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1  |  INTRODUC TION

A central goal of molecular ecology and evolutionary biology is 
to understand the genetic basis of local adaptation (Hoban et al., 
2016; Storz, 2005). Landscape genomics has emerged as an analyt-
ical framework to achieve this goal (e.g., Joost et al., 2007; Manel 
& Holderegger, 2013; Storfer et al., 2018), which is particularly 

pertinent in light of the potential influence of climate change on spe-
cies’ geographic distributions (Razgour et al., 2019). Indeed, many 
species are already shifting their geographic distributions toward 
the poles (Chen et al., 2011; Hickling et al., 2006; Parmesan et al., 
1999; Parmesan & Yohe, 2003; Pecl et al., 2017), and approximately 
a quarter of species assessed by the IUCN face the threat of extinc-
tion (IUCN, 2020). Climate change is likely to have disproportionate 
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Abstract
Understanding spatial patterns of genetic differentiation and local adaptation is criti-
cal in a period of rapid environmental change. Climate change and anthropogenic de-
velopment have led to population declines and shifting geographic distributions in 
numerous species. The streamside salamander, Ambystoma barbouri, is an endemic 
amphibian with a small geographic range that predominantly inhabits small, ephemeral 
streams. As A. barbouri is listed as near-threatened by the IUCN, we describe range-
wide patterns of genetic differentiation and adaptation to assess the species’ potential 
to respond to environmental change. We use outlier scans and genetic-environment 
association analyses to identify genomic variation putatively underlying local adapta-
tion across the species’ geographic range. We find evidence for adaptation with a 
polygenic architecture and a set of candidate SNPs that identify genes putatively con-
tributing to local adaptation. Our results build on earlier work that suggests that some 
A. barbouri populations are locally adapted despite evidence for asymmetric gene flow 
between the range core and periphery. Taken together, the body of work describing 
the evolutionary genetics of range limits in A. barbouri suggests that the species may 
be unlikely to respond naturally to environmental challenges through a range shift or 
in situ adaptation. We suggest that management efforts such as assisted migration 
may be necessary in future.
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impacts on endemic species with small geographic distributions be-
cause such species tend to have narrow tolerance ranges to climatic 
factors such as temperature and precipitation (Sheth & Angert, 
2014; Urban, 2015; Yu et al., 2017).

Species range limits often exist, in theory, because populations 
at the range edge are small and lack genetic diversity to adapt be-
yond the edge (Eckert et al., 2008; Sexton et al., 2009). Edge popula-
tions are thus often the first to disappear when a species undergoes 
a range-wide decline (Doherty et al., 2003). Landscape genomics 
studies elucidate patterns of adaptive genomic diversity that man-
agement initiatives can use to conserve the capacity of taxa to re-
spond to environmental change (Funk et al., 2019). For example, 
assisted migration has emerged as one strategy to relocate popu-
lations of species threatened by climate change to areas of suitable 
habitat (Hällfors et al., 2014; Vitt et al., 2010). Another strategy 
is genetic rescue, or the process of introducing individuals from 
more genetically variable populations into those that are genet-
ically depauperate to enhance their adaptive potential and fitness 
(Fitzpatrick et al., 2020; Pimm et al., 2006; Whiteley et al., 2015). 
When specific threats are known (e.g., increasing average tempera-
tures), conservation efforts may benefit from genotyping individuals 
and translocating those identified as harboring putatively beneficial 
alleles (Hohenlohe et al., 2019).

Amphibians appear particularly sensitive to threats imposed by 
climate change (Blaustein et al., 2010; Lourenço-de-Moraes et al., 
2019), owing to their limited dispersal abilities to track climate shifts 
and frequent reliance on ephemeral habitats for breeding and lar-
val survival (Blaustein et al., 2010). The streamside salamander, 
Ambystoma barbouri (Kraus & Petranka, 1989), is an endemic spe-
cies with a small geographic range primarily restricted to central 
Kentucky, southeastern Indiana, and southwestern Ohio (Kraus 
& Petranka, 1989; Petranka, 1998). A.  barbouri is listed as near-
threatened by the IUCN, which cites urban and agricultural devel-
opment, forest harvesting, invasive species, and climate change as 
drivers (Hammerson, 2004). A.  barbouri adults lay eggs with con-
sequent larval development primarily in small, ephemeral streams 
that are prone to early drying in hot years (Petranka, 1998). Larval 
activity varies with stream permanence, and experiments suggest 
a strong genetic component that limits the extent of phenotypic 
plasticity of developmental timing, which may experience selection 
(Micheletti & Storfer, 2020; Storfer & Sih, 1998).

On a range-wide scale, A.  barbouri conforms to the expecta-
tions of the central-marginal hypothesis (Brown, 1984; Eckert et al., 
2008). That is, there is a negative correlation of genetic diversity, 
effective population size, and population connectivity moving from 
the core of the species’ distribution to the edge (Micheletti & Storfer, 
2015). Additionally, despite asymmetric gene flow along transects 
from the range core to range periphery, a reciprocal transplant field 
experiment suggests that edge populations show evidence of local 
adaptation (Micheletti & Storfer, 2020). The geographic range of 
A. barbouri appears to be restricted owing to a combination of rel-
atively cryptic environmental variables elucidated by a landscape 
genetics study, including limited limestone availability and increases 

in growing season precipitation that create high resistance to gene 
flow (Micheletti & Storfer, 2017). To date, however, genetics studies 
on A. barbouri have been conducted on small numbers of presumably 
neutral loci, including allozymes (Storfer, 1999) and microsatellites 
(Micheletti & Storfer, 2015, 2017). Collectively, the relatively strong 
genetic isolation among study sites (Storfer, 1999) and evidence for 
local adaptation at a range-wide scale warrants further investigation 
of the genomic basis of adaptation and the capacity to respond to 
environmental change in this species.

The major goal of this study was to identify genetic markers 
showing large signatures of divergent selection among study sites 
spanning the geographic range of A. barbouri, including a site at the 
core, as well as sites at the northern, southern, and western range 
edges (Figure 1). Specifically, we used double-digest restriction site-
associated DNA (ddRAD) sequencing (Peterson et al., 2012) to: (1) 
describe genetic differentiation among range core and peripheral 
study sites; (2) evaluate genomic evidence for local adaptation; and 
(3) gain insight into the potential for adaptive responses to environ-
mental change.

2  |  MATERIAL S AND METHODS

2.1  |  Field collection

We collected 112 tissue samples across four collection localities 
each separated by an average of 190.62 km within the continuous 
distribution of A. barbouri between April and May 2016 (Figure 1). 
The collection localities included fishless, ephemeral streams in the 
geographic core of the distribution and at the extreme northern, 
southern, and western edges. We selected these specific edge sites 
because previous research suggests that they belong to genetically 
differentiated clusters (Micheletti & Storfer, 2017) and would allow 
the characterization of range-wide genetic variation. The tissue sam-
ples from each site consisted of tail tips from larval salamanders, 
which were collected among different stream pools within single 
stream basins to avoid sampling full siblings. Tissues were stored in 
95% ethanol.

