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Simple Summary: The characteristic metabolic hallmark of cancer cells is the massive catabolism
of glucose by glycolysis, even under aerobic conditions—the so-called Warburg effect. Although
energetically unfavorable, glycolysis provides “building blocks” to sustain the unlimited growth
of malignant cells. Aberrant glycolysis is also responsible for lactate accumulation and acidosis in
the tumor milieu, which fosters hypoxia and immunosuppression. One of the mechanisms used
by cancer cells to increase glycolytic flow is the negative regulation of the proteins that conform
the mitochondrial pyruvate carrier (MPC) complex, which transports pyruvate into the mitochon-
drial matrix to be metabolized in the tricarboxylic acid (TCA) cycle. Evidence suggests that MPC
downregulation in tumor cells impacts many aspects of tumorigenesis, including cancer cell-intrinsic
(proliferation, invasiveness, stemness, resistance to therapy) and -extrinsic (angiogenesis, anti-tumor
immune activity) properties. In many cancers, but not in all, MPC downregulation is associated with
poor survival. MPC regulation is therefore central to tackling glycolysis in tumors.

Abstract: Pyruvate is a key molecule in the metabolic fate of mammalian cells; it is the crossroads from
where metabolism proceeds either oxidatively or ends with the production of lactic acid. Pyruvate
metabolism is regulated by many enzymes that together control carbon flux. Mitochondrial pyruvate
carrier (MPC) is responsible for importing pyruvate from the cytosol to the mitochondrial matrix,
where it is oxidatively phosphorylated to produce adenosine triphosphate (ATP) and to generate
intermediates used in multiple biosynthetic pathways. MPC activity has an important role in glucose
homeostasis, and its alteration is associated with diabetes, heart failure, and neurodegeneration. In
cancer, however, controversy surrounds MPC function. In some cancers, MPC upregulation appears
to be associated with a poor prognosis. However, most transformed cells undergo a switch from
oxidative to glycolytic metabolism, the so-called Warburg effect, which, amongst other possibilities,
is induced by MPC malfunction or downregulation. Consequently, impaired MPC function might
induce tumors with strong proliferative, migratory, and invasive capabilities. Moreover, glycolytic
cancer cells secrete lactate, acidifying the microenvironment, which in turn induces angiogenesis,
immunosuppression, and the expansion of stromal cell populations supporting tumor growth. This
review examines the latest findings regarding the tumorigenic processes affected by MPC.

Keywords: MPC; SLC; mitochondrial matrix; glycolysis; Warburg effect; oxidative phosphoryla-
tion; lactate

1. Introduction

Cells monitor the availability of nutrients and oxygen in their microenvironment,
and make metabolic adjustments to help them better meet their energetic needs. This
ability to adapt to environmental factors is known as metabolic flexibility. Energetic
plasticity is necessary for the self-renewal of stem cells, as well as for their entering the
quiescent state, and for the differentiation of specific lineages. Stem cell differentiation is
characterized by dynamic changes in carbohydrate metabolism, with a shift from glycolysis
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to mitochondrial-driven oxidative phosphorylation (OXPHOS). The high energy demand
of rigorous physical activity also requires metabolic flexibility. In skeletal muscle, very
intense exercise lasting less than one minute promotes glycolysis, with phosphocreatine
and glycogen used as substrates to produce lactate and rapidly generated ATP—although
this induces metabolic acidosis [1–3]. Exercise lasting longer than one minute enables
OXPHOS as the major ATP-generating pathway [4]. Neoplastic cells, however, show
metabolic inflexibility [5]. Indeed, an altered energy metabolism is a hallmark of different
cancers [6].

The reprogramming of glucose metabolism from OXPHOS to aerobic glycolysis during
oncogenesis—so-called Warburg effect [7,8]—is well known. This is counterintuitive from
a bioenergetic point of view since glycolysis is far less effective than OXPHOS at generating
ATP. However, glycolysis provides biosynthetic intermediates that are required by cancer
cells for growth. In some cancers, these metabolic adaptations are irreversible due to
somatic mutations, deletions, duplications, etc. of the genes coding for metabolic enzymes
or their regulators. Many of these irreversible alterations directly affect the tricarboxylic
acid (TCA) cycle [9], leading to increased glycolytic flow. An example is seen in the
mutation of the isocitrate dehydrogenase (IDH1 and IDH2) genes in glioblastomas [10].
Theoretically, the majority of metabolic changes in cancer cells should be reversible, which
in turn should cause a loss of their oncogenic properties. Metabolism-directed cancer
therapies could target these reversible, and perhaps also irreversible changes, killing cancer
cells (which are metabolically inflexible) while allowing non-transformed (metabolically
flexible) cells to escape their effects.

Pyruvate is a critical compound in the above oncogenic switch since it is the crossroads
between OXPHOS and lactic acid fermentation; it therefore determines the metabolic fate
of glucose (Figure 1), and whether healthy or cancer-type metabolism is pursued. Many
of the proteins that participate in pyruvate metabolism are differentially regulated in
cancer and normal cells. To limit pyruvate oxidation, many tumors downregulate the
mitochondrial pyruvate carrier (MPC) complex which transports pyruvate from the cytosol
into the mitochondrial matrix. Consequently, the alteration of the MPC subunits, namely
MPC1 and MPC2, determines the proportion of pyruvate used in lactic acid production
(which occurs in the cytosol) or in OXPHOS. The downregulation of MPC1 and MPC2 has
been associated with a pro-tumorigenic phenotype and in many cancers a poor clinical
outcome [11]. In other tumors, however, it is thought that MPC upregulation might
contribute to oncogenic progression [12–15]. This review examines what is known about
MPC, its physiological function, and the consequences of positive and negative MPC
deregulation in the different stages of oncogenesis.
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Figure 1. Pyruvate transport and metabolism in the cell. Pyruvate is derived from glucose, lactate, malate, and amino acids
(aa). Under aerobic conditions, pyruvate enters the mitochondrion by crossing the outer membrane (OM) via porins, and
the inner membrane (IM) via the mitochondrial pyruvate carrier (MPC) complex. Once inside, it enters the tricarboxylic
acid (TCA) cycle to provide energy or intermediates for other biosynthetic reactions. Under hypoxic conditions, pyruvate is
reduced to lactate in the cytosol, which is then secreted. PEP: phosphoenolpyruvate; LDH: lactate dehydrogenase; MCT:
monocarboxylate transporters; α-KG: α-ketoglutarate; GDH: glutamate dehydrogenase.

