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Abstract: Stress in livestock reduces productivity and is a welfare concern. At a physiological level,
stress is associated with the activation of inflammatory responses and increased levels of harmful
reactive oxygen species. Biomarkers that are indicative of stress could facilitate the identification
of more stress-resilient animals. We examined twenty-one metabolic, immune response, and liver
function biomarkers that have been associated with stress in 416 Italian Simmental and 436 Italian
Holstein cows which were genotyped for 150K SNPs. Single-SNP and haplotype-based genome-wide
association studies were carried out to assess whether the variation in the levels in these biomarkers
is under genetic control and to identify the genomic loci involved. Significant associations were
found for the plasma levels of ceruloplasmin (Bos taurus chromosome 1—BTA1), paraoxonase (BTA4)
and γ-glutamyl transferase (BTA17) in the individual breed analysis that coincided with the position
of the genes coding for these proteins, suggesting that their expression is under cis-regulation. A
meta-analysis of both breeds identified additional significant associations with paraoxonase on BTA
16 and 26. Finding genetic associations with variations in the levels of these biomarkers suggests
that the selection for high or low levels of expression could be achieved rapidly. Whether the
level of expression of the biomarkers correlates with the response to stressful situations has yet to
be determined.

Keywords: stress; cattle; biomarkers; genetics; candidate loci

1. Introduction

The intensification of animal production systems has imposed a wide range of stres-
sors on animals, including heat and metabolic stress, which are likely to increase as a result
of climate change [1]. Routine management practices such as diet changes, vaccination and
group rearrangement, in addition to normal physiological events, including calving, lactat-
ing and weaning, place animals under stress, particularly high-producing dairy cows [2,3].
The consequences of stress include a decrease in immune competence, with the potential
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for the increased occurrence of infectious diseases [4,5], and negative impacts on both
production and reproductive performance [2,3,6–10]. Improved husbandry practices will
reduce stress, but stress is inevitably associated with some aspects of livestock management.
Interestingly, there are differences between individuals in the effects of stress on health [11]
and behaviour. Some individuals are more prone to developing stress-related disorders
than others who are insensitive or display a greater resilience to various stressors [12,13].
Studies comparing strains of mice have shown that differences in the response to acute and
chronic stress has a genetic component [14]. If this could be shown for livestock, it would
be possible to select animals that are genetically more likely to quickly adapt to, or recover
from, stressful situations. It is essential to breed animals with good stress resilience for
ethically acceptable and sustainable food production [15,16].

Responses to stress are highly complex and cannot easily be measured; therefore,
identifying biological processes that act as proxy traits and finding quantifiable biomarkers
for stress will accelerate the scientific understanding of stress responses and facilitate
the selection for more resilient animals [17–19]. Stress results in the activation of the
sympathetic nervous system (SNS) and the hypothalamic–pituitary–adrenal (HPA) axis,
which triggers the release of catecholamines such as epinephrine, norepinephrine and
glucocorticoids. The glucocorticoid cortisol has been used as a stress biomarker that is
measurable in blood, milk and hair. Chronic stress impacts the immune system, increasing
disease susceptibility and activating inflammatory responses [20–24]. Inflammation leads
to changes in the serum concentrations of acute-phase proteins (APP) that are produced
by the liver, and increases the production of reactive oxygen species (ROS), exposing cells
to oxidative stress [25–27]. Dairy cows under heat stress, for example, are susceptible to
oxidative stress around calving [28]. The serum concentration of some acute-phase proteins,
such as haptoglobin, ceruloplasmin, serum amyloid A and globulins, increase in response
to stress, while others including albumin, paraoxonase and transferrin decrease [29–31].
Acute-phase proteins can therefore be used as biomarkers of inflammation and oxidative
stress associated with animal health and poor welfare [25].

In this study, we tested biomarkers related to metabolism, inflammation and liver
function in the blood, milk and hair samples of lactating cows as genetic proxies for the
stress response in two cattle breeds (Italian Holstein and Italian Simmental), which are
characterised by different production performance, immune-metabolic status, selective
breeding histories and genetic backgrounds [32–34]. Single-SNP and haplotype-based
Genome-Wide Association Studies (GWAS) were run in parallel and identified SNPs that
were significantly associated with the level of ceruloplasmin (CP), paraoxonase (PON)
and γ-glutamyl transferase (GGT) measured in plasma. Whole genome sequences of 1059
Holstein and 156 Simmental cattle were searched to identify candidate variants controlling
the variation in expression of these proteins.