2.2  |  Next-generation sequencing

We performed double-digest restriction site-associated DNA se-
quencing (ddRADseq; Peterson et al., 2012), using the restriction 
enzymes EcoRI and PstI, both of which use six-base-pair recogni-
tion sites. We multiplexed individuals with 30 unique adapter bar-
codes. We size-selected 500–600  bp fragments using a Pippin 
Prep Blue (Sage Science) and amplified final libraries using Phusion 
PCR master mix (Thermo Fisher Scientific). Due to the large ge-
nome size of A.  barbouri (approximately 24  Gb; www.genom​esize.
com), we included only 30 individuals in each of four final libraries 
to attempt to increase sequencing depth across individuals; two in-
dividuals from each sampling location were duplicately sequenced 

http://www.genomesize.com
http://www.genomesize.com
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in different libraries. A total of four libraries were sequenced on an 
Illumina HiSeq 2000 sequencing system at the University of Oregon 
Genomics Core Facility (gc3f.uoregon.edu) using single-end, 100 bp 
reads.

2.3  |  Variant calling and filtering

We carried out an integrated alignment procedure (Paris et al., 
2017) by first assembling RAD loci de novo in Stacks Version 2.52 
(Rochette et al., 2019) and then using the mem option in BWA (Li 
& Durbin, 2009) to align catalogued de novo loci to the June 2018 
chromosome-level genome assembly of A. mexicanum (Smith et al., 
2019), the most closely related salamander genome available. The de 
novo RAD locus catalog was created using the Stacks script denovo_
map.pl, with options set to require a minimum of three reads to form 
a stack (m = 3), allow three mismatches between read stacks within 
individuals (M = 3), and allow four mismatches between read stacks 
across individuals (n = 4). These parameter values were optimized 
by following Paris et al. (2017). For alignment, the clipping penalty 
for BWA-mem was specified as 10 and all other settings were left 
as default. Mapping information for RAD loci with MAPQ > 10 was 
integrated with the Stacks RAD locus catalog using the Stacks script 
stacks-integrate-alignments.pl.

We filtered the resulting single nucleotide polymorphisms (SNPs) 
using an iterative filtering procedure modified from O’Leary et al. 
(2018). Briefly, iterative filtering involves alternating and progres-
sively increasing the stringency of filters, a process that may gener-
ate a final dataset containing a larger number of retained individuals 
and higher-quality markers than a filtering process that applies each 

filter at a strict level only once (O’Leary et al., 2018). The iterative 
filtering stage of our pipeline involved cycling between removing 
SNPs with high missingness in at least one of the four collection 
localities and removing individuals with high missingness. We also 
highlight that we employed a number of filters intended to reduce 
the abundance of RAD loci representing collapsed paralogs, which 
may otherwise be prevalent given the large, repetitive genomes of 
salamanders. The full filtering scheme is detailed in Table S1.

We evaluated the genomic distribution of SNPs in the final data-
set by correlating numbers of SNPs that mapped to each reference 
chromosome with reference chromosome size; a strong correla-
tion would suggest proportional representation of chromosomes 
in our dataset. We also characterized whether SNPs were within 
or between gene models of the A.  mexicanum genome. We first 
downloaded BED files containing gene model annotations for each 
chromosome of the June 2018 A. mexicanum genome assembly from 
the Table Browser of the UCSC Genome Browser (www.genome.
ucsc.edu) and then used the BEDTools closest command (Quinlan & 
Hall, 2010) to identify the gene models nearest each SNP.

2.4  |  Summary statistics and population 
genetic structure

We used fastStructure (Raj et al., 2014) and the find.clusters func-
tion in the R package Adegenet 2.1.3 (Jombart, 2008) to infer the 
number of genetic clusters represented in the dataset. For fast-
Structure, we assessed support for K = 1–10 using 20 replicates for 
each value of K and subsequently used the python script chooseK 
included with fastStructure to identify the value of K with the 

F I G U R E  1  Map indicating the four 
collection localities. The continuous 
geographic range of Ambystoma barbouri 
is indicated as the white outline in the 
main plot and blue shaded region in 
the inset. Tissue samples of 28 larval 
A. barbouri were collected from each of 
four locations, marked with white points 
and location labels, corresponding to 
the range center (C) and the extreme 
northern, western, and southern range 
edges (N, W, and S, respectively). Map 
features are plotted over mean annual 
temperature
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greatest statistical support. We visualized admixture proportions of 
individuals using the software Distruct v1.1 (Rosenberg, 2004). The 
Adegenet find.clusters function transforms data using principal com-
ponents analysis (PCA) before using a successive K-means clustering 
algorithm to evaluate support for different values of K. We assessed 
results for K = 1–10 and selected the value of K with the lowest value 
of the Bayesian Information Criterion. We also employed PCA and 
discriminant analysis of principal components (DAPC) in Adegenet 
(Jombart, 2008). Prior to performing PCA and DAPC, we used the 
impute function from the R package LEA (Frichot & François, 2015) 
to impute missing data based on ancestry and genotype frequency 
estimates obtained from the best run of 500 replicates of the snmf 
function. We used xval optimization to determine the number of 
principal components to be used in DAPC and retained K discrimi-
nant axes. We evaluated both PC and DAPC scores of individuals 
because PCA characterizes variation occurring both within and be-
tween genetic groups, whereas DAPC focuses on variation between 
groups (Jombart et al., 2010). We additionally evaluated the correla-
tion between PCs, latitude, and longitude using Pearson's correla-
tion test (e.g., Novembre et al., 2008).

We used the R package diveRsity (Keenan et al., 2013) to cal-
culate Weir and Cockerham's estimators of the inbreeding coef-
ficient FIS and FST (Weir & Cockerham, 1984). We estimated FIS 
for each population using the basicStats function and estimated 
95% confidence intervals using 1000 bootstraps. We estimated 
95% confidence intervals (CI) for pairwise FST based on 1000 
bootstraps using the bias-corrected bootstrapping method im-
plemented in the diffCalc function; we carried out bootstrapping 
across SNPs, as recommended by Weir and Cockerham (1984). We 
also recalculated pairwise FST after removing SNPs determined 
to have significant signatures of selection in univariate tests (see 
below). We further characterized genetic diversity for each lo-
cality by calculating individual observed heterozygosity and per-
SNP nucleotide diversity (π) in VCFtools (Danecek et al., 2011). 
We estimated effective population size (Ne) for each locality using 
the linkage disequilibrium-based method in NeEstimator v2.1 (Do 
et al., 2014); Ne estimates were obtained after removing SNPs with 
significant signatures of selection. We repeated effective popula-
tion size estimates using allele frequency thresholds of 0.05, 0.02, 
and 0.01.

2.5  |  Environmental variables

We initially downloaded GIS layers for the 19 bioclimatic variables 
available from the WorldClim database (Fick & Hijmans, 2017) and 
six additional variables, briefly outlined here (Table S2). The bio-
climatic variables are all related to temperature and precipitation, 
which are related to known stressors in amphibians (e.g., desicca-
tion; Daszak et al., 2005). Temperature seasonality may select for 
the width of thermal tolerance (i.e., the difference between upper 
and lower thermal limits) in amphibians (Snyder & Weathers, 1975). 
The bioclimatic variables also include quarter-specific environmental 

conditions, which appear to impact habitat suitability for A. barbouri 
(Micheletti & Storfer, 2015).