2. Regulation of Pyruvate Levels in the Cytosol

Pyruvate is a key branch point for cellular metabolism since it bridges glycolysis and
mitochondrial OXPHOS. Analyses of the relationships between respiration and glycolysis
in neoplastic cells under aerobiosis revealed metabolic dysregulation that impairs pyruvate
oxidation in the mitochondria. One mechanism behind this metabolic scenario is the
negative regulation of mitochondrial pyruvate transporters, but the enzymes influencing
pyruvate availability in the cytosol may also have a direct impact on the mitochondrial
transport of this metabolite.

Pyruvate can be formed by the fermentation of glucose via glycolysis. In particular, it
appears via irreversible transphosphorylation between phosphoenolpyruvate (PEP) and
adenosine diphosphate, a reaction catalyzed by pyruvate kinase (PK) [16]. In mammals
there are four different isoforms of PK: liver-, red blood cell-, and muscle-type, which
exists as two isozymes (PKM1 and PKM2). The PKM1 isoform is expressed in terminally
differentiated tissues that require a large supply of ATP, which is consistent with its ability
to efficiently convert PEP to pyruvate. Unlike PKM1, which exists only as a tetramer, PKM2
forms tetramers (high affinity, low Michaelis constant for PEP) and dimers (low affinity,
high Michaelis constant for PEP) [17]. In tissues and cells with high anabolic profiles, such
as cancer cells, PKM2 is mainly found in the less active dimeric form. This causes the accu-
mulation of glycolytic intermediates and their diversion to other anabolic pathways, such
as the pentose phosphate pathway, which produces nucleotides involved in DNA replica-
tion, and the biosynthesis of serine, an allosteric activator of PKM2 (reviewed in [18,19]).
Dimeric PKM2 has other activities beyond its canonical enzymatic function, such as the
regulation of gene expression and protein kinase activity. Indeed, PKM2 phosphorylation
or acetylation in the presence of serine triggers its entry into the nucleus, inducing—both
directly and indirectly—the transactivation of hypoxia inducible factor-1α (HIF-1α) [20,21].
This in turn is a trans-activator of the PKM2 promoter [22]. Even the tetrameric PKM2
induces HIF-1α upregulation upon interaction with the dioxygenase/demethylase Jumonji
domain containing 5 protein [23]. Finally, nuclear PKM2 induces Thr11 phosphorylation of
histone H3, which enables the acetylation, inactivation, and removal of histone deacetylase
3 from the cyclin D1 and c-myc promoters, thus inducing their expression [24]. It is notable
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that both HIF-1α and c-myc induce the expression of a large number of glycolytic genes
upon binding to highly conserved carbohydrate response elements (reviewed in [19]),
boosting a feed-forward cycle that reinforces the glycolytic program in cancer cells.

Cytosolic pyruvate levels are also regulated by lactate dehydrogenase (LDH), which
catalyzes the reversible reduction of pyruvate into L-lactate with the concomitant oxidation
of NADH to NAD+. This NAD+ is needed for the continuous generation of ATP in cells that
rely on glycolysis, allowing their survival even under anaerobic conditions. LDH is actually
a family of at least six L-isomer-specific isoenzymes (LDH1-5 and LDH6/LDHX), coded
for by three different genes: LDHA (muscle, M), LDHB (heart, H), and LDHC (testis; T). A
fourth gene, LDHD, codes for a D-isomer-specific enzyme (reviewed in [25]). The products
of LDHA and LDHB can combine in five different homo- or heterotetrameric forms: LDH-1
(4H), LDH-2 (3H1M), LDH-3 (2H2M), LDH-4 (1H3M), and LDH-5 (4M). Despite their
strong structural similarity, LDH isoenzymes show significant differences in the charged
residues surrounding the active site [26]. This difference determines the enzyme-substrate
(pyruvate or L-lactate) binding affinity, and consequently the reaction catalyzed (LDH-A
isoenzymes convert pyruvate into L-lactate whereas LDH-B catalyzes the reverse reaction).
Thus, the profile of the LDH isoforms influences pyruvate degradation or synthesis.

In many aggressive cancers, the LDH-5 isoform is upregulated, probably as a conse-
quence of the transactivation of the LDHA promoter by transcription factors responsible
for the metabolic rewiring of their cells, such as c-myc [27] and HIF-1α [28]. This leads to
the rapid transformation of pyruvate into L-lactate, reducing the pool of cytosolic pyruvate
entering the mitochondria. Unlike that seen for LDHA, metastatic cancers usually show re-
duced LDHB expression due to promoter hypermethylation or altered glycolytic signaling;
low LDHB levels have been associated with poor prognosis in different cancers (reviewed
in [25]). Congruently, LDHB expression is a marker of response to neoadjuvant chemother-
apy in breast cancer [29]. The anti-tumor activity of LDHB expression is, however, not
universal. For example, strong LDHB upregulation is a predictor of poor survival in KRAS
lung tumors and triple negative breast cancers [30,31]. The role of LDHB in oncogenesis
seems therefore to be context-dependent.

3. Metabolism of Pyruvate in the Mitochondria

Under aerobic conditions, pyruvate is mostly transported into the mitochondrial ma-
trix, where it is metabolized by the enzymes of the TCA cycle, with the ensuing production
of ATP via the electron transport chain. In low oxygen environments, pyruvate stays in
the cytosol and (i) is converted to lactate, which is then exported from the cell (the most
efficient way to ensure NAD+ recycling), or (ii) is used in other biosynthetic reactions.

A limiting step of pyruvate metabolism is its transfer from the cytosol to the mitochon-
drion. Mitochondria have functionally different outer (OM) and inner (IM) membranes
that encapsulate the intermembrane space and the matrix, respectively. These compart-
ments are involved in different processes related to oxidative metabolism, biosynthetic
pathways, and signaling [32]. The exchange of metabolites across the above membranes
therefore needs to be regulated. The OM is permeable to low-molecular weight molecules
via voltage-dependent anion channels (VDAC) (or porins).

VDACs are 3 nm-diameter channels in the OM that allow the passage of molecules up
to 5 kDa in size [33] and reviewed in [34], depending on their charge. They are not “open
all hours” gates but are regulated by a voltage sensor. This voltage gating depends on
many factors including the availability of small molecules such as NADH, colloidal osmotic
pressure, the phosphorylation of the porins and their interactions with other proteins, etc.
Thus, the permeability of these channels depends on the competition or synergy between
multiple factors, broadly discussed in [35,36]. Their open or closed conformation has an
impact on mitochondrial metabolism and cell energetics. In the closed state, small ions—
but not most anionic metabolites, including ATP/ADP+Pi and pyruvate—can cross the OM
through them. When they are open, pyruvate travels from the cytosol to the intermembrane
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space through these channels, a finding confirmed in a study of a VDAC-deficient patient
who presented with poor pyruvate oxidation and ATP production rates [37].