2. Materials and Methods
2.1. Ethic Statement

All experimental procedures and the care of animals complied with the Italian legis-
lation on animal ethics (DL n.116, 27/1/1992) and adhered to the bioethical rules of the
University of Udine. Ethical approval for this study was given by the qualified veterinar-
ian responsible for animal welfare of the Department of Agricultural and Environmental
Science of the University of Udine.

2.2. Data and Sample Collection

Blood, milk and hair samples were collected from 500 Italian Simmental (IS) and
451 Italian Holstein (IH) cows reared on 10 commercial farms in Udine province (North
Eastern Italy). The animals sampled had no clinical symptoms. Sampling was organised
on the day of the official milk recording. A 50 mL sample of milk was collected from
each cow during the morning milking into a tube containing bronopol (Microtabs 11,
Nelson-Jameson, Marshfield, WI, USA) preservative, and on the same day, hair samples



Genes 2021, 12, 534 3 of 18

were collected and stored in a paper envelope, both for the measurement of biomarkers, as
described below. At the same time, blood samples were collected from the coccygeal vein
during the morning milking before feeding, into two 10 mL vacutainers, one containing
EDTA, for DNA extraction, and the second containing Li-heparin, for haematochemical
profiling, as anticoagulants. Li-heparin samples were kept at 6–8 ◦C for no more than
2 hours until centrifugation at 3000 RPM for 15 min; then, plasma was collected and
frozen (−80 ◦C) until its analysis. The local Farmer and Breeder Association [35] provided
information on the animals, specifically days in milk (DIM), parity, milk yield on the day
of sampling, and on management practices, including housing, ration composition, and
reproductive parameters.

2.3. Blood, Milk and Hair Assays

Plasma was assessed for biomarkers associated with metabolism (glucose, cholesterol,
β-hydroxy-butyrate (BHB), nonesterified-fatty-acids (NEFA), creatinine and urea), innate
immune response (haptoglobin, ceruloplasmin and zinc) and liver function (aspartate
transaminase (AST/GOT), γ-glutamyl-transferase (GGT), total bilirubin, albumin, globulin,
total protein and paraoxonase). Blood assays were performed as previously described [36]
using the Instrumentation Laboratory Spa Tests (Werfen Co., Milan, Italy) on an ILAB
650 clinical auto-analyser (Instrumentation Laboratory, Lexington, MA, USA).

Milk samples were analysed for protein, fat, lactose, urea and somatic cell count (SCC)
using a FT-NIR FOSS 6000 (FOSS Analytics, Hilleroed, Denmark). BHB was analysed in
milk using the same test as for plasma. Cortisol, a biomarker of chronic stress, was assayed
in milk and in hair, both following the procedure described by Sgorlon et al. [37].

2.4. Analysis of Phenotypes

The distribution of phenotypic data was tested for normality using a Shapiro–Wilk
test. Non-normal phenotypes were adjusted by either the truncation of outliers (±3 SD
and/or ±1.5 Q1Q3 values) or square-root transformation. The effect of factors potentially
affecting phenotypic data was assessed by the analysis of variance (ANOVA) implemented
in R [38], and significant factors (farm, DIM, Body Condition Score (BCS), SCC and milk
yield) were included as fixed effects in the GWAS model. Animals with somatic cell counts
(SCC) ≥500,000 were considered to have subclinical mastitis and were removed from
the dataset.

2.5. Genotyping and Quality Controls

Genomic DNA was isolated from whole blood using the GenElute Mammalian Ge-
nomic DNA Miniprep Kit (Sigma-Aldrich, Carlscad, CA, USA). A total of 951 cows were
genotyped: 152 IS cows were genotyped with the BovineHD Genotyping Beadchip (Illu-
mina, San Diego, CA, USA), containing 777,000 SNPs, and 348 IS and 451 IH cows were
genotyped with the GeneSeek GGP Bovine 150K array (Neogene, Lincoln, NE, USA),
containing 138,892 SNPs. SNP positions were updated to the most recent bovine reference
sequence, ARS-UCD1.2 [39]. SNP markers with more than 10% of missing data, with a
minor allele frequency (MAF) less than 1%, and with duplicate physical positions or that
were not on autosomes were removed. Animals with more than 10% of missing data were
also removed. The quality control was performed using Plink v1.9 [40,41].

