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The odorant receptor genes, seven transmembrane receptor genes constituting the
vastest mammalian gene multifamily, are expressed monogenically and monoallelicaly
in each sensory neuron in the olfactory epithelium. This characteristic, often referred
to as the one neuron–one receptor rule, is driven by mostly uncharacterized molecular
dynamics, generally named odorant receptor gene choice. Much attention has been
paid by the scientific community to the identification of sequences regulating the
expression of odorant receptor genes within their loci, where related genes are usually
arranged in genomic clusters. A number of studies identified transcription factor binding
sites on odorant receptor promoter sequences. Similar binding sites were also found on
a number of enhancers that regulate in cis their transcription, but have been proposed
to form interchromosomal networks. Odorant receptor gene choice seems to occur via
the local removal of strongly repressive epigenetic markings, put in place during the
maturation of the sensory neuron on each odorant receptor locus. Here we review the
fast-changing state of art for the study of regulatory features for odorant receptor genes.

Keywords: allelic exclusion, element, enhancer, epigenetics, gene expression, odorant receptor gene choice,
promoter, TFBS

INTRODUCTION

Many animals rely strongly on olfaction in order to get information about their surroundings, look
for food, escape from predators, find a mate and communicate with each other. The transcriptional
regulation of odorant receptor genes – comprising in mice ∼ 1100 intact members (Buck and Axel,
1991; Niimura et al., 2014) – displays an almost unique feature: from the whole set, a single odorant
receptor gene is monoallelicaly expressed in a single sensory neuron. This singularity is driven
by mostly uncharacterized molecular dynamics, collectively termed odorant receptor gene choice,
which seem to occur via local removal of strongly repressive epigenetic marks put in place on each
odorant receptor locus during the maturation of the sensory neuron.

The scientific community has tried to identify sequences that regulate the expression of odorant
receptor genes within their loci, which normally contain groups of related genes tightly arranged in
genomic clusters (Sullivan et al., 1996; Niimura et al., 2014). Several studies identified transcription
factor binding sites (TFBSs) on odorant receptor promoter sequences. Similar binding sites were
also found on a number of enhancers located in proximity to odorant receptor genes. Those
enhancers regulate in cis their transcription, and seem to form interchromosomal networks.
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A solid amount of evidences shows that odorant receptors
are not only involved in odor detection (Buck and Axel, 1991),
but also in neuronal maturation (Lyons et al., 2013), axonal
sorting (Mombaerts et al., 1996; Wang et al., 1998; Vassalli
et al., 2002) and neuronal longevity (Santoro and Dulac, 2012).
However, their peculiar gene expression and how it is achieved
still represent a fundamental open question.

THE MOUSE OLFACTORY SYSTEM

In mouse the task of sensing a vast range of molecules is run by
the main and the accessory olfactory systems. The main olfactory
system includes the main olfactory epithelium (MOE), which
lines the turbinates in the posterior nasal cavity, and the main
olfactory bulb (MOB) in the brain. The MOE is a neurogenic
pseudostratified epithelium, which houses basal cells, supporting
cells, Bowman’s glands, and olfactory sensory neurons (OSNs);
these are responsible for the detection of odorants and other
ethologically important molecules. OSNs are bipolar neurons
with an apical dendrite ending in a knob from which specialized
cilia protrude into the mucus of the nasal cavity (Mendoza, 1993;
for detailed reviews see also Breer et al., 2006; Tirindelli et al.,
2009).

Primary transduction of odors takes place in the cilia,
where the chemosensory receptors, either odorant (ORs) or
trace amine-associated receptors (TAARs) are expressed (Buck
and Axel, 1991; Liberles and Buck, 2006). These are G
protein-coupled receptors (GPCRs) whose signals activate the
transduction cascade and influence epigenetic gene regulation.
ORs can be phylogenetically divided in two subfamilies: class
I, comprising ∼125 fish-like intact OR genes, and class II,
including ∼1000 intact OR genes specific for mammals (Niimura
et al., 2014). OSNs express monogenically and monoallelicaly
a single OR gene from the whole genomic repertoire (Ngai
et al., 1993a,b; Chess et al., 1994), a feature known as one
neuron–one receptor rule. However, as recently reported by Greer
et al. (2016), a subset of OSNs localized in the recesses of the
olfactory epithelium seems to escape this general rule: each
OSNs of the necklace subsystem expresses multiple MS4As genes,
coding for four-transmembrane chemoreceptors; through a yet
unknown signaling path, they are mainly involved in detection of
pheromones and others ethologically relevant ligands.

