸

𝑔,spf/𝜕𝜙 = 0. A classical iterative
process for minimizing the function is the gradient flow with
artificial time 𝑡 given as
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After evolving the level set using (7) and (8) we smooth
it by using 𝜙

𝑘
= 𝐺
𝜎
2

∗ 𝜙
𝑘. It not only regularizes the level

set function but also eliminates the need of reinitialization,
which is computationally very expensive. Moreover, it gives
energy leakage free reinitialization.

In the proposed work, the Dirac function 𝛿
𝜀
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used in (2), (3), and (7) are the smoothed

version of the Dirac function and Heaviside function of the
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and the edge indicator function 𝑔(𝐼) is a positive and strict
decreasing function defined follows:
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In outmoded level set methods, it is essential to initialize
the level set function 𝜙 as a signed distance function (SDF)
𝜙
0
. If the initial level set function is expressively different

from the SDF, then the reinitialization schemes are unable to
reinitialize the function to the SDF. In our formulation, not
only is the reinitialization procedure completely eliminated
but also the level set function 𝜙 no longer needs to be
initialized as an SDF.The initial level set function𝜙
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where 𝜌 > 0 is a constant and we use 𝜌 = 1.
Finally, the principle steps of the algorithm can be

summarized as follows.

(i) Initialize level set function 𝜙 with −𝜙
0
using (12) at

𝑘 = 0.
(ii) Compute edge indicator function 𝑔(𝐼) using (11).
(iii) Compute local mean values 𝑓

1
and 𝑓

2
from (2) and

(3), respectively, where 𝜎
1
is the standard deviation of

the truncatedGaussian kernel used to compute𝑓
1
and

𝑓
2
.

(iv) Calculate SPF function spf(𝐼) using (14).
(v) Solve the partial differential equation (PDE) in𝜙 from

(7) and (8), to obtain 𝜙
𝑘.

(vi) Regularize the level set function by a Gaussian kernel;
that is, 𝜙𝑘 = 𝐺

𝜎
2

∗ 𝜙
𝑘, where 𝜎

2
is standard deviation

of a Gaussian kernel.
(vii) Check whether solution is stationary and if not, go to

step (ii), 𝑘 = 𝑘 + 1, and repeat.
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Figure 3: Locally computed SPF function with opposite sign inside
and outside the boundary of the region of interest to be segmented
and remaining as zero region.

3. Locally Computed SPF Function

The SPF function defined in [17] has values in the range
[−1, 1]. It modulates the signs of the pressure force inside and
outside the region of interest so that the contour shrinkswhen
outside the object and expands when inside the object. Tra-
ditional SPF is formulated using global properties of image;
therefore, it works poorly with intensity inhomogeneous
images. Here, we introduce a new SPF function based on the
local properties of image inside and outside of the contour.
This newly formulated SPF function formulates the signs of
the signed pressure force function inside and outside the
boundary of the region of interest using locally computed
mean values. A local fitted image formulation is defined as

𝐼LFI = 𝑓
1
𝐻
𝜀
(𝜙) + 𝑓

2
(1 − 𝐻

𝜀
(𝜙)) . (13)

Using the above defined local fitted image we construct
the SPF function as follows:

spf (𝐼) =
{

{

{

𝐼 (𝑥) − 𝐼LFI
max (𝐼 (𝑥) − 𝐼LFI

)
, 𝐼 (𝑥) ̸= 0,

0, 𝐼 (𝑥) = 0.

(14)

The terms 𝑓
1
and 𝑓

2
are defined in (2) and (3), respec-

tively. The SPF function computed using the local properties
of image is shown in Figure 3, in which black color line shows
the positive values of SPF function which are outside the
boundary of the region of interest, while white color line
shows the negative values of SPF function which are inside
the boundary of the region of interest. Red color line shows
the position of final level set curve which will be in between
the negative and positive values of SPF function and the
remaining region of Figure 3 is the zero region with values
equal to 0.