To create a uniform set of SNP markers across individuals and breeds, the SNPs in
common between the two arrays were extracted, and those present in the 150K array
and absent in the HD array were imputed using BEAGLE v4.0 [42,43]. Imputation er-
rors were identified by allelic correlation analysis (r2) calculated in BEAGLE. Imputed
SNP markers showing an r2 lower than 0.75 were excluded from further analyses. After
imputation, genotypes were quality-checked. Individuals with extremely low or high
observed heterozygosities (ObsHet, average ± 4 SD; lower than 0.3199 or greater than
0.4414) or admixed (i.e. more than 20% of another genetic component, evaluated at K2
from Admixture software v1.3) [44]) were excluded.
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Finally, SNPs with MAFs lower than 5% or Hardy–Weinberg equilibrium (HWE)
p-values lower than 10−6 were removed (Supplementary Table S1). After this final fil-
ter, the dataset consisted of 350 Italian Simmental cows genotyped at 119,858 SNPs and
343 Italian Holstein cows genotyped at 121,432 SNPs.

2.6. Single-SNP Genome-Wide Association Study

The GWAS on all twenty-one plasma, hair and milk biomarkers, described in the
Materials and Methods, were performed in GCTA v1.93.0 using the leave-one-chromosome-
out (LOCO) procedure [45,46]. The regression model used for estimating the SNP marker-
trait association was:

Y = µ+ Xb + Sa + Zu + ε (1)

where Y is the vector of trait values; µ is the overall mean; b is the vector of fixed effects; a
is the fixed effect of the SNP genotype; u and ε are vectors of random additive polygenic
effects and random residuals, respectively; u~N(0, Aσ2

a) and ε~N(0, Iσ2
ε), where A is

the additive genetic relationship matrix, I is an identity matrix, and σ2
a and σ2

ε are the
additive genetic and residual error variance, respectively. X, S and Z are the related
incidence matrices. The fixed effects included were: farm, the effect of farm; parity, the
effect of the number of calvings (three levels: 1, 2 and ≥3); BCS, the fixed effect of body
condition score; SCC, the covariate effect of somatic cell count, expressed as a logarithm
in base 10; DIM, the covariate describing the effect of days in milk; yield, the covariate
effect of milk yield. Associations were considered significant if the p-value was higher than
Bonferroni genome-wide significant thresholds at 0.05 (from 4.28 × 10−7 to 4.41 × 10−7,
based on the number of SNP markers used in the analyses). For both breeds, the suggestive
p-value threshold was set at 10−5.

Heritability was calculated as the proportion of phenotypic variance explained by all
SNPs. First, the restricted maximum likelihood estimation (REML) algorithm was used to
estimate the variance components. Then, heritability was estimated from the ratio between
additive genetic variance and phenotypic variance (VG/VP) using the GCTA suite [46].
The proportion of phenotypic variance explained (PVE) by a given SNP or haplotype was
calculated following the method described by Shim et al., 2015 [47].

2.7. Haplotype Genome-Wide Association Study

Haplotypes were calculated and then used as if they were multiallelic genetic markers
in a haplotype-based regression GWAS approach. Eagle v2.4.1 [48] was used to phase
the data, and haplotypes were constructed with GHap v2.0 [49,50] using overlapping
segments of four consecutive SNP markers (sliding windows moving one SNP at a time).
The window size was selected based on the average inter-marker distance, which was equal
to 21 kbp, and based on the calculated linkage disequilibrium, which extends up to 80 kbp
in IH and 60 kbp in IS. Animals were scored 0, 1 or 2 depending on the number of copies
of each haplotype allele (HapAllele) they possessed. HapAlleles were used as genetic
markers in a GWAS using their allele dose. Before running the GWAS, HapAlleles were
filtered, removing those with MAFs lower than 5% or Hardy–Weinberg equilibrium (HWE)
p-values lower than 10−6. The same model and software (GCTA) used in the single-SNP
GWAS were used in the haplotype-based GWAS. Associations were considered significant
if the p-value was higher than Bonferroni genome-wide significance thresholds at 0.05
(from 9.16 × 10−8 to 9.34 × 10−8, based on the number of haplotypes used in the analyses).
For both breeds, the suggestive p-value threshold was set at 10−5.

2.8. Genome-Wide Association Meta-Analysis

A meta-analysis combining the data from both breeds was run using the METAL
software [51], based on the approach described by Stouffer et al. [52]. First, the direction of
the effect and the p-value observed for all SNPs in the analysis of each breed were converted
into a signed Z-score. Then, each signed Z-score was weighted by the square-root of the
sample size of the two breeds before being summed. The overall Z-score was reconverted
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into p-values and thresholds were set at a nominal value of 0.05 following the Bonferroni
correction for the number of SNP markers (4.71 × 10−7). The suggestive p-value threshold
was set at 10−5, as for single-breed analyses.