Axons from OSNs expressing the same OR gene, after crossing
the cribriform plate, bundle together converging on the same
location, referred to as a glomeruli, in a few stereotypic domains
of the MOB (Le Gros Clark and Turner Warwick, 1946; Ressler
et al., 1994; Vassar et al., 1994; Mombaerts et al., 1996). Axonal
wiring is a process in which the sensory receptor itself has a
fundamental role (Mombaerts et al., 1996; Wang et al., 1998;
Vassalli et al., 2002; Movahedi et al., 2016).

The accessory olfactory system includes the vomeronasal
organ of Jacobson and its projections to the accessory olfactory
bulb, located in a posterior dorsal region of the MOB (McCotter,
1912; Breer et al., 2006), and other olfactory compartments:
the septal organ of Masera, sited close to the nasal septum,
that sends axonal projections to a subset of glomeruli in the

MOB; the Grueneberg ganglion, in the anterodorsal region of
the nasal cavity, that sends projections to a subpopulation of
the necklace glomeruli in the MOB. Neurons found in septal
organ and Grueneberg ganglion epithelia are generally called
OSNs, although some of those, as well as the already mentioned
necklace OSNs, display some peculiarities (Fleischer and Breer,
2010; Greer et al., 2016).

The vomeronasal organ is a blind tubular structure located
at the base of the nasal septum and mainly deputed to
pheromone detection. It presents a non-sensory region and a
sensory pseudostratified epithelium hosting vomeronasal sensory
neurons (VSNs), basal stem cells, and supporting cells (Halpern,
1987; Døving and Trotier, 1998; Ishii and Mombaerts, 2008).
VSNs are bipolar neurons with a single dendrite ending in a
knob that exposes microvilli to the vomeronasal lumen. They
are divided in two main subpopulations distributed on an apical
and a basal layer and having as receptors members of two
different families of vomeronasal GPCRs. Apical VSNs coexpress
G-protein subunit Gαi2 and receptor genes of the family V1R,
which includes ∼150 intact genes (out of 300 genes) divided
in 12 clades (Dulac and Axel, 1995; Jia and Halpern, 1996).
Genes belonging to the same subfamily are organized in clusters
(Herrada and Dulac, 1997; Matsunami and Buck, 1997; Ryba
and Tirindelli, 1997; Rodriguez et al., 2002; Zhang et al., 2004)
and they have monogenic and monoallelic expression (Dulac and
Axel, 1995; Rodriguez et al., 1999; Roppolo et al., 2007). Basal
VSNs coexpress G-protein subunit Gαo and receptor genes of
the family V2R, which includes ∼120 intact genes (out of 280)
divided in the subfamilies A, B, and D, comprising most of the
intact V2Rs gene repertoire, and the subfamily C (seven genes).
V2R sensory neurons express a single, apparently stochastically
chosen, member of subfamily C plus one or more selected
member of subfamilies A, B, or D (Herrada and Dulac, 1997;
Matsunami and Buck, 1997; Ryba and Tirindelli, 1997; Martini
et al., 2001; Silvotti et al., 2007; Ishii and Mombaerts, 2011).
A subset of these neurons may also express non-classical major
histocompatibility complex (MHC) 1b H2-Mv genes (Ishii and
Mombaerts, 2008; Leinders-Zufall et al., 2009). Although most of
the regulatory features of V1R and V2R genes are still not well
known, Enomoto et al. (2011) reported that transcription factor
bcl11b has an important role in regulating the fate choice between
the V1R and V2R types of VSNs.

A small subset of VSNs, mostly in the apical neurons,
monogenically expresses genes coding for formyl peptide
receptors (FPRs), GPCRs that are mainly involved in microbial
and viral peptide detection (Rivière et al., 2009; Bufe et al., 2015).