We also included solar radiation averaged across months and el-
evation in our analyses (Fick & Hijmans, 2017) because ultraviolet 
radiation exposure negatively correlates with aspects of fitness in 
various amphibian species (Bancroft et al., 2008). A.  barbouri also 
favors forested habitat (Kraus & Petranka, 1989), so we included 
percent forest canopy cover (Coulston et al., 2012) and land cover 
(Homer et al., 2020) as additional variables. Land cover was trans-
formed into a binary variable of forest habitat (any of three habi-
tat types: deciduous, conifer, and mixed forest) versus nonforest 
habitat. Adult A. barbouri are fossorial, spending considerable time 
underground, suggesting that soil chemistry may impact fitness. 
Soil pH and percent soil organic carbon both correlate with many 
biophysicochemical properties of soil (Brady & Weil, 1999; Smith & 
Doran, 1997), so we included both factors, predicted for a depth of 
5 cm, as additional variables (Ramcharan et al., 2018). We converted 
pH to the corresponding concentration of hydronium ions prior to 
analyses.

Using QGIS Desktop 3.12.1 (QGIS development team, 2009), we 
defined a 2.5 km radius buffer zone around each collection locality; 
the larvae sampled are unlikely to be offspring of individuals that 
dispersed from locations outside of this buffer (e.g., Orloff, 2011; 
Rittenhouse & Semlitsch, 2007). We then extracted the mean value 
of each environmental variable within the buffer to determine broad 
differences in environmental conditions among sites. For the binary 
variable of forest habitat vs. nonforest habitat, we calculated the 
proportion of the buffer zone corresponding to forest habitat. The 
full set of variables and values for each collection locality can be 
found in Table S2. Note that the geographic range of A. barbouri is 
small, so the species’ environmental tolerance ranges are likely nar-
row (Micheletti & Storfer, 2015; Sheth & Angert, 2014; Yu et al., 
2017). Although environmental factors may appear to have little 
variation among collection localities, this variation may be import-
ant from a biological perspective. For example, the maximum and 
minimum elevations (differing by 110 m) observed among our sites 
are similar to those identified from species presence data used in 
Micheletti and Storfer (2015).

For genetic-environment association (GEA) tests, we reduced the 
number of highly correlated environmental variables using a two-
stage approach. In the first stage, we grouped logically related vari-
ables (e.g., temperature-related variables) and retained only those 
variables correlated at r ≤ 0.90 within each group. We then pooled 
the remaining variables and again retained only those correlated 
at r ≤ 0.90. A matrix of Pearson's correlation coefficients for every 
pair of variables can be found in Table S3. Although this process fil-
tered out annual precipitation, we retained this variable because it 
is relevant for explaining the distribution of A. barbouri (Micheletti 
& Storfer, 2017) and generally relevant to various aspects of am-
phibian ecology (e.g., aquatic breeding, aquatic larval stage, and vul-
nerability to desiccation); imperfectly correlated variables also may 
reveal nonredundant signatures of selection. This yielded a final set 
of six variables: mean annual temperature, temperature seasonality, 
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mean temperature of the wettest quarter, annual precipitation, el-
evation, and percent soil organic carbon (Table 1). Using these six 
variables, we additionally quantified environmental distance among 
the sampling locations. Environmental variables were demeaned and 
divided by their standard deviations; we conducted PCA on the re-
sulting centered and scaled environmental data and then calculated 
pairwise Euclidean distances among the four sites using all princi-
pal components (e.g., Wang, 2013). We also assessed correlations 
among pairwise environmental distance, geographic distance, and 
linearized FST (i.e., FST/(1 − FST); Rousset, 1997). We additionally as-
sessed correlations between PC1 and PC2 from the genetic PCA 
(see above) and each of the six environmental factors independently.

2.6  |  Tests for selection

We carried out several tests for selection that broadly belong to two 
categories: differentiation outlier scans and GEA analyses. Outlier 
scans identify loci showing unusual differentiation among popula-
tions relative to background genetic differentiation, while GEA anal-
yses identify loci with allele frequencies that correlate significantly 
with environmental variables while accounting for neutral popula-
tion structure (Hoban et al., 2016; Rellstab et al., 2015). We used 
stringent significance thresholds recommended by the authors of 
each test. When authors of tests did not clearly designate signifi-
cance thresholds, we consulted the literature for common cutoffs.

We performed outlier detection analyses using the software 
hapflk v1.4 (Bonhomme et al., 2010), pcadapt (Luu et al., 2017), and 
the Bayenv2 XTX statistic (Günther & Coop, 2013). We used hapflk 
v1.4 to compute the FLK statistic for each SNP and assessed outlier 
significance at a false discovery rate threshold of q<0.05 (Benjamini 
& Hochberg, 1995). Pcadapt calculates z-scores for each SNP by re-
gressing each SNP against principal components; SNPs that emerge 
as outliers on the basis of Mahalanobis distances calculated from 
z-scores are interpreted as putatively experiencing divergent se-
lection among populations. We used the conservative Bonferroni 
correction of 0.01/10,527 (the number of SNPs) to assess the signif-
icance of each SNP (Luu et al., 2017). We additionally used the XTX 
statistic implemented in Bayenv2, which is a measure of subpopula-
tion differentiation analogous to FST. Bayenv2 accounts for neutral 
genetic structure using a population covariance matrix, which we 
obtained by calculating the median matrix across five replicate runs 
of Bayenv2 for 500,000 iterations each. Using the empirical covari-
ance matrix, we then ran five independent replicates of Bayenv2 for 
750,000 iterations and calculated the median value of XTX across 
replicates for each SNP. To calibrate the significance threshold of 
the XTX statistic, we used the BayPass accessory R function simu-
late.baypass to generate a pseudo-observed dataset (POD) of neu-
tral SNPs based on the empirical covariance matrix estimated in 
Bayenv2 (Gautier, 2015). The POD contained the same number of 
SNPs as the real dataset, and sample sizes for each SNP were drawn 
with replacement from the sample sizes in the real dataset. We cal-
culated the XTX statistic for each SNP in the POD using Bayenv2, TA
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with options identical to the analysis carried out on the real dataset. 
We used the XTX value corresponding to the top 0.01% quantile of 
the POD as the threshold for significance in the real dataset (Gautier, 
2015).