2.9. Analysis of Candidate for Putative Causative Variants

Variants within 1 Mbp flanking the most significant SNPs in the single-SNP GWAS
were identified using the 1059 Holstein and 156 Simmental genome sequences available
from the “1000 bull genome” Run 8 database [53]. Variants in high linkage disequilibrium
(LD) (r2 > 0.3) with the SNP with the lowest GWAS p-value [54] were analysed for the
impact on protein structure and function using the Ensembl Variant Effect Predictor (VEP)
suite [55]. The effect of non-synonymous variants by the SIFT algorithm [56].

The on-line Lasagna-search 2.0 tool [57] was used to identify the transcription factor
binding site (TFBS) in the 2000 bp upstream of transcription initiation sites of CP, GGT1,
GGT5 and PON1. Variants extracted from the 1000 bull genome RUN 8 dataset and
intersecting TFBS were analysed for LD with the most significant SNPs identified in
the GWAS.

3. Results
3.1. Blood Assays and Outlier Analyses

A total of 78 IH and 63 IS had SCCs higher than 500,000, most likely due to subclinical
mastitis, and were therefore excluded from the genomic analyses. Blood metabolic param-
eters recorded in all other animals were within a normal range of physiological values
(Table 1) [30,58], and veterinary inspection did not identify any of these cows that had
clinical symptoms or any signs of disease.

3.2. Single-SNP GWAS Results

The final SNP dataset comprised 343 IH individuals genotyped at 121,432 SNPs,
and 350 IS cows genotyped at 119,858 SNP. The dataset used for phasing, to identify
haplotypes for the GWAS, comprised 116,904 SNP for IH that identified 872,520 haplo-
type alleles (HapAlleles) in 120,913 haplotype blocks (HaploBlocks), and 113,592 SNPs
for IS that identified 961,249 HapAlleles in 117,452 HaploBlocks. Both single-SNP and
haplotype GWAS analyses identified genome-wide significant associations for only three
phenotypes: GGT, CP and PON (Supplementary Tables S2 and S3). The heritabilities of
these biomarkers range from 0.06 (s.e. 0.14) for CP in IH to 0.69 (s.e. 0.13) for PON in IS
(Supplementary Table S1).

3.2.1. Ceruloplasmin (CP)

The single-SNP analysis identified a significant SNP (BTA-49362-no-rs) associated with
CP in IH at 118,970 kb (Figure 1), within the CP gene (118,956,369–119,016,682 bp) on BTA1.
In the same region, the haplotype analysis detected haplotypes reaching the genome-wide
suggestive threshold (Supplementary Figure S1, Supplementary Tables S2 and S3). For IS,
a single significant SNP was detected on BTA1 at 119,190 kb in the 3′ region of CP. Three
significant HapAlleles were found in the interval 118,900–119,220 kb. The two most significant
HapAlleles included the CP gene (see Figure 1).
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Table 1. Descriptive statistics for phenotypes.

Phenotype Type
IH IS

n Mean (SD) Range n Mean (SD) Range

Body Condition Score Animal condition 335 2.4 (0.39) 1.05–3.75 307 3 (0.47) 1.75–4

Days in milk (DIM) Animal condition 335 167.38 (61.82) 36–283 307 154.51 (79.03) 15–404

Somatic Cell Count Mammary health 335 4.85 (0.42) 3.48–5.68 307 4.76 (0.47) 3.6–5.7

Milk yield Mammary metabolism 335 37.05 (9.22) 11.9–62.5 306 26.76 (6.49) 11.2–48.9

Lactations Animal condition 335 1.99 (1.3) 01-lug 307 2.56 (1.62) 01-set

Casein Milk composition/ 335 2.5 (0.21) 1.94–3.15 306 2.73 (0.25) 1.98–3.47

Fat (milk) Milk composition/Mammary metabolism 335 3.57 (0.65) 1.78–5.99 306 3.75 (0.65) 1.94–7.53

Protein (milk) Milk composition/Mammary metabolism 335 3.16 (0.28) 2.43–4.03 307 3.48 (0.34) 2.59–4.53

Blood biomarker Type
IH IS

n Mean (SD) Range n Mean (SD) Range

Albumin Liver function 331 37.2 (3.21) 17.25–47.44 297 37.51 (1.98) 31.59–43.2

Total bilirubin Liver function 332 0.7 (0.56) 0.02–4.61 297 1.14 (0.75) 0.03–4.29