GENOMIC ORGANIZATION OF
ODORANT RECEPTOR GENES AND
OLFACTORY CODING

Olfactory information is encoded by thousands OSNs, each of
which can bind different molecules with different affinity in a
combinatorial fashion (Nara et al., 2011; Jiang et al., 2015) that
amplifies the odorant discrimination possibilities of the already
huge OR repertoire.
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The OR gene family is spread across all genome: class I OR
genes are in a single cluster on chromosome 7; class II OR
genes are scattered on all chromosomes except the 18 and Y,
and arranged in clusters distributed in ∼ 50 loci, which have
a usual intergenic distance of 19–45 kb (Young et al., 2002;
Zhang et al., 2007; Clowney et al., 2012), and few more solitary
genes distant more than 1Mb upstream and downstream from
the start and end of their transcripts (Zhang and Firestein,
2002; Godfrey et al., 2004; Malnic et al., 2004; Degl’Innocenti
et al., 2016). OR genes are encoded by single exon ∼ 1 kb
long and present conserved amino acid motifs characteristic
of their family (Lane et al., 2001; Ibarra-Soria et al., 2014;
Kanageswaran et al., 2015; Saraiva et al., 2015). As said, the
single OR allele expressed in a single OSN determines also
its identity, and influence the OSN’s axonal wiring to specific
glomeruli in the bulb, resulting in a stereotyped sensory map that
depends from not yet known information provided by the OR.
Knowing how odorant receptor gene choice works is therefore
pivotal to understand also the logic behind the olfactory input
integration.

To explain OR gene choice, several evidences point towards
molecular mechanisms that lead to the random choice of only
one among several OR promoters, possibly through epigenetic
dynamics (Chess et al., 1994; Lomvardas et al., 2006; Clowney
et al., 2012). Instead, the possibility of gene rearrangements for
OR loci in the OSN lineage has been excluded, at least for the locus
of model OR gene M71. In fact, cloning a mouse from the nucleus
of an M71-expressing OSN resets OR gene choice in favor of
M71, and results in specimens with a normal OR gene expression
(Eggan et al., 2004; Li et al., 2004).

CIS-REGULATING SEQUENCES FOR
ODORANT RECEPTOR GENES

Odorant Receptor Gene Promoters
OR gene promoters are AT-rich sequences usually lacking a
TATA-box, although some do have one (Clowney et al., 2011;
Young et al., 2011; Plessy et al., 2012). When present, however,
their positions do not closely correlate with the transcription
start site of the gene. For many OR genes, initiation of
transcription may adhere to the so-called rule of genomic
contrast: mRNA polymerization would be caused not by specific
increase in AT content but by a sudden local variation of
it (cf. Clowney et al., 2011). OR promoters typically feature
TFBSs for homeodomain and for olfactory/early B transcription
factors (Wang et al., 1997; Vassalli et al., 2002; Young et al.,
2011; Plessy et al., 2012), whose presence was in some cases
confirmed in vivo (Rothman et al., 2005; Vassalli et al., 2011).
Along with them, other TFBSs were found on their sequences,
e.g., for MEF2A (Plessy et al., 2012). TFBSs are considered
major players in defining zonality of OR gene expression:
OSNs found within a given zone, i.e., MOE-subdomain with
typical transcriptome, choose stochastically their OR allele out
of a subset of the whole genomic repertoire. Non-chosen
OR promoters are epigenetically silenced by H3K9me3 and
H4K20me3 marks (Magklara et al., 2011). From functional

studies, minimal promoters appear to be quite short (∼300 bp;
Vassalli et al., 2011), and sequences of similar length have proven
to be capable to drive punctate, stochastic expression of OR
transgenes in the MOE (Vassalli et al., 2002, 2011; Rothman et al.,
2005).