The sign and value of SPF function ranges in [−1 1] for
both local and global SPF functions; the only difference is
the construction method used. As mentioned earlier global
SPF function uses global mean values inside and outside
the contour; that is why it cannot distinguish between
the inhomogeneous changes in the intensity. Therefore, it
assigns values with the same sign to both inner and outer
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region when the intensity change inside and outside region
is not distinctive to the global intensity mean computing
function. On the other hand local SPF function uses local
mean value inside and outside the contour which helps to
distinguish between inhomogeneous changes in the intensity.
The local intensity mean values are computed by utilizing
the Gaussian kernel. It helps computing local maxima for
intensity inhomogeneity region which global model fails to
find. It offers different signs for both inside and outside the
region although there is inhomogeneous intensity change
between inside and outside the region.

Figure 4 illustrates the signs and segmentation result
comparison of local and global SPF function based active
contour models. Figure 4(a) shows the image with initial
contour for both local and global cases. Figure 4(b) shows
the signs of global SPF function, in which we can see that
for the inhomogeneous intensity change in the image the
sign assigned to inside and outside the regions are the same,
while for distinctive change in intensity by the global mean
computing function sign assignment for both inside and
outside the region is different. Figure 4(c) shows the segmen-
tation result using global SPF based active contour model.
Comparing the position of final contour with Figure 4(b)
we can see that final contour is positioned where the sign
changed from positive to negative between two regions.
Figure 4(d) shows the sign of local SPF function, in which
at the boundary inside the region SPF function has value
with negative sign while at the boundary outside the region
it has positive value. But the positive and negative values
are not spread throughout the region inside and outside of
the object, instead these are restricted near the boundary.
The remaining region is called zero region with zero values
of SPF function. Figure 4(e) shows the segmentation result
using local SPF based active contour model. Comparing the
position of final contour with Figure 4(d) we can see that final
contour is positioned where the sign changed from positive
to negative between two regions. From the results we can see
that using the active contour model with local SPF function
intensity inhomogeneous regions are segmented well while
active contour model with global SPF function failed to do
so.

4. Result Analysis and Comparison

4.1. 2D Synthetic and Brain MR Image Segmentation Results.
The proposed method is implemented using MATLAB 7.12,
in Windows 7 environment on a 2.4GHz Intel Quad-Core
personal computer with 8GB of RAM. The range of inten-
sities in all images is represented from 0 to 255, while the
size in pixels (length × width) of images is variable for all
images. In this section we applied the proposed method to
synthetic and real images of different modalities and used
the parameters which are 𝜆 = 1, V = 22, 𝜌 = 1, 𝜀 = 1.5,
𝜎
1
= 5, 𝜎

2
= 1, 𝐾 = 5, and 𝜏 = 1, where V is force term

constantwhich controls the contour evolution speed and time
complexity of desired contour. 𝜎

1
is standard deviation of

the truncated Gaussian kernel 𝐾
𝜎
1

(𝑥) with the size 4𝑘 + 1 by
4𝑘+1. 𝜎

2
is the standard deviation of the smoothingGaussian

kernel which is used to regularize the level set. Selection of

𝜎
1
and 𝜎

2
may be different for different types of images. If

we select small values for 𝜎
1
and 𝜎

2
then contour will evolve

faster but it will not be accurate; that means small values of 𝜎
1

and 𝜎
2
can reduce the time complexity but can decrease the

accuracy. For large values of 𝜎
1
and 𝜎

2
time complexity will

increase but segmentation accuracy will also increase. In case
of noisy images selection of 𝜎

2
should be bigger than normal

to smooth the level set curve.
Figure 5 shows the segmentation result on a synthetic

image with nine different intensities. Figure 5(a) is the initial
contour; Figure 5(b) is the segmentation result of synthetic
image without noise. Obviously, these objects with different
intensities both homogeneous and inhomogeneous are suc-
cessfully extracted because the proposed method also works
well with the intensity inhomogeneity.We then add Gaussian
noise to the clean synthetic image. The noisy image that is
shown in Figures 5(c) and 5(d) shows the corresponding
segmentation result of our method on the noisy image. From
the segmentation results obtained from both clean and noisy
synthetic image we can see that segmentation result for both
clean and noisy image is similar, which implies that the
proposed method segments well under the dense Gaussian
noise as applied in this case. Figure 5(e) displays the central
row intensity profile of the input synthetic image with both
clean andnoisy data alongwith the final contour. It shows that
irrespective of data the resultant contour followed the edges
perfectly. In Figure 5(e) we normalized the intensity scale to
[−1 1] in order to visualize data from input image profile and
final contour profile at the same time with same peak values.
The number of iterations used to evolve contour from initial
to final form is 200.