Total protein Liver function 331 78.61 (7.25) 30.13–104 297 77.59 (4.55) 67.9–91.29

Globulin Liver function/Immune response 331 41.41 (7.11) 12.88–78.06 297 40.08 (5.04) 28.99–56.54

Paraoxonase Liver function/Lipoprotein metabolism 326 106.75 (25.99) 32.29–216.22 295 102.58 (23.74) 47.38–197.44

AST/GOT Liver function/Protein metabolism 330 105.5 (29.64) 35.55–243.2 297 90.42 (24.45) 57.34–233.68

GGT Liver function/ Protein metabolism 331 33.73 (12.61) 9.96–128.15 297 27.47 (6.57) 14.7–64.64

Cholesterol Liver function/Energy metabolism 331 6.28 (1.59) 1.8–10.16 297 4.8 (1.1) 2.37–10.45

Glucose Energy metabolism 333 3.81 (0.42) 2.66–5.06 297 3.89 (0.36) 2.98–5.1

NEFA Energy metabolism/Lipid metabolism 333 0.13 (0.08) 0.04–0.73 297 0.11 (0.06) 0.03–0.37

BHB Energy metabolism 327 0.72 (0.24) 0.19–1.71 294 0.7 (0.22) 0.07–1.56

Ceruloplasmin Inflammatory response 332 2.54 (0.6) 1.13–4.74 294 2.44 (0.65) 0.71–4.14

Haptoglobin Inflammatory response 331 0.37 (0.32) 0.02–2.24 297 0.33 (0.28) 0.03–2.35

Calcium Mineral metabolism 127 2.61 (0.23) 1.3–2.92 0 NA (NA) NA

Zinc Mineral metabolism/Immune function 325 13.43 (3.19) 5.18–32.7 295 12.76 (2.87) 7.28–27.81

Creatinine Protein metabolism/Renal function 327 87.37 (9.05) 40.58–120 295 113.13 (12.26) 77.42–158.62

Urea Protein metabolism 331 5.34 (1.43) 2.62–10.74 297 4.65 (1.13) 1.67–8.68

Milk biomarker Type
IH IS

n Mean (SD) Range n Mean (SD) Range

BHB Energy metabolism 316 0.16 (0.03) 0.06–0.36 297 0.17 (0.05) 0.03–0.3

Cortisol Immune system 313 501.71
(312.18) 41.74–1822.64 299 515.46 (263.55) 60–1539.81

Urea Milk composition/Protein metabolism 335 22.87 (8.29) 9.4–51.4 307 19.97 (6.14) 3.65–38.3

Hair biomarker Type
IH IS

n Mean (SD) Range n Mean (SD) Range

Cortisol Immune system 309 3.53 (2.22) 0.45–12.5 278 3.23 (1.63) 0.84–10.66

IH = Italian Holstein, IS = Italian Simmental, NA= Not Available. Columns are: Type of phenotypes (Type), number of animals (n), mean
and standard deviation (Mean (SD)), minimum and maximum values (Range). AST/GOT: Aspartate transaminase/glutamic oxaloacetic
transaminase; BHB: β-Hydroxybutyrate; GGT: γ-Glutamyltransferase; NEFA: Nonesterified fatty acid.
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3.2.2. Paraoxonase (PON)

Two SNPs on BTA4 were significantly associated with the level of PON for IH
(Figure 2), at 11,668 and 11,992 kb, which are close to PON1 (12,542,354–12,576,328 bp).
Haplotypes that were close to significance were identified in the same region but did
not reach the genome-wide threshold (Supplementary Tables S2 and S3). No single SNP
reached the significance threshold for IS, but a peak approaching significance was seen
that overlapped the significant peak for IH. In addition, 26 significant HapAlleles were
identified at nine neighbouring, non-overlapping BTA4 regions (from 10,500 to 18,900 kb,
Figure 2), which were close to, but not overlapping, the PON1 coding region. In addition
to the association identified on BTA4, which included PON1, a suggestive signal was
seen on BTA16 in both IH and IS for the single and haplotype GWAS analyses, and a
second lower signal was also seen on BTA26, again at overlapping positions in both breeds
(Supplementary Figure S2). These were tested further in a meta-analysis of IH and IS data
(see below).