In eukaryotic cells, VDACs may exist in three isoforms. VDAC1 and VDAC2 are
the major ones found in mammalian cells, including cancer cells (90% of all). VDAC3 is
abundant only in normal testis tissues, but is also found in about 10% of cancer cells [38].
Experimental evidence gathered using different combinations of VDAC isoform knock-
downs showed that VDACs regulate the maintenance of mitochondrial metabolism and
the intracellular flow of energy [39]. In HepG2 cancer cells, VDAC1/2/3 knockdown
reduces the potential of the mitochondrial membrane. This happens particularly with the
knockdown of VDAC3, and when the NAD(P)H/NAD(P)+ ratio, ATP and ADP levels, and
total adenine nucleotides, are reduced [40]. The latter authors also demonstrated that free
tubulin closes the VDACs, impairing conductance and reducing the activity of the ade-
nine nucleotide translocator (ANT), thus contributing to the suppression of mitochondrial
metabolism and low cytosolic ATP/ADP ratios in cancer cells [41].

VDAC was also shown to be associated with the OM enzyme hexokinase II [42,43],
which is overexpressed in tumor cells and required for tumor initiation and maintenance in
murine models of cancer. It binds to VDAC1, inducing its closure and blocking the opening
of the mitochondrial permeability transition pore (MPTP), which are pores that releases
the pro-apoptotic protein cytochrome C [44]. The defective opening of MPTP prevents key
events in mitochondria-mediated apoptosis. Hexokinase binding to VDAC also favors
glycolysis [42,43].

Other regulatory mechanisms also exist, such as post-translational modifications of
VDAC by protein kinase A (PKA) and glycogen synthase 3β (GSK3β) that reduce and
increase conductance, respectively [45,46].

The IM, in contrast, is an impermeable barrier that allows only the flow of certain
metabolites via specific transporters or mitochondrial carriers (MCs) [47]. The majority
of MCs belong to the canonical mitochondrial carrier family (solute carrier family 25,
SLC25) [48]. The transport of pyruvate across the impermeable IM, however, is undertaken
by the non-canonical MPC [49,50].

Once inside the mitochondrial matrix, pyruvate has several potential fates. It can be
used in the citric acid cycle to support ATP generation by OXPHOS, or be converted into
glycerol, fatty acids, or amino acids. Along with the availability of pyruvate transporters,
its fate is determined by the inhibition of the pyruvate dehydrogenase complex (PDC) by
pyruvate dehydrogenase kinases (PDK) or by pyruvate carboxylase (PC), the activity of
which correlates with gluconeogenesis [51]. PDC is a multi-enzyme complex located in the
mitochondrial matrix that catalyzes the NAD+- and CoA-dependent decarboxylation of
pyruvate to acetyl-CoA [52]. The resulting acetyl-CoA can continue being oxidized in the
TCA cycle for further ATP production, or be used for fatty acid and cholesterol synthesis.
Each complex is formed by multiple copies of three enzymes, E1, E2, and E3 and the e3
binding protein (e3BP) in octahedral or icosahedral symmetry, with E1 the rate-limiting
enzyme. PDCs are characterized by a mobile swinging domain that provides for high
substrate specificity. It also enhances reaction rates via the integration of the active sites of
all three enzymes (reviewed in [53]).

The inhibition of PDC influences pyruvate availability for NADP by recycling LDH,
by replenishing the TCA cycle with intermediates via the action of pyruvate carboxylase
(PC), and via the transamination of pyruvate by alanine aminotransferase. This invests
PDC regulators with a critical role in pyruvate metabolism, and thus cellular energy
production and anabolic metabolism, as collected in [54]. PDC activity is controlled at
different levels. At high concentrations, for example, small molecules such as ATP, NADH,
or acetyl-CoA are inhibitory [55]. It is also controlled at the transcriptional level. For
example, in the fasted state, transcripts for PDC enzymes are much fewer in number, while
in the well-fed state there are many more [56]. Finally, rapid regulation of the complex
is achieved thanks to kinases and phosphatases, which in turn are under allosteric and
transcriptional regulation. PDK isozymes phosphorylate specific serine residues in the E1



Cancers 2021, 13, 1488 6 of 22

alpha subunit of PDCs, inactivating them [57], allowing three carbon molecules to be used
for the production of glucose. Conversely, pyruvate dehydrogenase phosphatase (PDP)
reactivates PDC by dephosphorylation. Another post-translational modification of PDC
involves the acetylation of the E1 alpha subunit by acetyl-CoA acetyltransferase 1 (ACAT1)
(which can be reverted by SiRT3) [58,59]. Acetylation results in PDK recruitment and the
inhibition of PDC.

PDKs are upregulated in metabolic diseases such as obesity, diabetes, heart failure
and cancer [60–62]. Since PDC inhibition conserves substrates for cellular growth, the
idea of using specific PDK inhibitors has been studied for treating patients with these
problems. In breast cancer cells, the tumor suppressor p53 represses PDK2 transcription,
removing its inhibitory effect on PDC [63]. Hypoxia is also a major inducer of PDK1 via an
HIF-1α-dependent mechanism [64,65], which reinforces the glycolytic program induced by
this transcription factor. Dichloroacetate, which inhibits this PDK isoform, shifts cancer
cell metabolism towards OXPHOS; cancer cells thus-affected may enter ROS-dependent
apoptosis by p53 activation and HIF-1α inhibition, reducing tumor growth [66,67].

The mitochondrial matrix enzyme PC also acts on pyruvate, transforming it into
oxalacetate in an ATP-dependent manner—an anaplerotic reaction since the product is a
recycling intermediate of the TCA cycle. This replenishment is critical for the complete
oxidation of acetyl-CoA, as well as pathways that begin with intermediates of the cycle.
Active PC is a tetramer formed by two dimers, which in turn have three functional domains:
a biotin carboxylase (BC), a carboxyltransferase (CT), and a biotin carboxyl carrier protein
(BCCP) domain. Acetyl-CoA and ATP are positive allosteric effecters of the activity of the
enzyme after binding to the BC and CT domains of the protein. Glutamate, in contrast,
is a negative allosteric regulator [68,69]. PC is also subjected to transcriptional control at
the two promoters of the PC gene [70,71]. In glioblastoma cells, Cheng et al. showed that
PC is induced by interruptions in glutamine metabolism, establishing PC as sufficient for
glutamine-mediated anaplerosis in this tumor [61]. Other tumor types, such as lung, breast,
and liver tumors, show constitutive PC expression [62,72,73].