Figure 6 shows the importance of 𝜎
2
in the proposed

model using a real brain MR image. Figure 6(a) is the initial
contour, Figure 6(b) is the final contour with 𝜎

2
= 1.0, and

Figure 6(c) is the final contour with 𝜎
2
= 0.5. From Figures

6(b) and 6(c) we can see that if we choose large value of 𝜎
2

then the proposed method does not segment small details,
while the selection of small 𝜎

2
makes segmentation algorithm

more sensitive to noise. By using the small value of 𝜎
2
we

can segment more detailed objects. For the blurry images
𝜎
2
should be small and for noisy image 𝜎

2
should be large.

The total number of iterations used in the contour evolution
process is 150.

Segmentation of brain MR image into disjoint regions
based onwhitematter (WM), graymatter (GM), and cerebral
spinal fluid (CSF) is a well-known problem. Due to the
geometric complexity of the human brain cortex, manual
slice by slice segmentation is quite difficult and time con-
suming [18]. Numerousmethods of image segmentation have
been developed to solve such problems [19]. Active contour
method is one of those methods which are used in this
context. Because of the complex intensity inhomogeneous
regions, brain MR images are hard to segment successfully
with high accuracy [20].The proposed method is formulated
in the context of intensity inhomogeneity problem. To show
the robustness and effectiveness of the proposed algorithm
for inhomogeneous images we applied it on 2D real brainMR
images with intensity inhomogeneity. Figure 7 shows brain
MR image segmentation results using the proposed method.
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Figure 4: Global and local SPF function sign and result comparison. (a) Initial contour; (b) global SPF function; (c) segmentation result with
active contour method using global SPF function; (d) local SPF function; (e) segmentation result with active contour method using local SPF
function.
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Figure 5: Segmentation results on synthetic images with and without noise. (a) Initial contour for clean image; (b) segmentation result of
clean image; (c) initial contour for noisy image; (d) segmentation result of noisy image; (e) profile selection of the middle rows of the original
image (the green solid line), noisy image (the blue solid line), and final contour using the proposed method (the red solid line).
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Figure 6: 2D brain MR image segmentation using different values of 𝜎
2
. (a) Initial contour; (b) final contour with 𝜎

1
= 3.0 and 𝜎

2
= 1.0; (c)

final contour with 𝜎
1
= 3.0 and 𝜎

2
= 0.5.
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Figure 7: 2D brain MR image segmentation results using the proposed method. (a), (c), (e), (g), (i), and (k) initial contour. (b), (d), (f), (h),
(j), and (l) final contour.

Figures 7(a), 7(c), 7(e), 7(g), 7(i), and 7(k) show the initial
contours and Figures 7(b), 7(d), 7(f), 7(h), 7(j), and 7(l) show
their respective final contours.The segmentation results from
Figure 7 show that the proposed method works very well for
the imagewith the intensity inhomogeneity.The total number
of iterations used in contour evolution of Figures 7(b), 7(d),
7(f), 7(h), 7(j), and 7(l) are 400, 400, 450, 250, 400, and 500,
respectively.