3.2.3. γ Glutamyl Transferase (GGT)

Eight SNPs with genome-wide significance were associated with the level of GGT for
IH on BTA17, between 67,998 and 71,462 kb (Figure 3). Seventeen significant HapAlleles
were also identified at five BTA17 regions, between 68,000 and 71,300 kb near to, but not
overlapping, the significant SNP. The two most significant HapAlleles (BTA17_B3319_71348361-
71461810_TTTG) spanned a region that included GGT5 (71,443–71,453 kbp) and GGT1
(71,455–71,471 kbp). For IS, three SNPs had genome-wide significance for GGT levels, in
the same BTA17 region as that detected in IH between 69,823 and 71,484 kb (Supplementary
Figure S3, Supplementary Tables S2 and S3). Four HapAlleles were significantly associated
with GGT levels in two regions nested within the regions identified in IH, between 68,900
and 70,500 kb, although the GGT5 and GGT1 genes map outside these regions.
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Figure 2. Association signals on BTA4 for paraoxonase. Single SNPs with SNP names are indicated and HaploBlocks are
indicated as rectangles containing the number of overlapping HaploAlleles in the significant region. SNP markers and
haploblocks are indicated: Black = Italian Holstein; red = Italian Simmental. The location of the paroxonase-1 gene (PON1) is
indicated in the blue box.
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Figure 3. Associations on BT17 with γ-glutamyl-transferase level. Single SNPs, with SNP names, significantly associated
with the GGT phenotype are indicated, and HaploBlocks are indicated as rectangles containing the number of overlapping
HaploAlleles in the significant region. SNP markers and haploblocks are indicated: Black = Italian Holstein; red = Italian
Simmental. The locations of the γ-glutamyl-transferase-1 and γ-glutamyl-transferase-5 genes (GGT1 and GGT5, respectively)
are indicated in the blue boxes.
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3.3. Genome-Wide Association Meta-analysis

A meta-analysis [59] combining data from IH and IS for CP, GGT (Supplementary
Figures S4 and S5) and PON (Figure 4) confirmed the significant associations identified
in the single-breed GWAS in close proximity to the genes coding for these three proteins
(Supplementary Table S4). Three of the five most significant SNPs associated with ceru-
plasmin on BTA1 (BTA-49362-no-rs) in the meta-analysis were also significant in the IH
GWAS at 118,970,003 bp. The SNP BovineHD0100033931 at 118,988,242 bp and ARS-
BFGL-NGS-50236 at 118,992,353 bp map within the CP gene (118,956,568–119,003,902).
The two most significant SNPs associated with PON on BTA4 (BovineHD0400003686 at
12,507,353 bp and BovineHD0400003711 at 12,594,730 bp) closely flank the PON1 gene
(BTA4: 12,542,349–12,576,241 bp). On BTA17, the peak spanning 172 kb from ARS-BFGL-
NGS-117653 (71,333,851 bp) to ARS-BFGL-NGS-74168 (71,505,929 bp) includes both GGT5
(71,443,756–71,452,943) and GGT1 (71,455,671–71,471,655). The most significant SNP close
to these two genes was ARS-BFGL-NGS-26126 (71,483,760 bp).
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In addition to the significant SNP close to CP, PON1, GGT1 and GGT5, the significance
of the suggestive signal on BTAs 16 and 26 associated with the level of PON increased. The
SNP on BTA16 had an increased p value but did not reach genome-wide significance, while
the SNP on BTA26 did reach genome-wide significance threshold in the meta-analysis.
The SNP with the highest significance on BTA16 was BovineHD1600012174 at 42,784,481.
There are five genes within a 500 kb interval flanking this SNP; the closest is castor zinc
finger 1 (CASZ1) followed by peroxisomal biogenesis factor 14 (PEX14), and the other genes
are TAR DNA binding protein (TARDP), spermidine synthase (SRM), mannan binding lectin
serine peptidase 2 (MASP2) and exosome component 10 (EXOSC10). The signal on BTA26
became the most significant association for PON, higher than the SNP within the PON1
gene. The most significant SNP on BTA26 in the meta-analysis is BovineHD2600003408, at
13,116,737, in the 5′ of the domain containing E3 ubiquitin protein ligase 2 (HECTD2) gene. A
second SNP near to the significant SNP, BovineHD2600003402, at 13,083,916 bp also maps
within HECTD2. Two other genes map within 500 kb flanking this SNP: Polycomb group
ring finger 5 (PCGF5) and protein phosphatase 1 regulatory subunit 3C (PPP1R3C). A single
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isolated significant SNP (BTA-113142-no-rs) on BTA17 at 42,821,258 that was above the
significance threshold falls in an intergenic gene-poor region and no gene maps in the
500 kb flanking interval.