4. Structure of MPCs

Evidence suggesting the existence of specific pyruvate transporters in the IM dates
back to the 1970s [74,75]. In 1971, Papa et al. showed pyruvate transport to be associated
with proton or hydroxyl ion exchange [74]. Pyruvate can cross membranes passively if
its protonation state is favorable [76,77]. Under physiological conditions, the transport of
pyruvate requires a pH gradient from the cytosol to the mitochondria [74]. This renders it
very sensitive to changes in mitochondrial matrix pH. Using an inhibitor-stop technique,
Halestrap studied the kinetic variables that determine the KM and VMAX of MPC, and
the activation energy it requires [78]. It was later discovered that pyruvate transport
occurs primarily with the symport of a proton, but not with the exchange of a hydroxyl
ion [79]. However, MPC was not identified as an IM pyruvate transporter until 2012. Yeast
and Drosophila mutants lacking the Mpc1 gene were found to have defects in pyruvate
mitochondrial uptake, leading to reduced concentrations of acetyl-CoA and TCA [49], and
Mpc1 silencing in mammalian cells was seen to impair pyruvate oxidation. Independently,
it was reported that MPC mutant yeasts cultured in valine- and leucine–free media showed
reduced growth, reflecting a malfunction in the synthesis of lipoic acid, a derivative of
mitochondrial pyruvate [50].

MPC belongs to the SLC54 family of mitochondrial transporters, which are highly
conserved from yeasts to humans [80]. Initial blue native gel electrophoresis experiments
indicated that MPC complexes had a MW of 150 kDa or higher [15], suggesting that they
are multimers formed by various subunits. Recently, it has been possible to purify and
reconstitute functional MPC heterocomplexes from Saccharomyces cerevisiae, which showed
that the functional unit of the MPC complex is a heterodimer formed by different MPC
protomers in a 1:1 ratio [22]. This study also confirmed the pH-dependency of pyruvate
transport. In yeast, there are three MPC proteins, Mpc1, Mpc2, and Mpc3, which can form
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the heterodimers MPC1/2 and MPC1/3 [81]. MPC1/2 complexes are assembled under
fermentative conditions, as seen in rapidly proliferating cells, and MPC1/3 forms under
respiratory conditions [82,83]. It is notable, that MPC1/3 complexes transport pyruvate
more efficiently than do MPC1/2 heterodimers, which depend on the C-terminal region of
MPC3 for their activity [82]. These results strongly support the idea that the regulation of
pyruvate import into the mitochondrion is a major factor influencing the metabolic switch
associated with specific cell fates.

Unlike in yeasts, in mammalian cells, MPC complex activity seems not to be regulated
by changes in subunit composition. Human MPC is formed by heterodimers of two pro-
teins, MPC1 (SLC54A1, 12.3 kDa) and MPC2 (SLC54A2, 14.3 kDa), although in placental
mammals a paralog of MPC1—MPC1L (SLC54A3, 15.1 kDa)—also exists [84]. The deletion
of one MPC isoform results in the degradation of the other, leading to the complete failure
of MPC to transport pyruvate into the mitochondria [85]. It is worth noting, however, that
Nahgampalli et al. reported the functionality of human MPC2 oligomers on their own [86].
The presence of high order oligomers of MPC2 was observed during cryoelectron micro-
scope examinations of MPC2-EGFP chimeric protein reconstituted in styrene maleic acid
lipid particles, although the dominant size of the EGFP tag precluded any conclusion being
drawn on the structural organization of the MPC2 oligomer [87]. Using a yeast homologous
expression system, however, Tavoulari et al. concluded that MPC homodimers, although
they can form, are non-functional [81]. More recently, Lee et al. [85], using a baculovirus
expression system, confirmed the presence of homo- and heterotypic interactions between
human MPC protomers, but concluded that heterodimers are the more stable and efficient
at transporting pyruvate than monomers.

Based on homology analyses with other transmembrane proteins, it was suggested
that the MPC1 and MPC2 protomers have different topological features. MPC2 is predicted
to have three α-helical transmembrane domains (TM1-3), a short helix in the loop between
TM1 and TM2, an N-terminal amphipathic α-helix facing the mitochondrial matrix, and
a C-terminus orientated towards the intermembrane space [88]. In contrast, MPC1 has
only two TM domains, and the N- and C-terminus domains both face towards the ma-
trix [82]. Functional MPC1:MPC2 heterodimers thus consist of only five TM regions, not
the minimum of six TM regions needed to form a pore in other mitochondrial transporters.
MPCs are highly homologous to the bacterial SWEET (“sugars will eventually be exported
transporters”) transporters [80], which show a 3 + 1 + 3 transmembrane architecture. The
SWEET proteins can also be found as half-transporter homodimers (SemiSWEET) that con-
tain the transmembrane helix repeat [89]; this SemiSWEET transporter dimerizes to form
a complex with six TM domains [90]. Bioinformatic approaches for detecting pore-lining
regions in transmembrane proteins suggest that only the TM3 region in human MPC2 is
involved in pore formation. None of the TM helices of MPC1 is pore-facing, suggesting
that this MPC protomer does not contribute towards pore formation. If so, functional
MPC complexes must be oligomers rather than heterodimers, in which MPC1 would only
regulate the stability of MPC2 oligomers. A recent homology analysis indicated, however,
that MPC1 might have a topology similar to that of MPC2 and MPC3 [81], and consequently
MPC1:MPC2 heterodimers would have all six TM regions required for pore formation.

It is noteworthy that all human diseases associated with pyruvate transport defects are
linked to point mutations in MPC1, but not in MPC2. In the absence of MPC structural data,
it is tempting to speculate that structural alterations affecting MPC1 transporter function
caused by disease-inducing mutations might shed light on the functional link between
pyruvate transport and MPC membrane organization [80].

The biogenesis of MPC proteins occurs in the cytosol, and consequently they must be
transported to their destination in the inner mitochondrial membrane. This step is also far
from being fully understood, although recent findings in yeasts suggest that MPC proteins
are imported via the mitochondrial import pathway, which involves Tom70, small TIM
chaperones, and the TIM22 complex [91].
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5. Physiological Functions of MPCs

The transport of pyruvate into the mitochondrion is a critical event in cellular home-
ostasis: if it occurs, oxidative phosphorylation ensues, if not lactic fermentation occurs to
regenerate NAD+ (which is required in the glycolytic pathway). The genes involved in
pyruvate metabolism are therefore tightly controlled [51,92]. Although pyruvate can be pro-
duced in the cytosol by different routes, MPC is the only carrier that can transport it into the
mitochondrial matrix. MPC deficiency may only have a limited impact on cell metabolism,
however, since other metabolic pathways, e.g., glutaminolysis or the beta-oxidation of
fatty acids, can compensate in substrate provision. Indeed, a recent study showed that the
pharmacological inhibition of MPCs in brown adipocytes leads to an increase in energy
production via fatty acid oxidation [93]. The metabolic flexibility of normal tissues thus
renders the importance of MPC dependent on the physiological context.