Odorant Receptor Elements
Elements for OR genes are non-genic regulatory sequences
traditionally classified as enhancers, although their very nature
as facilitators of transcription is debated: it has been proposed
that elements differ from typical enhancers in the sense that they
control the probability of a given OR gene to be chosen, rather
than merely increasing the amount of transcript per cell for all
the genes they regulate (Khan et al., 2011; Vassalli et al., 2011).
Elements are invariably found within, or in proximity to, OR loci
(Khan et al., 2011; Markenscoff-Papadimitriou et al., 2014). Their
sequences contain, similarly to OR promoters, homeodomain
and olfactory/early B TFBSs, plus additional TFBSs like those
for Foxj2, Cdx, C/EBPgamma, Bptf (Markenscoff-Papadimitriou
et al., 2014). To date, a total of 14 enhancers are though to
regulate OR gene expression in the mouse, three of them being
robustly confirmed in vivo; these are called H, P, and Lipsi
(Nishizumi et al., 2007; Bozza et al., 2009; Khan et al., 2011;
Markenscoff-Papadimitriou et al., 2014). It was realized long ago
that elements might have been somehow involved in OR gene
choice (Serizawa et al., 2000, 2003; Lewcock and Reed, 2004;
Shykind et al., 2004), but no clear mechanism has been found
yet: elements regulate the expression of OR genes in their in cis
proximities, although Markenscoff-Papadimitriou et al. (2014)
has suggested they may possess in trans activity with high degree
of redundancy. Table 1 summarizes DNA regulatory features for
OR genes.

ODORANT RECEPTOR GENE CHOICE:
REPRESSIVE MECHANISMS

The organization of the nucleus in OSNs plays a role in the
regulation of OR gene expression. Instead of being at the
nuclear periphery, as in typical eukaryotic cells, constitutive
heterochromatin is mainly located in central nuclear region
(Solovei et al., 2009; Clowney et al., 2012; Armelin-Correa
et al., 2014a). Indeed, in the early differentiation steps of
OSNs, long before OR gene choice takes place, robust silencing
and packing occurs on OR loci. Cytogenetically OR gene
loci (and their enhancers) become aggregated in a small
number of nuclear locations including arrangements named
foci, tridimensional chromatin structures characterized by
the repressive epigenetic marks H3K9me3 and H4K20me3,
typical of constitutive pericentromeric and subtelomeric
chromatin (Magklara et al., 2011). These marks will
be removed later on from a single OR allele, ensuring
monogenic and monoallelic expression (Clowney et al.,
2012).

Not all OR gene loci are confined in foci: constitutive
heterochromatin is surrounded by more dynamic facultative
heterochromatin, and alleles of the same OR tend to reside on
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TABLE 1 | DNA regulatory features for odorant receptor genes.

Regulatory feature Location Reference

Enriched presence of 8-oxodG (oxidative
damage)a

Chosen OR allele Lyons et al., 2013.

Enrichment for DNase I hypersensitive
sites

H and P elements (also in OSNs not expressing an
OR gene found in cis with them), other elements

Markenscoff-Papadimitriou et al., 2014.

Hist2h2be (H2BE)
replication-independent histone variant

Position (e) among HeB-encoding genes, histone
cluster 2

Santoro and Dulac, 2012.

H3K27ac epigenetic marks H and P elements (also in OSNs not expressing an
OR gene found in cis with them), other elements

Markenscoff-Papadimitriou et al., 2014.

H3K27me3 epigenetic marks Silenced OR loci, element-flanking regions Magklara et al., 2011; Armelin-Correa et al., 2014a,b;
Markenscoff-Papadimitriou et al., 2014.

H3K4me1 epigenetic marks H and P elements (also in OSNs not expressing an
OR gene found in cis with them)

Colquitt et al., 2014; Markenscoff-Papadimitriou et al., 2014.

H3K4me3 epigenetic marks Chosen/euchromatic OR alleles Magklara et al., 2011; Clowney et al., 2012; Armelin-Correa
et al., 2014a; Tian et al., 2016.

H3K79me3 epigenetic marks Element-flanking regions Markenscoff-Papadimitriou et al., 2014.

H3K9me3 epigenetic marks Silenced OR loci Clowney et al., 2011; Magklara et al., 2011; Clowney et al.,
2012; Lyons et al., 2013; Armelin-Correa et al., 2014a.

H4K20me3 epigenetic marks Silenced OR loci Clowney et al., 2011; Magklara et al., 2011; Clowney et al.,
2012; Armelin-Correa et al., 2014a.