4.2. 3D BrainMR Image Segmentation Results. In this section
segmentation results of different brain regions are displayed
using 3D brain MR models [21] by applying the proposed
method. The range of intensities in all images is represented
from 0 to 255, while the size in voxels (length × width ×

height) of images is (217 × 260 × 362). We have chosen the
models of five different regions of head which are involved
in 3D brain MR scan of a human test subject [21]. Figure 8
shows the segmentation using five anatomical models of
human subject in which Figure 8(a) shows the initial con-
tour, Figure 8(b) shows the final contour of skull model,

Figure 8(c) shows the final contour of CSF (cerebral spinal
fluid) model, Figure 8(d) shows the final contour of the gray
matter region model, and Figure 8(e) shows the final contour
of the white matter region model, while Figure 8(f) shows
the final contour of the blood vessels in head. We can see
some circular artifacts in Figures 8(b)–8(e), which are here
because of the noise present at the time of image acquisition.
We can remove this artifact by applying smoothing kernel on
the data input before using the segmentation algorithm. We
have applied the proposedmethod on 3DMRDataset to show
its application in volume visualization and data exploration.

4.3. Comparison with Traditional Active Contour Methods
Using SPF Function in Their Model. Zhang et al. in [7] and
Jiang et al. in [8] used SPF function in their proposed
method but their methods cannot segment well the images
with intensity inhomogeneity. The SPF function they used in
their model is grounded on CV region-based active contour
method which computes mean of intensity globally that is
not sufficient in order to segment the images with intensity
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Figure 8: 3D brain MR image segmentation results using the proposed method with different anatomical models. (a) Initial contour; (b)
skull; (c) CSF; (d) gray matter; (e) white matter; (f) blood vessels of brain.

inhomogeneity, while the proposed SPF function uses local
mean value which provides well segmentation results for
images with intensity inhomogeneity but with drawback of
high time complexity [22]. In order to show advantages of the
proposed method over other active contour methods which
utilize traditional global SPF function in their models, we
compare their results using a synthetic image with intensity
inhomogeneity. The parameters used for this comparison for
Zhang et al. method are 𝜇 = −25, 𝜌 = 1, 𝜀 = 1.5, 𝜎 = 1,
𝐾 = 5, and Δ𝑡 = 1, while the parameters used for Jiang et
al. method are 𝜇 = 0.04, 𝜆 = 3, V = 1, 𝜌 = 2, 𝜀 = 1.5, and
𝜏 = 5 and the parameters used for the proposed method are
same as described in Section 4.1 with 𝜎

1
= 1.

Figure 9 shows a segmentation result comparison with
other active contour methods which use traditional global
SPF function in their model. In that figure we can see that the
methods using traditional global SPF function cannot seg-
ment well when image has intensity inhomogeneous region
in it. In Figures 9(b) and 9(g) CV energy model could not
properly segment all objects with intensity inhomogeneity.
Figures 9(c) and 9(h) show that Zhang et al. method that
uses SPF function in its model, which is constructed using
globalmean values from the CV energymodel, also could not
correctly segment inhomogeneous regions. Figures 9(d) and
9(i) show that Jiang et al. method using same SPF function
used by Zhang et al. also could segment well all objects

with intensity inhomogeneity, while the proposed method
that uses new SPF function, which uses means from local
neighborhood, could accurately segment all inhomogeneous
objects in both Figures 9(e) and 9(j).

The proposed method can segment image with intensity
inhomogeneous regions yet it takes additional processing
time as compared to the active contour methods using
traditional CV based SPF function. Table 1 provides the
processing time comparison of the proposedmethodwith the
Chan et al., Jiang et al., and Zhang et al. methods which show
that although the proposedmethod segments all regions well,
its time complexity is higher than the other methods which
use CV region-based global SPF function in their model.

4.4. Comparison with the LBF, LIF, and CV EnergyModels. In
this paperwe proposed a region-based active contourmethod
using locally computed SPF function. The proposed method
works similar to previously developed LBF [11, 12] and LIF
[13] energy models. To show the effectiveness, accuracy,
and robustness of the proposed algorithm we compared
the segmentation results with the LBF, LIF, and CV energy
models. For the comparison we used both synthetic and real
brain MR images. The parameters used for this comparison
for the LBF energy model are 𝜆

1
= 1, 𝜆

2
= 1, 𝜇 = 1,

V = 0.001 × 255
2, 𝜌 = 1, 𝜀 = 1.5, 𝜎 = 4, 𝐾 = 5, and 𝜏 = 0.1.