Many MPC functions were discovered through the analysis of spontaneous muta-
tions. In humans, mutations affecting conserved Mpc1 amino acids were reported in
three families suffering from lactic acidosis, hyperpyruvatemia, and pyruvate oxidation
defects [49]. A child with a presumptive MPC deficiency died prematurely with hypotonia,
mild facial dysmorphia, periventricular cysts, marked metabolic acidosis, and hyperlac-
ticemia [94]. Homozygous Mpc1 and Mpc2 knockout (KO) mice die during embryonic life,
while heterozygous deletions are associated with no overt phenotype [95,96]. Homozygous
mice with N-terminal-truncated MPC2 have a milder disease phenotype characterized
by elevated blood lactate. Mpc1/2 silencing does not affect the viability of cultured an-
imal cells because they can compensate by using other substrates such as glutamine as
a TCA substrate [97]. All these phenotypes reveal the importance of tightly regulating
MPC activity.

Carbohydrate oxidation can differ between organs; MPC malfunction therefore affects
glucose homeostasis in an organ-dependent manner. In pancreatic β-cells, MPC is required
for glucose-stimulated insulin secretion (GSIS), which reduces blood glucose levels [95].
The loss of MPC in mice abrogates GSIS, resulting in hypoinsulinemia, impeding the
reduction of blood glucose and leading to glucose intolerance [98]. In contrast, MPC
inhibition in the liver is associated with glucose tolerance due to an insulin-sensitizing
effect (as if under high blood glucose conditions), increasing glucose uptake and reducing
gluconeogenesis [99]. MPC loss in muscle also increases glucose tolerance by diverting
cytosolic pyruvate into lactate, which reduces the amount of glucose oxidation that occurs,
but increases glucose uptake [100]. Many studies showed that high Mpc1/2 expression
induces gluconeogenesis, whereas low MPC expression leads to hypoglycemia [101]. This
explains why some MPC targeted treatments ameliorate glucose intolerance and insulin
resistance in patients with type II diabetes [102].

Pyruvate and MPCs are particularly important in the central nervous system (CNS) as
metabolism here relies mainly on glucose. In neurons, pyruvate is generated through
glycolysis and by the conversion of astrocyte-produced lactate through the so-called
astrocyte-neuron lactate shuttle [103,104]. Given the key function of MPCs in glucose
homeostasis and the co-morbidity between neurodegenerative and chronic metabolic dis-
eases, such as type II diabetes, it is not surprising that alterations in MPC activity were
implicated in neurodegeneration. Lactate and pyruvate accumulate in the cerebrospinal
fluid of patients with Alzheimer’s disease (AD) [105], and the flux of pyruvate via PDC
is reduced in AD brains, although PDH protein levels are not altered [106]. This suggests
that MPC activity is diminished in AD, with less pyruvate entering the mitochondrial
matrix to be transformed by PDH. Curiously, the administration of MPC inhibitors to
non-diabetic subjects with mild/moderate cognitive decline increases glucose uptake in
specific regions of the brain, suggesting a neuroprotective effect [107]. Lactate and pyruvate
are also increased in the blood of patients with Parkinson’s disease (PD) [108], another
neurodegenerative disease showing co-morbidity with type II diabetes. However, MPC
inhibition provides neuroprotection in PD by targeting the mTOR pathway [109], which
prevents neuroinflammation [110] and protects primary neurons from death caused by
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glutamate excitotoxicity [111]. MPC inhibition might indirectly affect Ca2+ entry into the
mitochondria, helping to explain these apparently paradoxical results in neurodegenerative
disease [112].

In the heart, 10–40% of all ATP generated comes from pyruvate oxidation, and ~65% of
it is used in contraction [113]. Any breakdown in pyruvate oxidation could therefore cause
contractile dysfunction. Mice with cardiac Mpc2 deletion have enlarged hearts and show a
loss of contractile function [114]. Under ischemic conditions, the reduction in oxygenation
of the myocardium causes a switch towards anaerobic metabolism, increasing lactate
levels [115]. Ischemia might therefore be ameliorated by enhancing MPC activity. Certainly,
PDC activation [116] and pyruvate administration during reperfusion [117] were shown
to improve cardiac function. During heart failure, pyruvate oxidation is impaired [118],
with a switch occurring to the fetal glycolytic program, a switch that might be promoted
by reduced MPC expression [119,120]. Further, MPC ablation is sufficient to induce cardiac
hypertrophy and heart failure, whereas MPC overexpression in cardiomyocytes attenuates
drug-induced hypertrophy [121]. Finally, the cardiomyopathy caused by doxorubicin
treatment in patients with lymphoma is associated with MPC inhibition [122].

6. MPC Activity in Cancer Cells

Cancer cell metabolism is essentially glycolytic and thus characterized by a high
glucose uptake and the production of lactate even in the presence of oxygen (aerobic
glycolysis). Indeed, the uptake of 18fluorodeoxyglucose is used to detect tumors via
positron emission tomography. The glycolytic switch associated with oncogenesis is a
consequence of the biosynthetic requirements imposed by uncontrolled cell growth and
proliferation [123]; simply put, glycolysis is the fastest way to transform nutrients into
structural intermediates needed for the de novo synthesis of nucleotides, amino acids, lipids,
and other biomolecules. Moreover, as well as the production of ATP, cancer cells require
large amounts of reducing equivalents such as NADPH [123], which are obtained from
NADP+ via the oxidation of carbon sources in pathways other than mitochondrial electron
transport. In addition, glycolysis transforms glucose to lactate rapidly, producing ATP
more quickly than via the more complete oxidation that occurs in mitochondria, providing
cancer cells with a selective advantage when competing with stromal cells for limited
resources [124].