We implemented GEA tests using LFMM 2 (Caye et al., 2019) 
in the R package lfmm, as well as Bayenv2 (Günther & Coop, 2013). 
LFMM uses a number of latent factors (equal to the K inferred ge-
netic clusters in the data) to account for neutral genetic structure 
when testing for associations between alleles and environmental 
factors. We accounted for multiple comparisons using a Bonferroni-
corrected significance threshold of 0.01/10,527 (Frichot et al., 2013; 
Yang et al., 2020). Bayenv2 calculates a Bayes factor (BF) for each 
locus-environmental factor combination, which describes the sup-
port for a model which includes the environmental factor relative to 
a null model which excludes it. Bayenv2 also estimates Spearman's 
Rho, a rank-based correlation coefficient describing the association 
between each SNP and environmental factor. Spearman's Rho is ro-
bust to outlier populations (Günther & Coop, 2013); Günther and 
Coop (2013) recommend the simultaneous use of a relatively permis-
sive BF threshold and relatively stringent Spearman's Rho threshold 
when outlier populations are a concern. We ran five independent 
replicates of Bayenv2 for 750,000 iterations using the same covari-
ance matrix used in the estimation of XTX and calculated the median 
Bayes factor and median absolute Spearman's Rho across replicates 
for each locus–environmental factor combination. We considered 
SNPs with both BFs in the top 5% quantile and absolute Spearman's 
Rho coefficients in the top 1% quantile as showing strong evidence 
for association with an environmental factor, which are thresholds 
consistent with other studies (e.g., Contreras-Moreira et al., 2019).

We further characterized significant SNPs by evaluating overlap 
among tests for selection, characterizing population genetic statis-
tics, and characterizing information regarding mapping to the refer-
ence genome. We used permutation tests to evaluate whether the 
proportion of SNPs identified by at least two programs was signifi-
cantly greater than expected by random chance, and we repeated 
permutation tests for the proportion of significant SNPs shared by 
each pair of programs to evaluate consistency in the identification 
of signatures of selection; each permutation test used 10,000 rep-
licates. We further visually assessed the distributions of global and 
locality-specific minor allele frequencies, observed heterozygosity, 
and missing data for the significant SNPs relative to the entire SNP 
dataset. We additionally evaluated the distribution of significant 
SNPs across reference chromosomes.

2.7  |  Additive polygenic scores

Polygenic scores have emerged in the landscape genomics litera-
ture as a method to summarize genotype–environment associations 
across SNPs at the individual level (e.g., Babin et al., 2017; Xuereb 
et al., 2018), and this implementation is distinct from polygenic 
scores used in relation to genome-wide association and quantita-
tive genetics studies that establish links between genetic data and 

phenotypes and/or fitness (e.g., Wray et al., 2014); accordingly, 
the use of polygenic scores in the present study concerns their 
implementation in landscape genomics research and does not in-
volve direct measures of phenotypes or fitness. Additive polygenic 
scores provide evidence for multilocus or polygenic local adaptation 
through the co-occurrence of alleles across multiple significant SNPs 
within individuals (Gagnaire & Gaggioti, 2016). We created six sets of 
significant SNPs, one set per environmental variable. The sets con-
tained significant SNPs identified using a GEA test and at least one 
other GEA or outlier test. Restricting the polygenic scores analysis 
to SNPs identified by multiple tests for selection may reduce the 
influence of false positives.

Following Babin et al. (2017) and Xuereb et al. (2018), for each 
significant SNP, we identified the allele exhibiting a positive associ-
ation between its frequency and an environmental factor. We then 
summed, within a given individual, the dosage (0, 1, or 2) of the pos-
itively associated allele across all significant SNPs, taking this value 
as a raw additive polygenic score. We calculated raw additive poly-
genic scores in R using a modified version of the script provided by 
Xuereb et al. (2018). Because individuals genotyped using reduced-
representation sequencing can have considerable missing data, we 
divided the raw additive polygenic score by twice the number of 
significant SNPs with data present for a given individual. This metric 
provides a polygenic score as a proportion of the maximum score an 
individual could theoretically have, given its missing data rate. For 
each of the six sets of SNPs, we also recalculated polygenic scores 
in relation to latitude and longitude, instead of the environmental 
factor. Polygenic scores avoid circularity in the use of significant 
SNPs found by GEAs in evaluating correlations between polygenic 
scores and the environment: Given that GEAs are conducted on the 
basis of allele frequencies at individual SNPs independently, the co-
occurrence of alleles positively associated with the environment 
across different SNPs within individuals (i.e., the signature of poly-
genic adaptation) is not necessarily expected.

For the analyses showing a general positive relationship be-
tween polygenic scores and the environmental variable across 
sampling locations, we fitted models to characterize the relation-
ship between percent polygenic scores and each environmental 
factor. Specifically, we used the function stan_glmer from the R 
package rstanarm (Goodrich et al., 2020) to implement Bayesian 
Generalized Linear Mixed Models (GLMMs). We specified the bino-
mial family and logit link function to accommodate the [0,1] bounds 
of our percent polygenic score. We included collection locality as 
a random effect to account for pseudoreplication. To evaluate the 
extent to which polygenic scores may be explained by geography 
(i.e., latitude and longitude), we also fit models containing latitude 
or longitude as the independent variable, instead of the environ-
mental factor.

We also calculated polygenic scores in relation to each environ-
mental factor using random subsets of the entire SNP dataset. Each 
random subset contained an identical number of SNPs as the set of 
SNPs significantly associated with the environmental factor of inter-
est. For each environmental factor, we repeated this process 1000 
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times and calculated individual percent polygenic scores. Using each 
replicate, we created a GLMM as described previously. We then 
compared the beta coefficient for the environmental factor using 
the observed polygenic scores with the distribution of beta coeffi-
cients obtained from the random SNP subsets to evaluate whether 
the observed coefficient is greater than expected by chance. This 
provides a basis for comparing the pattern of polygenic scores ob-
served from the significant SNPs to the background genome.

2.8  |  Candidate gene identification

We used the BEDTools closest command (Quinlan & Hall, 2010) to 
identify the A. mexicanum gene models nearest each of the signif-
icant SNPs found by at least one test for selection. When signifi-
cant SNPs were near uncharacterized A.  mexicanum gene models 
(i.e., those not assigned gene symbols), we searched the mRNA se-
quences predicted for the gene models against the NCBI Basic Local 
Alignment Search Tools (BLAST) database (Altschul et al., 1990) 
using an E-value threshold of 1e-5 and retained only the top signifi-
cant match. We were not able to identify genes near SNPs in RAD 
loci that mapped to unplaced contigs of the A. mexicanum genome 
during integrated alignment (see Variant calling and filtering).

We then searched for Gene Ontology (GO) terms describing the 
molecular functions, biological processes, and cellular components 
associated with the candidate genes (Ashburner et al., 2000; The 
Gene Ontology Consortium, 2019). Our principal source for GO 
terms and literature related to the candidate genes was Xenbase.org, 
a biological database specializing on Xenopus frogs. We gathered 
additional information on candidate genes by searching the litera-
ture. We carried out GO enrichment analysis on the candidate genes 
using the PANTHER-powered system (Mi et al., 2019) on the Gene 
Ontology Consortium webpage, and we specified the reference or-
ganism for GO terms as Xenopus tropicalis. We tested for over- or 
under-representation of biological processes, molecular functions, 

and cellular components among the candidate genes using Fisher's 
exact test and an FDR of 0.05 (Benjamini & Hochberg, 1995). We 
specified the genes nearest all of the SNPs in the dataset as the ref-
erence gene set.