The parameters used for the LIF energy model are 𝜎
1
= 5,



10 Computational and Mathematical Methods in Medicine
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Figure 9: Comparison of segmentation results using synthetic image with intensity inhomogeneity with other active contour methods that
use traditional SPF function. (a) and (f) initial contour; (b) and (g) CV energy model; (c) and (h) Zhang et al. method; (d) and (i) Jiang et al.
method; (e) and (j) the proposed method.

Table 1: Time complexity analysis of methods compared in Figure 9 in terms of CPU time/s.

Figures Chan et al. method Zhang et al. method Jiang et al. method Proposed method Number of iterations
Figure 9(a) 8.39 21.22 11.45 13.45 500
Figure 9(f) 6.84 12.8 7.52 8.92 300

𝜎
2
= 1, 𝐾 = 5, 𝜌 = 1, 𝜀 = 1.5, and 𝜏 = 1. The parameters

used for the CV model are 𝜆
1
= 1, 𝜆

2
= 1, 𝜇 = 0.2, V = 1,

𝜌 = 1, 𝜀 = 1.5, and 𝜏 = 1, while the parameters used for the
proposed method are same as mentioned in Section 4.1 with
𝜎
1
= 3.
Figure 10 shows a comparison between the proposed

method, LBF, LIF, and CV energy models using synthetic
image. Figure 10(c) shows that the final contour computed
by the LIF energy model could not strictly follow the object
boundaries. Figure 10(d) shows that the LBF energy model
could not accurately segment the small inhomogeneous
objects. Figure 10(e) shows that the CV model cannot prop-
erly segment intensity inhomogeneous regions; moreover,
small objects are also missed in the segmentation process.
Figure 10(b) shows that the proposedmethod provided better
segmentation from the entire state-of-the-art active contour
methods used in the comparison.

Figure 11 shows a comparison between the proposed
method, LBF, LIF, and CV energy models using three brain
MR images. For the comparison shown in Figure 11, param-
eters for the proposed method are same as mentioned in
Section 4.1. The parameters of CV energy model are same as
described earlier in this section, while for the LBF and LIF
energy models 𝜎 = 5 and 𝜎

1
= 5, respectively, and the rest of

the parameters are same as mentioned earlier in this section.
Figures 11(b), 11(g), and 11(l) show the segmentation

results using the proposed algorithm, which, compared to
the generated results by other methods, are better in every
aspect. There is no over lapping in the region during the
segmentation process and contour accurately evolved to the
boundary of the object need to be segmented. The proposed

method even segmented the sharp details of the objects at
the boundary. Figures 11(c), 11(h), and 11(m) display the seg-
mentation results of the LIF energy model. Although the LIF
energy model segmented sharp details there are overlapping
of contours in the regions during the segmentation process.
Figures 11(d), 11(i), and 11(n) show the segmentation results
of the LBF energy model. In Figures 11(d) and 11(i) the LBF
model segmented well without any overlapping of contours
in the regions but it failed to segment the sharp details of
the boundary of the region, while in Figure 11(n) there are
also some signs of contour overlapping during segmentation
process. Figures 11(e), 11(j), and 11(o) display the segmentation
result using CV energy model. It shows that the CV energy
model is unable to segment the intensity inhomogeneous
regions in the brain MR images.

Table 2 shows the time complexity analysis of the pro-
posedmethod, LBF, LIF and, CV energymodels fromFigures
10 and 11. In Figures 10 and 11, the proposed method has less
time complexity compared to LBF and LIF energy models.
For Figure 10, at 𝜎

1
= 𝜎 = 4.0 the time complexity of

LIF method to complete 400 iterations is 22.06 sec which is
faster than any other method, whereas the proposed method
reached the final contour in 400 iterations in 26.29 sec and
the LBF method took 28.87 sec to complete 400 iterations.
Although at 𝜎

1
= 𝜎 = 4.0 LIF method has less time com-

plexity as compared to the state-of-the-art methods, there is
overlapping over regions in segmented image of LIF method.
It shows the importance of 𝜎