Since it is common for cancer cells to switch from oxidative to glycolytic metabolism,
it may be that the control of pyruvate metabolism is involved in promoting the transformed
phenotype [125]. Cancer cells show many alterations in their expression of pyruvate me-
tabolizing enzymes, such as an upregulation of lactate dehydrogenase (LDH) [126] (which
transforms cytosolic pyruvate into lactate), in glucose transporters (explaining the increase
in glucose uptake), and in other proteins involved in glycolysis [123]. Moreover, PDC,
which performs the first step of mitochondrial pyruvate oxidation, is inactivated [64,65]. In
addition, the dimerization of pyruvate kinase M2 leads to its inhibition, preventing pyru-
vate formation in tumor cells [127]. The impairment of pyruvate synthesis and oxidation
is further reinforced by the loss of MPC activity, which dramatically boosts the Warburg
effect. However, MPC re-expression or overexpression increases pyruvate oxidation and
reduces glycolysis, switching metabolism towards OXPHOS [12,128–131]. Many oncogenic
processes related to tumor progression are shaped by MPC expression, which might explain
the poor prognosis associated with MPC downregulation seen in many types of cancer.

6.1. Regulation of MPC Expression and Its Association with Tumor Progression

The loss of pyruvate entering the mitochondria in tumor cells has long been asso-
ciated with malignancy [132,133], but ascribing this to alterations in the expression or
function of specific proteins has not been easy. Different authors now indicate that the
repression or deletion of Mpc1 and Mpc2 is common in cancer, explaining the correlation
between low MPC expression and poor survival seen in some cancers [11]. In many cases,
MPC downregulation occurs at the transcriptional level, either by the direct binding of



Cancers 2021, 13, 1488 10 of 22

transcriptional repressors, as in the chicken ovalbumin upstream promoter-transcription
factor II (COUP-TFII)-induced repression of MPC1 in prostate cancer [130], or through
epigenetic mechanisms such as those seen at work in pancreatic cancer involving histone
lysine demethylase 5A [134]. In kidney cell carcinoma, MPC1 downregulation is due to
the silencing of peroxisome proliferator-activated receptor-gamma co-activator (PGC)-1α,
which induces MPC1 transcription via an estrogen-related receptor alpha (ERRα)-mediated
mechanism [135]. PGC-1α also upregulates MPC1 in cholangiocarcinoma and breast cancer,
but in these cases ERRα-mediated MPC1 transcription seems to be required for tumor
progression [12–14]. The androgen receptor (AR) drives MPC2 transcription and increases
pyruvate oxidation and lipogenesis, which seems to be important for the progression of
castration-resistant AR+ prostate adenocarcinoma subtypes [15].

MPC activity can also be downregulated by post-transcriptional mechanisms. For
example, the acetylation of lysine residues 45 and 46 in MPC1, or of lysines 19 and 26
in MPC2, was associated with reduced MPC activity in cancer and in the diabetic heart,
respectively [136,137]. In hepatocellular carcinoma, the tumor suppressor p53 negatively
regulates MPC function through the upregulation of PUMA which, upon phosphorylation
by IκB kinase-β, disrupts MPC1/2 dimer formation [138].

6.1.1. Tumorigenicity

The increased glycolysis in cells with impaired MPC activity correlates positively with
tumorigenicity (Figure 2). Pancreatic and colorectal cancer cells showing the suppressed
expression of MPC adopt a spindle shape and downregulate CDH1, while upregulating
FN1 [139] (both markers of epithelial to mesenchymal transition [EMT]), a process associ-
ated with the development of migratory and invasive properties. This suggests that the
repression of MPC enhances EMT and the formation of metastases (Figure 2). In renal
clear-cell carcinoma, high MPC1 levels impair invasion in vitro and tumor growth in vivo,
and are associated with increased overall survival [140], while in prostate cancer, Mpc1 KO
cells show enhanced proliferative, migratory and invasive capacity [15,130,141]. Moreover,
Mpc1/2 expression is of prognostic value in this cancer type: in a study of 88 patients, it
correlated negatively with UICC stage and lymph node metastases, and positively with
overall survival [142]. In glioblastoma, data from The Cancer Genome Atlas and the Geno-
type Tissue Expression database revealed a negative correlation between Mpc1 expression
and overall survival and response to temozolomide [143]. This association was also ob-
served in esophageal squamous carcinoma, cholangiocarcinoma, lung adenocarcinoma,
and colorectal cancer [129,136,144,145].

6.1.2. Cancer Cell Stemness

The contribution of MPC suppression to tumorigenicity might be also related to the
gain of stemness capabilities (Figure 2). MPC loss induces the proliferation and expansion
of the stem cell compartment in intestinal organoids; in contrast, its overexpression in
Drosophila stops stem cell division [146]. In prostate and ovarian cancer, Mpc1 KO cells
show an increase in stemness markers [141]. Bensard et al. suggest that the impairment of
pyruvate import into the mitochondria promotes stemness and proliferation in a manner
similar to that elicited by the Wnt/β-catenin pathway, and that this scenario triggers
the earliest steps of tumor initiation [131]. In their study, these authors used two mouse
models of colon cancer: (i) tumor induction by azoxymethane and dextran sodium sulfate
(AOM-DSS) in drinking water, and (ii) the heterozygous loss of Apc in intestinal stem
cells (ApcLrig1 KO/+). In the AOM-DSS model, the deletion of Mpc1 in intestinal stem cells
(Mpc1Lrig1 KO) increased the frequency of adenoma formation and the grade of tumor
compared to that seen for Mpc1 WT animals, linking MPC loss with a greater susceptibility
to tumor initiation after oncogenic stimulation. In ApcLrig1 KO/+ mice, Mpc1 ablation had no
significant effect on tumor size, grade, or proliferation, suggesting that Apc mutant tumors
are already highly glycolytic and cannot be potentiated by Mpc1 loss. Moreover, MPC
overexpression completely blocks the oncogenic effects of Drosophila Apc-mutant clones, an
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indicator that metabolism is downstream of the oncogenic pathways induced by Apc loss
in intestinal stem cells. The transcriptional analysis of colorectal tumors of ApcLrig1 KO/+

and ApcLrig1 KO/+ Mpc1Lrig1 KO mice revealed no differences in their stemness profile,
indicating that once Apc is lost, Mpc1 ablation does not affect the stemness gene expression
program. Using the PANTHER and Database for Annotation, Visualization and Integrated
Discovery (DAVID) tools, these authors identified an inverse correlation between Mpc1
expression and the Wnt signaling pathway, which is in charge of maintaining stem cell
identity [147]. This is important since Apc is a repressor of the Wnt/β-catenin pathway in
human tumors [148].
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Figure 2. Overview of the impact of the Warburg effect caused by MPC loss, and the acidification of the tumor microenvi-
ronment (TME). Cancer cells undergo metabolic reprogramming from OXPHOS to aerobic glycolysis promoted by MPC
loss/downregulation. This leads to the massive production of lactate, which is secreted into the TME, reducing the pH.
These conditions promote the formation of new vasculature by vascular-endothelial growth factor (VEGF) signaling in
tumor endothelial cells, favoring the growth of cancer-associated fibroblasts (CAFs) by providing lactate as a substrate for
ATP production. They also affect different immune cell populations, causing immunosuppression.