3  |  RESULTS

3.1  |  Variant calling and filtering

The de novo RAD locus catalog obtained from Stacks mapped ro-
bustly to the A. mexicanum genome: 85.0% (2,636,742/3,101,325) of 
the de novo RAD loci mapped to at least one genomic location. After 
removing RAD loci with MAPQ < 10 and integrating alignment infor-
mation with the de novo RAD catalog, 1,317,396 RAD loci remained 
for further filtering. The subsequent iterative filtering scheme (Table 
S1) generated a dataset containing 10,527 SNPs and 86 individuals. 
The central, north, south, and west localities were represented by 
similar numbers of individuals in the final dataset (23, 20, 20, and 23 
individuals, respectively). The dataset had a final mean individual-
level missingness of 19.1% [standard deviation (SD) 13.0%; minimum 
(min.) 1.8%; maximum (max.) 48.5%], mean SNP-level missingness 
of 19.1% (SD 5.4%; min. 2.3%; max. 34.9%), individual read depth 
averaged across all loci of 9.83 (SD 2.9; min. 6.0; max. 20.9), and 
an average mean depth per locus across individuals of 10.0 (SD 
1.2; min. 7.0; max. 15.7). SNP-level missingness and individual-
level missingness were generally higher in the southern collection 
locality, and individual-level missingness was more variable in the 
central collection locality (Figure S1A,B). SNP- and individual-level 
sequencing depth were largely consistent across collection locali-
ties (Figure S1C,D). When SNPs were subdivided by the A. mexica-
num chromosomes they mapped to, the final SNP dataset showed a 
strong, significant correlation between A. mexicanum chromosome 
size and the number of A.  barbouri SNPs retained by our pipeline 
(Pearson's r = 0.98, p < 10e-9; Figure S1E), indicating proportional 

F I G U R E  2  Evidence for population 
genetic structure among sampling 
localities. (a) Plot showing fastStructure 
admixture proportions of individuals 
for K = 4, with individuals grouped by 
collection locality. Sample sizes are 
provided in parentheses. (b) Plot of 
principal component (PC) 2 against PC1. 
(c) Plot of discriminant axis (DA) 2 against 
DA1. Individuals in (b) and (c) are colored 
to reflect sampling locations, using the 
same colors as in (a). The percentage of 
variance explained by each PC and DA is 
provided in parentheses along the axes

(23) (20) (20) (23)

(a)

(b) (c)
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representation of chromosomes. 38% of the 10,527 SNPs in the final 
dataset mapped within gene models of the reference genome.

3.2  |  Summary statistics and population 
genetic structure

FastStructure and the find.clusters algorithm of Adegenet found 
the greatest support for four genetic clusters corresponding to the 
four sampling localities (Figure S2); we therefore grouped individual 
samples based on collection locality for all subsequent analyses. 
FastStructure found little evidence for admixture among the four ge-
netic clusters (Figure 2A). Notably, one individual collected from the 
western locality showed evidence of admixture with the central and 
southern localities (Figure 2A); this same individual clustered near 
the central and southern localities in PCA (Figure 2B) and clustered 
with the southern locality in DAPC (Figure 2C). Genetic clustering 
revealed by the PCA largely reflects the geographic arrangement 
of the sampling localities (Figure 2B). PC1 was significantly corre-
lated with both latitude and longitude (latitude: Pearson's r = 0.91, 
p < 0.0001; longitude: r = 0.89, p < 0.0001). PC2 was also signifi-
cantly correlated with both latitude and longitude (latitude: r = 0.28, 
p < 0.01; longitude: r = −0.44, p < 0.0001. PC1 and PC2 correlated 
with environmental factors to different extents (Table S4). DAPC 
highlighted strong isolation between the northern locality and re-
maining three localities (Figure 2C).

Pairwise FST values were largely consistent with the results of 
DAPC, as pairwise FST estimates involving the northern population 
were generally elevated (FST  ≥  0.4225) relative to other pairwise 
comparisons. Indeed, the highest pairwise FST calculated was be-
tween the north and south subpopulations (FST  =  0.5185; 95% CI 
[0.5103, 0.5273]), consistent with these subpopulations being sepa-
rated by one of the greatest geographic distances between any pair 
(267 km; see Table S5). The remaining pairwise comparisons further 
supported strong genetic differentiation across the study area (all 
pairwise FST values ≥0.2259; Table S5). Recalculation of pairwise FST 
after removing SNPs determined to have significant signatures of 
selection resulted in lower estimates of genetic structure (all FST val-
ues ≥0.2010) while retaining the same general patterns (Table S5). 
Environmental distances, geographic distances, and pairwise lin-
earized FST values were all at least moderately correlated (Pearson's 
coefficient ≥0.45).

The central, northern, and western populations had low esti-
mates of FIS at 0.027 [−0.021, 0.019], −0.016 [−0.081, −0.016], and 
0.025 [−0.032, 0.29], respectively. The southern population exhib-
ited a higher FIS estimate of 0.079 [0.023, 0.071]. Individual observed 
heterozygosities were lowest in the northern and southern subpop-
ulations, intermediate in the central subpopulation, and highest in 
the western subpopulation; per-SNP nucleotide diversity showed a 
similar pattern (Figure S3). Large proportions of SNPs were invari-
ant within collection localities (central: 37.9%; north: 66.6%; south: 
42.0%; west: 26.7%), and 84.9% of SNPs were fixed in at least one 
collection locality. Point estimates of Ne were lowest in the western 

and southern localities, intermediate in the central locality, and high-
est in the northern locality. However, the upper limit of the 95% CIs 
included infinity for all localities at an allele frequency threshold of 
0.05 and three of four localities at lower allele frequency thresholds 
(Table S6).

3.3  |  Tests for selection

LFMM 2 identified 512 SNPs significantly associated with at least 
one of the six environmental factors, and at least 77 SNPs were 
identified as having a significant association with each environmen-
tal factor. Bayenv2 identified 145 SNPs associated with at least one 
environmental factor. There was some overlap in the SNPs identi-
fied by the two GEA analysis programs for a given environmental 
factor, as well as overlap in the SNPs identified by each program 
individually across the six environmental factors (Table S7). Among 
the outlier tests, XTX, pcadapt, and FLK identified 200, 354, and 
zero SNPs, respectively. Collectively, our five tests for selection 
(i.e., LFMM, Bayenv2, XTX, FLK, and pcadapt) identified 732 unique 
SNPs with signatures of selection deemed significant at the thresh-
olds described above, representing approximately 7.0% of the SNP 
dataset. Of these significant SNPs, 385 (approximately 52.6%) were 
identified by at least two tests for selection (Figure S4). As evalu-
ated using a permutation test, this represented significantly greater 
overlap among tests than expected by random chance (p < 0.0001). 
Overlap among pairs of tests was also generally significantly greater 
than expected by random chance (p  <  0.007), bar the overlap for 
the Bayenv2-LFMM and Bayenv2-PCAdapt comparisons (Table S8).