Homeodomain binding sites Elements Nishizumi et al., 2007; Bozza et al., 2009; Vassalli et al., 2011;
Markenscoff-Papadimitriou et al., 2014.

Homeodomain binding sites OR promoters Vassalli et al., 2002, 2011; Hoppe et al., 2003, 2006; Hirota and
Mombaerts, 2004; Rothman et al., 2005; Hirota et al., 2007;
Clowney et al., 2011; Young et al., 2011; Plessy et al., 2012;
Degl’Innocenti et al., 2016; Zhang et al., 2016.

Local variation in AT content associated
with transcription start site

OR promoters Clowney et al., 2011; Magklara et al., 2011.

O/E binding sites Elements Nishizumi et al., 2007; Bozza et al., 2009; Vassalli et al., 2011;
Markenscoff-Papadimitriou et al., 2014

O/E binding sites OR promoters Wang et al., 1997; Vassalli et al., 2002, 2011; Hoppe et al.,
2003, 2006; Hirota and Mombaerts, 2004; Rothman et al.,
2005; Michaloski et al., 2006; Clowney et al., 2011; Michaloski
et al., 2011; Young et al., 2011; Plessy et al., 2012.

Other transcription factor binding sites
(Atf5, Bptf, Cdx, C/EBPgamma, Foxj2)

Elements Markenscoff-Papadimitriou et al., 2014.

Other transcription factor binding sites
(MEF2A, TBP, and transcriptional
repressors resembling RP58)

(some) OR promoters Clowney et al., 2011; Michaloski et al., 2011; Young et al.,
2011; Plessy et al., 2012

Summary of regulatory features, either epigenetic or on primary sequences, found in genomic regions regulating OR gene expression with variable degree of evidence
(we report specific references for each of them). aWhile not properly a regulatory feature, enriched presence of 8-oxodG on chosen OR allele is reported for convenience.

different compartments, one within constitutive heterochromatin
and the other in facultative heterochromatin. In fact, as for
any monoallelicaly expressed gene family, homologous alleles
of OR genes are replicated asynchronously (Chess et al.,
1994). Consistent with these observations, immunofluorescence
staining of the olfactory epithelium for H3K27me3 – a mark
for facultative heterochromatin – indicates that it is present in
the nuclei of OSNs (Armelin-Correa et al., 2014a). However,
no clear evidence of H3K27me3 marks on OR genes has
been found yet (Magklara et al., 2011), although Armelin-
Correa et al. (2014a) report H3K27me3 markings being required
for asymmetric replication of OR genes in embryonic stem
cells.

Recent studies show that early developing OSNs can
weakly express multiple OR genes, while during subsequent
stages of development the expression of one single OR gene

overtakes and the other OR loci get silenced (Hanchate et al.,
2015; Saraiva et al., 2015; Tan et al., 2015; Scholz et al.,
2016). To explain this transition, Hanchate et al. (2015)
proposed a winner takes all-model where one of the initially
expressed OR genes becomes dominant, capturing limiting
factors required for high expression level. Alternatively, the
high expression of one OR gene would occur independently
of other earlier expressed genes. Hanchate et al. (2015) also
suggest a regional bias in OR gene choice: early co-expressed
OR genes, although sitting at multiple chromosomal locations,
are expressed in neurons located in the same region of
MOE.

Immature OSNs expressing an OR gene can still switch
to another OR gene in a loop-process that continues until a
functional OR gene is expressed and elicits a feedback signal that
stops the cycle and stabilizes the choice (Serizawa et al., 2003;
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Lewcock and Reed, 2004; Shykind et al., 2004). In post-mitotic
OSNs, a single OR gene – chosen in a stochastic, yet elusive
event – escapes foci and gets repositioned in a nearby nuclear
area (Clowney et al., 2012). According to Lyons et al. (2013)
a derepressor with limited availability, either in space or time,
would act together with the histone lysine demethylase 1 (Lsd1),
transiently expressed at the core time window of OR gene choice.
This event is associated with an epigenetic switch from H3K9me3
to H3K4me3 for the chosen OR allele, which perhaps interacts
with an interchromosomal complex of elements (Magklara et al.,
2011; Lyons et al., 2013; Markenscoff-Papadimitriou et al.,
2014). Currently, it is unclear whether H3K27 demethylases
may have a role in the process too (Armelin-Correa et al.,
2014a).