6.1.3. Resistance to Therapy

MPC expression has been associated with the efficacy of some therapies (Figure 2). Cer-
tainly, MPC-deficient cells are more resistant to radio- and chemotherapy in vitro [129,139,141],
and it was reported that patients treated with temozolomide for glioblastoma showed poorer
survival when their tumors expressed low levels of MPC1 compared to patients with MPC1-
intact tumors [143]. Nevertheless, in certain circumstances, MPC inhibitors might be of
clinical use. For instance, MPC1 inhibitors trigger local reoxygenation that sensitizes tumor
xenografts to radiotherapy [128]. MPC inhibition activates glutamate dehydrogenase (GDH),
redirecting glutamine to feed the TCA cycle (Figure 1), making cancer cells more dependent
on glutamine metabolism. In this scenario the combination of MPC1 with GDH inhibitors
form a lethal combination that was very effective in preclinical models of liver cancer [149].
MPC downregulation also inhibits the IFNγ antitumor response in colon cancer cells, while
MPC overexpression promotes ROS production and increases IFNγ-induced apoptosis [150].
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6.2. Lactate and Acidification of the Tumor Microenvironment. Indirect Effects of
MPC Dysfunction

A consequence of the exacerbation of the Warburg effect in tumors is the massive
generation of lactic acid that must be extruded from cells to avoid intracellular acidification
and to maintain glycolytic flow. Tumor cells, moreover, need to maintain a relatively
alkaline intracellular pH for optimal metabolic enzyme activity (reviewed in [151]). As a
result, lactic acid concentration, which in normal tissues ranges from 1.5 to 3 mM, can be
as high as 40 mM in the TME, whereas the pH of tumors can be as low as 5.6 compared
to 7.4 for normal tissues [152]. The H+/Na+-exchanger NHE1 and the monocarboxylate
transporters (MCT) are key molecules in these respects. NHE1 is a reversible antiporter that
uses the Na+ gradient to extrude cytosolic H+ ions into the extracellular space. MCTs are
proton-linked plasma membrane reversible symporters; thus lactate/pyruvate transport
into or out of the cell is associated with the co-transport of protons (H+) [153]. The MCTs
form a family of four members (MCT1-4) belonging to the SLC16 gene family, with iso-
forms showing different affinity for pyruvate (reviewed in [151]). In tumors, the dominant
isoform is MCT-4, which is induced by HIF-1α and which shows a low Michaelis constant
for pyruvate, ensuring the preferential transport of glycolytically-produced lactate [154].
The inhibition of MCT seems to induce the acidification of the cytosol, whereas the forced
expression of MCT4 increases the intracellular pH and accelerates the glycolytic flux, sup-
porting the idea that MCTs have a pivotal role in glycolytically active tissues. Nonetheless,
since MCT-mediated lactate transport occurs simultaneously with H+, competition for
free protons between the MCT transporters and NHE1 (and other systems upregulated in
tumors in order to maintain an alkaline cytosol) might occur, which would compromise
the extrusion of lactic acid from the cell. This competition could be bypassed through
cooperative mechanisms between MCTs and other proton-producing enzymes operating
in tumor cells. Candidates include the intracellular and extracellular carbonic anhydrases.
These produce protons via the hydration of CO2, which enhances the transporter activity
of MCTs in both transformed and non-transformed cells [155,156]. Curiously, this cooper-
ativity occurs even with catalytically inactive carbonic anhydrase mutants [157]. Recent
evidence indicates that carbonic anhydrase might use parts of its intramolecular proton
pathway to function as an H+ antenna that gathers protons to the MCT transporters, thus
facilitating lactate transport [158].

The following sections examine the effect of lactate accumulation and TME acidifica-
tion on the function of endothelial, mesenchymal, and immune cells, and their implications
in tumor malignancy (Figure 2).

6.2.1. Induction of Aberrant Angiogenesis

Angiogenesis is a characteristic of tumor progression. It occurs because of the aberrant
expression of pro-angiogenic factors, such as vascular-endothelial growth factor (VEGF).
However, angiogenic tumors usually remain hypoxic since, despite the formation of new
blood vessels, the vascular network is dysfunctional [159]. Low oxygen tension in the
TME induces adaptive cellular responses driven by hypoxia-inducible transcription factors
(HIF-1 and HIF-2). These transcription factors are heterodimers formed from the HIF-α
and HIF-β subunits. Whereas HIF-β is constitutively expressed, the HIF-α isoforms are
regulated by the HIF prolyl hydroxylase domain proteins (PHD1–3), which label HIF-α
for proteasomal degradation under normoxia [160]. One of the genes upregulated by
hypoxia, particularly by HIF-1α-containing heterodimers, is that which codes for VEGF.
Thus, a vicious cycle forms in which hypoxia feed forwards abnormal angiogenesis [160].
Curiously, increasing the stability of the HIF-2α subunit leads to increased tumor perfusion
and reduced hypoxia [161,162].

The overproduction of lactate in glycolytic tumors is also involved in the abnormal-
ization of the tumor vasculature via the inhibition of PHD, which stabilizes HIF-1α and
increases VEGF levels in tumor endothelial cells (TECs) and other cells of the TME [163].
Lactate also induces TEC migration and tube formation via the inactivation of IκBα in
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TECs through the NFκB/IL-8 pathway [164], and it leads to the recruitment of vascular
progenitor cells and induces vascular morphogenesis in vivo [165]. Therefore, lactate is not
only a driver of tumor angiogenesis, it induces vasculogenesis in the tumor.

6.2.2. Lactate as Metabolic Fuel

The progression and clinical course of many cancer types rely on the interaction of
cancer cells with cancer-associated fibroblasts (CAFs) [166]. Lactate is a major regulator
of CAF activity, serving as a source of energy for the cells in the TME. It induces the
expression of MCT-1 and LDH-B in CAFs, leading to lactate uptake and its conversion to
pyruvate, covering their energetic demands [167]. CAFs are very abundant in the TME
and are supportive of cancer cells by enhancing proliferation and extracellular matrix
remodeling [168]. The lactate secreted by glycolytic tumor cells also serves as a substrate
for other tumor cells. Indeed, there is a process of lactic symbiosis in which tumor cells
under hypoxic conditions produce and secrete lactate, while other tumor cells under aerobic
conditions take up this lactate for OXPHOS and ATP production. This phenomenon has
been called the ‘reverse Warburg effect’. In three different tumor models, the impairment
of this lactate flux by MCT1 inhibition provokes the death of the oxidative cancer cells
through glucose starvation [169].