3.4. Candidate Causal Variant Identification

Within a 500 kb interval upstream and downstream of the most significant SNPs, a total
of 1446 variants with r2 > 0.3 were identified in IH and 633 in IS (Supplementary Table S5).
Examining 5 kb up- and downstream of CP, PON and GGT, 373 SNP were associated with
CP in IH, of which 173 were within the boundaries of the gene, and in IS, 86 were associated
with CP, of which 82 were within the boundaries of the gene. No significant SNPs were
associated with PON1 in either breed. In HS, 76 SNPs were found in GGT1, including the
5 kb flanking regions, of which 52 were within the gene boundaries and 33 were associated
with GGT5, of which 16 were within the GGT5 gene.

Of the variants within the genes, those with a moderate-to-high effect on the protein
were identified using VEP. Five missense and two frameshift mutations were found in
the CP gene in IH. Among them, a non-synonymous variant (rs43265346) that changes an as-
paragine into a histidine was classified as deleterious by the SIFT algorithm
(SIFT score = 0.03). The other variants were classified as tolerated by SIFT. A single
missense variation was identified within the GGT1 gene boundaries in IH, which was
classified as tolerated by SIFT. No variant of high or moderate effect was identified by VEP
in IS within the CP gene.

The analysis of the CP, GGT1, GGT5 and PON1 promoter regions identified
193 variants (Supplementary Table S6). Eleven of these were in LD with the most significant
SNPs in the single-SNP GWAS and were located in sites recognised by transcription factors
(Table 2).

Table 2. Candidate causative variants showing r2 > 0.2 with high-significance SNPs.

Gene Chr Pos Alt Ref Distance_gene_start TFBS.N TFBS.name rs r2.SIM r2.HOL

CP 1 118,900,034 T G 1347 2 Elk-1(T00250)|SRF(T00764) rs385773690 0.337 <0.3

CP 1 118,900,683 C T 698 1 FOXJ2 (long isoform)(T04169) rs381127256 0.320 <0.3

PON1 4 12,576,347 G A 19 1 GATA-3(T00311) rs109606244 <0.3 <0.3

PON1 4 12,576,418 G T 90 1 TBP(T00794) rs377892116 <0.3 <0.3

PON1 4 12,576,463 G A 135 0 rs109953053 <0.3 <0.3

PON1 4 12,576,634 A C 306 2 ER-α(T00261)|COUP-
TF2(T00045) rs110459801 <0.3 <0.3

PON1 4 12,576,853 T C 525 1 c-Jun(T00133) rs381274305 <0.3 <0.3

PON1 4 12,576,916 T A 588 0 rs110270756 <0.3 <0.3

GGT5 17 71,454,646 T G 1277 0 rs109325809 <0.3 0.597

GGT5 17 71,454,782 A G 1413 0 rs41854700 <0.3 0.402

GGT5 17 71,455,325 GCCC G 1956 1 Smad4(T04292) rs133286128 <0.3 0.566

GGT1 17 71,471,816 T G 161 1 ATF(T00051) rs210579585 <0.3 0.641

GGT1 17 71,471,932 A G 277 0 rs208460991 <0.3 0.628

GGT1 17 71,472,255 C T 600 1 VDR(T00885) rs209913616 <0.3 0.632

GGT1 17 71,472,377 G C 722 2 MAZ(T00490)|Sp1(T00759) rs210564197 <0.3 0.647

GGT1 17 71,472,410 C G 755 0 rs208475328 <0.3 0.618

GGT1 17 71,472,863 T C 1208 0 rs209562610 <0.3 0.541

GGT1 17 71,473,234 C G 1579 2 COUP-TF1(T00149)|ER-
α(T00261) rs41854716 <0.3 0.401

GGT11 17 71,473,281 ACC AC 1626 0 rs464903245 <0.3 0.434
1 Chr = chromosome number; Pos: Chromosome position; Alt = alternative allele; Ref = reference allele; Distance.gene.start: Distance
between the variant and the gene start site; TFBS.N = Number of transcription factors binding to the variant site; TFBS.name = transcription
factor name(s); rs: variant name; r2.SIM = linkage disequilibrium between the binding site and the most significant SNP in single-SNP
GWAS in Simmental; r2.HOL = linkage disequilibrium between the binding site and the most significant SNP in single-SNP GWAS
in Holstein.