Many SNPs of the total set of 732 significant SNPs were invari-
ant within collection localities (central: 52.7%; north: 60.1%; south: 
69.3%; west: 50.1%), and 94.9% were invariant in at least one collec-
tion locality. This trend was also apparent among the 385 significant 
SNPs identified by at least two tests for selection, as many of these 
SNPs were invariant within collection localities (central: 60.0%; 
north: 57.1%; south: 76.6%; west: 60.0%), and 96.6% were invariant 
in at least one collection locality. Distributions of minor allele fre-
quencies, observed heterozygosities, and missing data for the full 
dataset of 10,527 SNPs, full set of 732 significant SNPs, and the set 
of 385 significant SNPs found by at least two tests for selection are 
presented in Figure S5. Significant SNPs were found across all refer-
ence chromosomes, even when stratified by the environmental fac-
tor they were associated with. The number of significant SNPs found 
on a given reference chromosome was correlated with chromosome 
size (Table S9). Numbers of significant SNPs used subsequently in 
additive polygenic scores analyses and the identification of candi-
date genes are provided in Table S10.

3.4  |  Additive polygenic scores

There was generally limited variation in the additive polygenic scores 
of individuals within populations (Figure 3A–C). Beta coefficients for 
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annual precipitation, mean annual temperature, and temperature 
seasonality were positive with 95% Bayesian credible intervals ex-
cluding zero (annual precipitation: 0.0177 [0.003, 0.03]; mean an-
nual temperature: 2.976 [1.335, 4.152]; temperature seasonality: 
8.188 [1.445, 13.627], indicating a positive relationship between 
the environmental factor of interest and individual percent poly-
genic scores. Patterns of polygenic scores at the significant SNPs 
for all three environmental factors were substantially different from 
polygenic scores calculated on the basis of random subsets of SNPs 
(Figure 3A-C), and permutation tests showed that beta coefficients 
corresponding to polygenic scores derived from the significant SNP 
sets were significantly greater than expected by random chance 
identification of SNPs (p < 0.001 for annual precipitation, mean an-
nual temperature, and temperature seasonality). Models containing 
either latitude or longitude were also fit for each set of polygenic 
scores. R2 for all models (those including the environmental factor 
and those including latitude or longitude, along with the random 
effect of site) were >0.99. For each SNP set, polygenic scores ap-
peared well explained by either the environmental factor of interest 
or latitude (Figure S6). The relationship between population means 
of additive polygenic scores and the environment for percent soil 
organic carbon, elevation, and mean temperature of the wettest 

quarter were nonmonotonic (Figure S7D–F), and we did not fit mod-
els for these variables.

3.5  |  Candidate gene identification

We used BEDtools to identify the A. mexicanum gene models near-
est each of the 732 significant SNPs. 49 of the 732 significant SNPs 
occurred in RAD loci that aligned to contigs of the A.  mexicanum 
genome assembly that have not been assigned chromosomal posi-
tions; we therefore could not identify gene models near these SNPs. 
All candidate genes were ≤5.82  Mb away from their correspond-
ing significant SNPs (see Discussion for commentary on distances), 
with many SNPs occurring within A.  mexicanum gene models but 
not necessarily exons. 130 SNPs corresponded to 123  genes that 
were uncharacterized or otherwise not assigned gene symbols in 
the A.  mexicanum genome assembly; we obtained their predicted 
mRNA sequences from the UCSC Genome Browser and searched 
them against the BLAST database. Most of the uncharacterized 
genes (71/123) did not have significant similarity with BLAST data-
base entries; those that did often had uninformative gene symbols 
(Table S11).

F I G U R E  3  Select polygenic scores. 
Additive polygenic scores are shown 
in relation to (a) annual precipitation, 
(b) mean annual temperature, and (c) 
temperature seasonality. Polygenic scores 
were calculated based on SNPs identified 
as significant in a GEA analysis and at least 
one other test for selection. Polygenic 
scores in different panels are based on 
different but sometimes overlapping 
sets of SNPs. Scores are reported as 
a fraction of the maximum possible 
summed dosage of positively associated 
alleles an individual could have, given its 
missing rate. Light gray crosses and curves 
represent a single representative replicate 
of polygenic scores calculated from a 
random subset of the 10,527 SNPs in the 
full dataset
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Many of the candidate genes identified near the significant SNPs 
are associated with general biological processes (e.g., transcription). 
We therefore restricted our discussion to several genes that have as-
sociations with more specific ecological drivers of local adaptation; 
a full table of candidate genes, associated GO terms, and additional 
data can be found in Table S12.

We note WNT7B and AXIN1, which are both related to multi-
cellular organism development (e.g., Zeng et al., 1997), as well as 
U2AF1L4, which may be involved in regulating the circadian rhythm 
(Preußner et al., 2014). Among the genes that mapped near SNPs 
uniquely associated with mean annual temperature, TEX2 has a sig-
nature of positive selection in high altitude sheep (Shi et al., 2019) 
and both ACER1 and PSMG3 are implicated in hypoxia response 
(Kharrati-Koopaee et al., 2019; Wang et al., 2013). The genes OTX1 
and LVRN were found in relation to both mean annual temperature 
and temperature seasonality, and they have been implicated in hy-
poxia response and human altitudinal adaptation, respectively (Yi 
et al., 2013; Zhang et al., 2020). The MGAT5B gene was near a SNP 
associated with mean temperature of the wettest quarter, and this 
gene has previously shown differential expression in association with 
variation in aquatic habitat permanence (i.e., temporary ponds vs. 
permanent streams) in larvae of the salamander species Salamandra 
infraimmaculata (Goedbloed et al., 2017). RIN2, found here in asso-
ciation with mean temperature of the wettest quarter, has been im-
plicated in dehydration response (Kordonowy & MacManes, 2017). 
ZCCHC6 is a hypoxia biomarker (Mosqueira et al., 2012) and was 
identified here in association with both mean annual temperature 
and elevation. PIK3R5  has previously been implicated in thermal 
stress response (Kim et al., 2017) and was found in relation to mean 
annual temperature and temperature seasonality. Allele frequency 
shifts for SNPs near these candidate genes are provided in Figure 
S8. No GO biological process, molecular function, or cellular compo-
nent terms were significantly over- or under-represented among our 
list of candidate genes at an FDR of 0.05.

4  |  DISCUSSION

Landscape genomics has emerged as a widely used framework for 
understanding the spatial distribution of adaptive variation (Joost 
et al., 2007; Storfer et al., 2018). In light of accelerating climate 
change, the identification of putatively adaptive variation provides 
a starting point for assessing whether species may have the capac-
ity to respond to shifting environmental conditions. Using a suite of 
tests for selection, we identified genomic signatures of local adap-
tation among populations of A. barbouri. These include a subset of 
RAD sequencing-derived SNPs showing strong genetic differentia-
tion among populations or strong associations with environmental 
factors, as well as evidence potentially consistent with polygenic 
adaptation to several environmental variables. The candidate genes 
identified near significant SNPs are also plausibly related to known 
selective pressures in amphibians. Our results suggest that A. bar-
bouri may have poor potential to respond naturally to environmental 

change through in situ adaptation or a range shift. Indeed, our results 
suggest that a range contraction may be more likely. We arrive at this 
conclusion through a combination of: (1) evidence for local adapta-
tion; (2) evidence for strong range-wide genetic differentiation, and 
(3) a synthesis of prior results suggesting that A. barbouri conforms 
to the central-marginal hypothesis, which we discuss in tandem.