6.2.3. Lactate and Immunosuppression

Lactic acidosis has an immunosuppressive effect on the TME, impairing the immuno-
surveillance of immunogenic tumors. It is well-established that the activation of effector
T cells co-occurs with the metabolic switch from OXPHOS to glycolysis, in such a way
that the activated T cells start to produce lactate [170]. In tumor-infiltrating lymphocytes
(TILs), however, the large amounts of lactate in the TME hinder their secretion of lactate,
disturbing these cells’ metabolism, proliferation, lytic granule exocytosis, and cytokine
production [171]. In contrast to effector T cells, regulatory T cell (Tregs) metabolism relies
largely on OXPHOS [170]. The inhibition of glycolysis linked to high lactate levels in the
TME thus sustains the OXPHOS metabolic program of Treg cells, which is reinforced by
increased nicotinamide adenine dinucleotide oxidation. High lactate levels thus allow
Foxp3-mediated reprogramming to resist T cell proliferation in low glucose environments
and inhibit their function [172]. This is an advantage for tumors since Tregs are positively
correlated with tumorigenicity and poor prognosis by their maintaining peripheral immune
tolerance [173].

Lactic acid and acidosis can have a negative impact on the activity of anti-tumor
cells. It is well described that lactate concentrations over 20 mM cause apoptosis in
T lymphocytes, NK, and NKT cells [152]. NK cell cytolytic activity is also negatively
regulated by reducing their expression of activation receptor NKp46 and by inhibiting
the production of perforin and granzyme B [174]. Low pH (6.5) suppresses T-cell effector
function, including IL-2 and IFNγ production and T cell receptor activation. Interestingly,
proton pump inhibitors (e.g., esomeprazole, a specific inhibitor of H+/K+ ATPase) delay
tumor progression in mice in an immune-dependent manner by buffering the pH at the
tumor site [175]. Finally, lactic acid activates the IL-23/IL-17 pathway inducing Th17
differentiation and local inflammation, which can promote tumor progression [176].

Tumor infiltration by TILs is a major factor in the immune-mediated control of cancer
and response to therapy [162,177,178]. The blockade of LDH-A in a melanoma mouse
model was reported to improve the efficacy of anti-PD-1-based therapies [179]. This was
linked to high numbers of TILs and NK cells, suggesting that lactate is a negative regulator
of immune cell infiltration. However, lactate also accumulates at sites of chronic inflamma-
tion, such as the synovial membranes in patients with rheumatoid arthritis. High lactate
levels here inhibit CD4+ and CD8+ T motility via Slc5a12 and Slc16a1 transporters [180].
The latter authors also showed reduced T cell motility in vivo to be associated with the
impaired activation of glycolysis downstream of CXCR3, the receptor of the IFNγ-induced
chemokines CXCL9, CXCL10, and CXCL11, which play a major role in chemoattracting
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T cells to tumors [181]. Therefore, whereas lactate seems to impede T cell infiltration into
tumors, it seems to retain pathological T cells in autoimmunity. Whether lactate works
differentially in autoimmune and oncological disease has not been studied. However, it is
possible that lactate does not interfere directly with T cell infiltration into tumors but that it
causes a reduction in T cell numbers in the TME by inducing apoptosis. It is also possible
that lactate interferes with T cell function by affecting the density of immune suppressive
cells. Indeed, lactic acid signals skew macrophages towards the M2 phenotype by inducing
the expression of ARG1 [182], which supports tumor growth and inhibits antitumor T
cell responses [183]. Lactate can also induce M2 macrophage polarization in an indirect
manner by triggering ERK-STAT3 in breast cancer cells [184]. Lactate also blocks monocyte
differentiation into dendritic cells (DCs), hindering their antigen-presenting ability and
inhibiting their release of cytokines. It also promotes tolerogenic DCs that strongly express
IL-10, but only weakly express IL-12 [185]. Its effect in B lymphocytes is yet be explored,
but given the effect of acidification on antibody stability it might be expected to cause their
degradation or aggregation [186].

It is worth mentioning that the accumulation of acid lactic and H+ in the TME is
largely a consequence of the deficient perfusion of tumors [187]. It is remarkable that the
normalization of the tumor vasculature is usually associated with enhanced anti-tumor
responses and improved response to immunotherapy [188–190]. Whether this association
between improved vascular function and anti-tumor immunity is linked to a reduction in
lactic acidosis in the TME has not been explored.

7. Conclusions

Mitochondria are not only important for ATP generation, they also provide the cell
with signals that allow it to respond to changes in the environment. Mitochondrial malfunc-
tion is therefore a problem for cell metabolism and homeostasis. The compartmentalization
of reactions and molecules is crucial for mitochondrial function, separating the cytosol, the
intermembrane space, and the matrix. The OM is very permeable, but transport through
the IM is limited, requiring the use of specific carriers. MPC transports pyruvate from the
cytosol to the mitochondrial matrix. This is a limiting step in metabolism since pyruvate is
a crossroads where many biochemical pathways meet. The inhibition of pyruvate entry
adjusts circulating glucose, glutamine and glutamate utilization, the pyruvate-alanine shut-
tle, and fatty acid oxidation. Aberrant pyruvate metabolism is linked to diabetes, cancer,
and cardiovascular and neurodegenerative disease. Thus, the study of the pyruvate flux
from the cytosol to the mitochondria may help us better understand and design treatments
for these conditions. In many cancer types, MPC is transcriptionally and/or functionally
downregulated, which contributes to the glycolytic switch in tumors. It is not surprising,
therefore, that MPC expression is closely related to tumor onset and aggressiveness, and
to resistance to therapy. MPCs should therefore be studied as a biomarker of prognosis
and treatment efficacy, but also as a potential target for attacking tumors, either alone or in
combination with other agents.

Although the function of MPC in the TME has not been directly studied, in cancer cells
MPC downregulation or loss increases lactate production and secretion. The acidification
of the TME in this manner helps tumor progression by inducing angiogenesis and fostering
cell populations such as those of CAFs that support cancer cells. In addition, lactate causes
local immunosuppression in the TME by skewing the metabolism and the function of
anti-tumor effector cells, and by promoting the differentiation programs of suppressor
cells. As mitochondrial pyruvate import alters lactate accumulation and secretion, it is
reasonable to think that MPC fluctuations in cancer provoke similar changes. Further
study is needed on MPC and its role in cancer, including its importance in tumor-stroma
cell communication.
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