The expression of an intact OR gene activates the unfolded
protein response, which eventually leads to the production
of adenylate cyclase 3 (Adcy3); Adcy3 represses Lsd1 and
promotes neuronal maturation, locking OR gene choice. If the
OR gene is nonfunctional and fails to elicit Adcy3-mediated

feedback, Lsd1 retains its activity: it might re-heterochromatize
the opened locus, or alternatively it may open another one.
This process of choice (Figure 1) would continue until an
OR gene succeeds in being stably expressed (Dalton et al.,
2013).

Whereas developmental expression seems to be independent
from odorant receptor-induced neuronal activity (Hanchate
et al., 2015), Ferreira et al. (2014) have shown in zebrafish that
the βγ subunit of the olfactory G protein, released when an
OR binds its ligand, has a direct impact on the methylation
state of silenced OR loci, thus linking receptor activity to
the epigenetic regulation behind the single OR gene choice
mechanism.

More recently Zhang et al. (2016) have shown that
the homeodomain transcription factor Lhx2 influences OR
expression frequencies in immature and mature OSNs, and it
is necessary for driving OR expression but not for the OR
singularity, although they do not exclude an indirect role in OR
gene choice.

FIGURE 1 | Main steps of odorant receptor gene choice. Gray areas represent foci; black filament represents euchromatin; colored circles represent elements;
yellow box represents the single –“chosen” odorant receptor (OR) allele; blue boxes represent nearby OR genes with repressive marks. (A) Silencing: in the nucleus
of maturing olfactory sensory neuron (iOSN), OR gene loci are heterochromatized; one locus undergoes an epigenetic change. (B) De-repressing: local variation in
epigenetic state on OR heterochromatin (magnified shadowed red-stroked box) is initiated by an unknown derepressor, which cooperates with Lsd1 and perhaps
with H3K27 demethylases in the random opening of one OR allele only; an element in the same OR locus interacts with the OR gene via DNA-looping; nearby OR
genes keep their repressive marks. (C) Transcribing: on the euchromatic OR allele, an interchromosomal complex of elements drives robust expression of the gene.
(D) Eliciting feedback: if massive protein production within the endoplasmic reticulum is achieved, unfolded protein response is triggered; this causes
Adcy3-mediated block on Lsd1, resulting in cell inability to unpack silenced OR loci and to re-close the euchromatized allele (purple line); left, if the “chosen-OR” is a
pseudogene the process is repeated with a new OR-choice; right, if a functional OR protein is produced (green arrow), its activity leads to the release of the βγ

subunit of the G protein, which further prevents other OR alleles to escape foci (red line); therefore, in order to stabilize OR gene choice, the process induces odorant
sensory neuron (OSN) maturation.
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CONCLUDING REMARKS

Overall, OR genes seem to adopt a lock-and-key strategy for
expression; all loci are initially epigenetically silenced, then
a limiting factor randomly opens a single allele that later
on stabilizes its own transcription through complex feedback
mechanisms. Aside from the olfactory system, others examples
of way to increase cellular diversity among similar cell types
are provided by immune system (Hozumi and Tonegawa,
1976; Jaeger et al., 2013; Magklara and Lomvardas, 2013), and
protocadherins (Lefebvre et al., 2012). Several transcriptional
characteristics seem to recur in other clustered gene families, such
as globins and homeobox genes, which also display oligogenic
expression. However, whilst globins (Drescher and Künzer, 1954;
Huehns et al., 1964; Groudine et al., 1983) and homeobox (Gaunt
et al., 1988; Duboule and Dollé, 1989; Dressler and Gruss, 1989;
Graham et al., 1989) genes are serially expressed according
to their chromosomal location, OR gene family requires more
complex regulation. What are the molecular mechanisms that

lead to the OR gene expression? How is the OSN transition to a
single highly expressed OR gene regulated? How does the nuclear
architecture influence this process? What is the missing link
between OR gene expression and the mature OSN identity? These
are only few of the fundamental open questions still tickling the
olfaction field.
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