4.1  |  Tests for selection and additive 
polygenic scores

Approximately 7.0% of SNPs were found to have either significant 
associations with at least one environmental factor or significant 
genetic differentiation among populations, indicating that environ-
mental heterogeneity likely plays an important role in shaping spatial 
patterns of genomic variation across the range of A. barbouri.

Additive polygenic scores identify signatures of polygenic adap-
tation (Gagnaire & Gaggiotti, 2016), and we find a strong association 
of polygenic scores with annual precipitation (Figure 3A). This sug-
gests that A. barbouri populations may be locally adapted to precip-
itation through a polygenic architecture, although this pattern may 
also be explained by geography. Indeed, precipitation is extremely 
important for amphibian larval survival in general, particularly for 
A. barbouri that develop in small ephemeral streams (Petranka, 1998; 
Sih et al., 2000; Storfer & Sih, 1998).

The northern population has extremely low polygenic scores 
for mean annual temperature but extremely high polygenic scores 
for temperature seasonality, relative to the other three populations. 
The southern, eastern and western populations, taken together, still 
show a positive relationship with these two environmental vari-
ables. The strong differentiation between the north population and 
the other three populations may facilitate local adaptation (Garcia-
Ramos & Kirkpatrick, 1997; Lenormand, 2002), leading to adaptive 
fixed differences between the northern population and the other 
three populations, which are considerably less genetically differen-
tiated from one another. Indeed, the northern population showed 
evidence of local adaptation, with higher larval survival when reared 
in northern conditions than core conditions in a reciprocal transplant 
experiment (Micheletti & Storfer, 2020). Alternatively, it is possible 
that our GEA analyses may have by chance identified neutral loci 
exhibiting correlations with environmental factors driven largely by 
the differentiation of the northern population. Strong population 
structure and confounding between population structure and the 
environment likely also contribute to observed patterns of polygenic 
scores, as polygenic scores can also be explained by geography (i.e., 
latitude and longitude). Although GEAs account for population struc-
ture and our approach to polygenic scores involved the removal of 
SNPs found by only one test for selection, the influence of false pos-
itives may still be substantial (Selmoni et al., 2020), suggesting that 
future work should focus on validating our results (see Limitations 
and Future Directions).

In general, the identification of SNPs significantly associated with 
precipitation and temperature-related variables, as well as evidence 
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suggestive of polygenic adaptation, supports the importance of 
these factors as selective pressures on amphibian species. Indeed, 
amphibians are generally vulnerable to desiccation (e.g., Daszak 
et al., 2005; McMenamin et al., 2008), and drying of breeding habitat 
negatively impacts recruitment (McMenamin et al., 2008; Semlitsch 
& Wilbur, 1988). Other ambystomatids become more active during 
periods of elevated precipitation (e.g., Trenham, 2001), further sug-
gesting that traits related to desiccation resistance or avoidance 
could improve fitness in areas that are more water-limited.

4.2  |  Potential to respond to environmental change

Numerous studies point to species’ geographic distributions changing 
in response to climate change. For example, many species have begun 
to track environmental conditions toward the poles (Chen et al., 
2011; Hickling et al., 2006; Parmesan et al., 1999; Parmesan & Yohe, 
2003). However, this response is contingent upon species having 
dispersal capabilities sufficient to match the pace of environmental 
change (Schloss et al., 2012). Taxa with poor mobility, such as sala-
manders (Smith & Green, 2005), may have poor capacity to respond 
to environmental change through range shifts (Angert et al., 2011). 
Indeed, we show very strong genetic differentiation across the geo-
graphic range of A. barbouri, consistent with prior work (e.g., Storfer, 
1999), suggesting that migration rates are low. However, the single 
individual collected from the western locality that showed evidence 
for admixture with the central and southern localities suggests that 
relatively rare, long-distance dispersal may be possible. Additionally, 
the northern portion of the geographic range is separated from the 
majority of the range area by the Ohio River, a large river that pu-
tatively acts as a barrier to migration (Micheletti & Storfer, 2017). 
Resistance to gene flow also becomes more intense toward the range 
edges (Micheletti & Storfer, 2017), suggesting poor potential for dis-
persal beyond the current range. As such A. barbouri is not expected 
to track a climate-induced shift of suitable habitat northward.

Range-wide, A. barbouri largely conforms to the central-marginal 
hypothesis, with habitat suitability, genetic diversity, and effective 
population sizes decreasing along transects from the range core to 
the range periphery (Micheletti & Storfer, 2015). The present results 
support previous findings of lower genetic diversity at the extreme 
southern and northern range edges than at the range core, but the 
western collection locality appears to have highest genetic diversity 
of the four localities sampled in our study. However, edge popula-
tions studied previously do not universally have lower genetic diver-
sity than the core (Micheletti & Storfer, 2015), so the present results 
should not be construed as invalidating the general trends identified 
using substantially more sampling localities in previous research. 
Reduced genetic diversity may constrain adaptive potential (Gilpin 
& Soulé, 1986), preventing a species from colonizing new regions 
with environmental conditions differing from its current distribution 
(Sexton et al., 2009). Apparent poor dispersal and low genetic diver-
sity at the range periphery together suggest that the range of A. bar-
bouri may be unlikely to shift appreciably from its current expanse.

Although some populations of A. barbouri may be locally adapted 
to current environmental conditions (Micheletti & Storfer, 2020), 
the present evidence for strong genetic differentiation and prior ev-
idence in support of the central-marginal hypothesis suggest that 
edge populations may be unable to adapt in situ as the environment 
changes. Low genetic diversity at the range edges (Micheletti & 
Storfer, 2015) may not only constrain a range shift but also hinder 
in situ adaptation if variation at adaptive loci is limiting. Polygenic 
scores indicate that the northern population may be strongly locally 
adapted to relatively low annual precipitation, low mean annual tem-
perature, and high temperature seasonality. Indeed, all individuals 
sampled from this population have similar polygenic scores (either 
extremely high or low), indicating the near-absence of alleles pu-
tatively adaptive for alternative environmental conditions. To the 
extent that the polygenic scores may reflect the effects of selec-
tion, the northern population may therefore have a poor capacity 
to respond to changing environmental conditions through in situ 
allele frequency changes. Migration across the range may also be 
low enough that the spread of standing adaptive variants may be 
outpaced by environmental change. Together, potential strong local 
adaptation, low genetic diversity, and poor migration may contrib-
ute to evolutionary mismatch with the environment in future (e.g., 
Zimova et al., 2016), leading to low population fitness and declining 
population size in the northern range edge.