1
selection and how it can affect

the time complexity of the method. However, for Figures 10
and 11(k) the CV energy model has the less time complexity
than any other method, as CV energy model cannot properly
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Figure 10: Comparison of segmentation results using synthetic imagewith intensity inhomogeneity with the LBF, LIF, andCV energymodels.
(a) Initial contour; (b) the proposed method; (c) LIF energy model; (d) LBF energy model; (e) CV energy model.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 11: Comparison of segmentation results using real brain MR images with intensity inhomogeneity with the LBF, LIF, and CV energy
models. (a), (f), and (k) initial contour; (b), (g), and (l) the proposed method; (c), (h), and (m) LIF energy model; (d), (i), and (n) LBF energy
model; (e), (j), and (o) CV energy model.
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Table 2: Time complexity analysis of methods compared in Figures 10 and 11 in terms of CPU time/s.

Figures Proposed method Zhang et al. method Li et al. method Chan et al. method Number of iterations
Figure 10 24.25 41.92 32.34 11.81 500
Figure 11(a) 7.56 13.66 16.48 18.73 150
Figure 11(f) 25.77 43.52 51.69 34.94 400
Figure 11(k) 82.44 117.53 151.39 65.34 600

Table 3: Quantitative analysis to evaluate the segmentation accuracy of GM andWM regions.

Test data Proposed method LBF LIF Slice number
Accuracy WM% Accuracy GM % Accuracy WM% Accuracy GM % Accuracy WM% Accuracy GM %

4 85.71 72.74 70.07 64.15 54.65 51.81 144
94.58 77.97 87.09 73.35 69.55 55.06 200

5
85.48 69.65 76.47 65.21 67.89 59.95 150
93.58 73.93 75.18 61.27 50.04 37.78 200
78.44 66.41 70.91 63.15 33.52 40.62 250

6 94.64 84.75 81.82 73.69 82.43 74.64 200
18 95.95 81.90 79.42 70.67 70.46 60.38 200
20 94.75 72.47 76.96 62.07 68.49 53.26 200
38 88.95 69.84 77.64 64.78 63.96 54.31 200
47 92.17 73.29 77.85 64.41 59.55 46.18 200
50 93.45 75.53 60.25 48.47 51.66 38.44 200
54 94.73 72.89 87.19 68.28 53.75 40.32 200

segment images with intensity inhomogeneity; the proposed
method being second in time complexity is still the best
among remaining methods. 𝜎

1
plays an important role in

time complexity and segmentation accuracy. If we select same
value of𝜎

1
= 𝜎 the proposedmethod has less time complexity

and better segmentation results compared to the state-of the-
art locally computed active contour methods.

4.5. Quantitative Analysis. As discussed earlier white matter
(WM) and gray matter (GM) are the main regions of interest
in the segmentation of brainMR images. In order to segment
WM and GM we split the segmentation result into two
regions based on twophases.WMregion represents the phase
at 𝜙 > 0 and the GM represents the phase at 𝜙 < 0. The
WM and GM regions represent the brain region which is
the region of interest, while the regions outside the brain, for
example, skull, fats, and vacuum, can be taken as unnecessary
regions.Therefore, we have used a hand drawn brain mask to
extract the WM and GM only and remove the other needless
regions outside the brain. Figure 12 shows the computedWM
and GM from the proposed method phases and compares
it with the given ground truth. It shows how we extracted
only GM and WM regions by scaling it to the brain area
using hand drawn brain mask. Figure 12(a) shows the initial
contour at 𝑡 = 0. After some time 𝑡 = 𝑛, we obtained the
final contour shown in Figure 12(b).Thenwe divided the final
contour into two phases based on the value of 𝜙; at 𝜙 > 0 we
acquired WM region and at 𝜙 < 0 we obtained GM region as
shown in Figures 12(c) and 12(g), respectively. Figures 12(d)
and 12(f) show hand drawn brain mask. After obtainingWM
and GM regions from two phases of final contour we then

multiply these regions with hand drawn brain mask in order
to scale them to brain area only and remove other regions
outside the brain, for example, skull, fats, and vacuum, as
shown in Figures 12(e) and 12(i), respectively. Finally, we
compare the scaled WM and GM regions computed using
the proposed method with their respective ground truths to
visually analyze the segmentation accuracy of the proposed
method.