Previous studies showed that the southern range edge has the 
lowest habitat suitability (approximately 15–24%; Micheletti & 
Storfer, 2015). Larvae from this population also had poor overall 
survival regardless of rearing conditions in a reciprocal transplant 
experiment (Micheletti & Storfer, 2020). The elevated FIS esti-
mate for the southern population suggests inbreeding as a possi-
ble cause. Mean annual temperature is notably higher in this part 
of the range, and this variable is negatively associated with gene 
flow (Micheletti & Storfer, 2017), suggesting that warming associ-
ated with climate change may result in increasing isolation among 
populations at the southern range edge and enhanced genetic drift. 
Taken together, these data suggest maladaptation in this appar-
ent sink population, which may presage loss of the southern range 
edge. Potential strong local adaptation and genetic isolation in the 
north, as well as maladaptation in the south, suggest that a range 
contraction may be likely.

4.3  |  Candidate genes

The recovery of genes involved in development (e.g., AXIN1 and 
WNT7B) and circadian rhythm (U2AF1L4) may reflect variation in 
the timing of developmental events, such as metamorphosis. Tests 
for selection in other species have also recovered genes involved in 
the circadian rhythm (e.g., Dall’Ara et al., 2016; Geraldes et al., 2014). 
Indeed, regulation of developmental timing is essential for amphib-
ian species that undergo metamorphosis (Semlitsch et al., 1988; 
Wilbur & Collins, 1973), and for A. barbouri individuals that develop 
in ephemeral streams.
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The repeated identification of hypoxia-related genes associated 
with mean annual temperature but not elevation suggests that high 
temperatures toward the southern area of the range may impose 
selection on A. barbouri through the reduced availability of dissolved 
oxygen in bodies of water. Numerous genes that mapped near SNPs 
associated with mean annual temperature have been implicated in 
adaptation to hypoxia in other species. Research in other ambys-
tomatids has revealed a positive correlation between dissolved 
oxygen and hatching rate (Sacerdote & King, 2009). Further, time-
to-hatching and larval development of two ambystomatids were 
reduced in hypoxic conditions, with survival following hatching 
also decreasing for one species (Mills & Barnhart, 1999). While it is 
possible that another variable strongly correlated with mean annual 
temperature may be the underlying environmental driver for these 
results, it appears unlikely to be elevation, which has a correlation 
with mean annual temperature of only r  =  −0.52 across our four 
study sites (Table S3). That multiple genes identified here have also 
been identified in other studies of adaptation increases our confi-
dence that they are true positives while also providing evidence for 
common genetic mechanisms underlying evolutionary responses to 
environmental variation.

4.4  |  Limitations and future directions

Strong genetic differentiation among subpopulations and confound-
ing between population structure and environmental conditions may 
increase the false positive rates of various tests for selection (e.g., 
Frichot et al., 2015; Hoban et al., 2016; Lotterhos & Whitlock, 2015; 
Novembre & Di Rienzo, 2009; Rellstab et al., 2015). Small numbers 
of collection localities also limit power to detect genomic signatures 
of local adaptation and increase false discovery rate (Selmoni et al., 
2020). These circumstances are true for our study, and while our 
decision to calculate polygenic scores using only SNPs found to have 
significant signatures of selection in multiple tests may serve to limit 
the influence of false positives, more data are required to better 
disentangle selection and genetic drift. Given the limitations of our 
sampling scheme, future research should extend sampling to a larger 
number of locations across the distribution of A. barbouri.

It is also important to note that because our procedure for identi-
fying candidate genes near SNPs used a reference genome assembly 
of A. mexicanum, our set of candidate genes is sensitive to the level 
of structural conservation between the genomes of A. barbouri and 
A.  mexicanum. Knowledge of the extent of linkage disequilibrium 
along the A. mexicanum genome is also lacking, although the recom-
bination distance per cM is approximately 5 Mb (Smith et al., 2019). 
We suspect that recombination between each candidate SNP and 
variation in or near its corresponding candidate gene may be low, 
given that distances between them are all ≤5.82 Mb. Given these 
limitations, the candidate genes identified here should be acknowl-
edged with caution. The generation of additional salamander ref-
erence genomes will enable more confident identification of genes 
involved in adaptation to environmental heterogeneity. This will in 

turn facilitate management efforts aimed at conserving adaptive po-
tential in the numerous salamander species that are threatened by 
climate change, land development, and emerging infectious diseases 
(Blaustein et al., 2010; Collins & Storfer, 2003; Martel et al., 2013; 
Stuart et al., 2004).

Given that our results are derived from reduced-representation 
sequencing, we interrogated only a small fraction of the large ge-
nome of A.  barbouri. Thus, the putatively adaptive genomic varia-
tion identified here provides incomplete insight into the genomic 
architecture underlying local adaptation in this species (Lowry et al., 
2017). GEA and outlier tests are also biased toward detecting large-
effect loci, further compounding this limitation (Hoban et al., 2016). 
Future transcriptomic sequencing or targeted DNA sequencing 
(e.g., whole-exome sequencing) may help overcome the difficulties 
related to the large, repetitive genomes of salamanders and facili-
tate more complete characterization of adaptive genomic variation 
(Weisrock et al., 2018).

Additional research should pursue functional validation of can-
didate loci, which is generally lacking in population and landscape 
genomics studies (Li et al., 2017; Storfer et al., 2018). Future work 
could include reciprocal transplant experiments (sensu Micheletti & 
Storfer, 2020) using genotyped individuals to link genomic variation 
with phenotypic variation and fitness in different environments. 
Nevertheless, the present study provides an initial characterization 
of the genomic basis of adaptation across the geographic range of 
A. barbouri, as well as a number of hypotheses concerning the eco-
logical pressures driving adaptation.

4.5  |  Conservation management implications

A. barbouri is listed as near-threatened by the IUCN, owing to its 
limited geographic range, habitat alteration resulting from human 
land use, and climate change (Hammerson, 2004). Prior genetic 
work has provided a baseline understanding of neutral evolu-
tionary processes occurring across the range, including evidence 
for low genetic connectivity among subpopulations (Micheletti 
& Storfer, 2015, 2017, 2020; Storfer, 1999). Here, evidence for 
adaptive differences and strong genetic differentiation among 
subpopulations, as well as limited genetic diversity within some 
subpopulations of A.  barbouri suggests range shifts in response 
to climate change are unlikely. Consequently, our results could be 
used as preliminary data for the development of genotyping panels 
aimed at monitoring neutral genetic variation or a subset of adap-
tive variation, a method that has been suggested in relation to con-
servation of other species (e.g., Hohenlohe et al., 2019). Indeed, 
future management efforts could genotype individuals at neutral 
SNPs to identify those best suited for genetic rescue of genetically 
depauperate subpopulations, as well as candidate SNPs to identify 
those best suited for assisted migration to areas of varying envi-
ronmental conditions, especially as anthropogenic land use and 
climate change intensify (Hällfors et al., 2014; Vitt et al., 2010). 
Considering these management actions is especially pertinent 
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given that A. barbouri is an endemic species with a small geographic 
range; such species are expected to be disproportionately threat-
ened with extinction (Manne & Pimm, 2001; Urban, 2015).
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