In order to do the quantitative analyses we used the
ground truths of 2D slices from the 3D anatomical brain
models [21]. The quantitative analysis for the proposed
method, LBF, and LIF models is shown in Table 3 using the
following expression for the percentage accuracy:

percentage accuracy = 𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
%. (15)

We compute the accuracy by using the given ground truth
data and the computed segmentation results. In the above
expression 𝐴 is the ground truth of the WM or GM region
and 𝐵 is the brain mask scaled WM or GM region from
𝜙 > 0 or 𝜙 < 0, respectively, using the proposed method,
LBF model, and LIF model. Table 3 shows that the proposed
method provides better segmentation accuracy as compared
to other locally computed active contour methods. It pro-
vides average segmentation accuracy of 91.04% and 74.28%
in case of WM and GM regions, respectively, while LBF
model provides average segmentation accuracy of 76.74% and
64.96% in case of GM and WM regions, respectively, and
LIFmodel provides average segmentation accuracy of 60.50%
and 51.06% in case of WM and GM regions, respectively.
This shows that the proposed method has high percentage



Computational and Mathematical Methods in Medicine 13

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 12: Visual based segmentation accuracy analysis ofWM and GM regions. (a) Initial contour; (b) final contour; (c)WM region of final
contour which is phase at 𝜙 > 0; (d) hand drawn brain mask; (e) WM region after brain mask scaling; (f) WM region ground truth; (g) GM
region of final contour which is phase at 𝜙 < 0; (h) hand drawn brain mask; (i) GM region after brain mask scaling; (j) GM region ground
truth.

accuracy for both WM and GM regions as compared to LBF
and LIF models.

Selection of standard deviation 𝜎 of truncated Gaussian
kernel plays an important role both in the time complexity
and segmentation accuracy of the algorithm. If 𝜎 or 𝜎

1
is big

then contour evolves faster (less number of iterations) to its
final form with much of segmentation accuracy but its time
complexity also increases. If 𝜎 or 𝜎

1
is small then contour

evolves slower (more number of iterations) to its final form
but there can be segmentation accuracy problem.𝜎

2
is used to

regularize the contour and remove the need of initialization.
The bigger 𝜎

2
is the smoother the contour would be at the

boundary of the object to be segmented.

5. Conclusion

In this paper a region-based active contour method is
presented which embeds both edge-based and region-based

terms in its model. As the proposed model contains both
edge-based and regions-based terms, it works better than
traditional region-based methods and segments well images
with weak and blur edges. A new SPF function is formulated
which utilizes image local information and helps to segment
intensity inhomogeneous regions. The proposed method is
applied to the 2D synthetic and real brain MR images
with intensity inhomogeneity to show its robustness and
effectiveness. We also applied the proposed method to 3D
brain anatomical models to show its application in volume
visualization and data exploration.

A comparison is shown with other active contour meth-
ods that use traditional global SPF function formulated byCV
model, using synthetic imagewith intensity inhomogeneity. It
shows that the proposed method accurately segments images
with intensity inhomogeneity unlike previously formulated
SPF based active contour methods. However, it has higher
time complexity than the active contour methods using
traditional global SPF function.
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We also compared the proposed method with the previ-
ously formulated locally computed active contour methods
to show the advantages of the proposed method. The visual
comparison shows that the proposedmethod generates better
segmentation results as compared to the state-of-the-art
active contour methods for both synthetic and real brain MR
images. Moreover, it also has less time complexity compared
to the local based active contour methods.

Global region based active contour method is fast as
compared to the local active contour method but it does
not work well for the images with intensity inhomogeneity.
On the other hand local active contour method using local
maxima can segment images with intensity inhomogeneity
but it has high time complexity and it is sensitive to noise.
In future we will address the segmentation problem with an
active contour method by using a new SPF function that uses
both local and global information. By using that we want
to target advantages of both local and global region based
models.
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