Genes 2021, 12, 534 11 of 18

On BTA1, two variants in linkage with the most significant SNP for CP in Italian
Simmental were mapped within transcription binding sites upstream of the CP transcrip-
tion start site. One at position 118,900,034 bp (−1347 bp relative to gene transcription
start site) is within a binding site recognised by both Serum Response Factor (SRF) and
ETS Transcription Factor (ELK1). The second is at position 118,900,683 bp (−698 bp from
the start site) within a Forkhead Box J2 (FOXJ2) binding site. The LD between these vari-
ants and the most significant SNP was above the threshold set for linkage disequilibrium
(r2 > 0.3). In Holstein, variants in the same upstream region had a low LD (r2 < 0.3) with
the most significant CP SNP detected in Italian Holstein.

On BTA17, five variants were in LD with the most significant SNP for GGT in IH.
Four were within transcription binding sites upstream of GGT1 at position 71,471,816 bp
(−161 bp from GGT1 start site), within an Activating Transcription Factor 1 (ATF1) bind-
ing site; at position 71,472,255 (−600 bp from the start site) in a Vitamin D Receptor
Transcription Factor (VDR) binding site; at 71,472,377 bp (−722 bp from the start site), a
site recognised by two transcription factors, MYC-Associated Zinc Finger Protein (MAZ)
and Sp1 Transcription Factor (SP1); at position 71,473,234 bp (−1579 bp from the start
site) and in a binding site for both Chicken Ovalbumin Upstream Promoter Transcrip-
tion Factor 1 (COUP-TF1) and Estrogen Receptor 1 (ER-α) factors. A single variant in
LD with GGT5 was detected upstream of the gene at position 71,455,325 (−1956 bp
from the transcription starting site), within a SMAD Family Member 4 (SMAD4) tran-
scription factor binding site. These variants were in strong LD with the most significant
SNP (r2 > 0.4) with the highest values observed for variants mapping in MAZ and SP1
(r2 = 0.641) and in ATF1 binding sites (r2 = 0.641). In IS, variants in the same upstream
region had a weak LD (r2 < 0.3) with the most significant GGT SNP detected.

On BTA4, no variants in transcription binding sites were identified above the LD
threshold (r2 > 0.3) with the most significant SNP for PON.

4. Discussion
4.1. GWAS Analyses

Stress is associated with various physiological and metabolic responses that differ
among animals. If the predisposition of animals to higher levels of stress can be predicted
from variations in the biomarkers measured under non-stressed conditions, these may
be used to investigate complex stress responses and to select animals that cope better in
stressful situations. The current study investigated the variation in the levels of biomarkers
previously reported to differ between stressed animals and controls [30,36,60,61]. Our
results showed that there is considerable variation in the levels between individuals of
most of the biomarkers tested. The genetic control of expression of these biomarkers was
assessed, and their genetic architecture was investigated to determine if they could act as
intermediate phenotypes (“endophenotypes”) [62] that may be used to investigate stress
traits, or applied directly in genomic breeding programmes to improve stress resilience in
dairy cattle.

Among the twenty-one putative stress biomarkers tested, genome-wide statistical
significance in both single-SNP and haplotype-based GWAS analyses was only found for
ceruloplasmin (BTA1) paraoxonase (BTA4) and γ-glutamyl transferase (BTA17). The levels
of these three biomarkers had an estimated heritability between 0.06 (s.e. 0.14), for CP in
IH, and 0.69 (s.e. 0.13), for PON in IS, although the small number of animals analysed does
not allow an accurate estimation of heritability. In each case, a well-defined chromosomal
region reached genome-wide significance, which included the gene itself (or in the case of
GGT, the gene family), in both breeds analysed, the Italian Holstein and Italian Simmental.
This suggests that the control of expression of these biomarkers is regulated by a variation
near or close to the gene, and there are no major direct effects of other genetic loci on their
expression. The most significant SNP for these biomarkers explains 7.33% and 8.87% of the
phenotypic variance for CP in IH and IS, respectively; 7.98% and 6.69% for PON in IH and
IS, respectively; and 14.64% and 8.08% for GGT in IH and IS, respectively. Genetic selection



Genes 2021, 12, 534 12 of 18

could rapidly change allele frequencies of these genes and, hence, the expression of the
biomarker, which would be valuable if they can be shown to be associated with improved
stress response.

The three biomarkers for which significant genetic associations were found are all
primarily produced by the liver with functions related to protection from oxidative stress.
Oxidative stress is associated with various diseases, including diabetes, atherosclerosis
and cancer [63], and in the brain, where high oxygen consumption is associated with the
production of free radicals; oxidative stress has been linked with a range of psychological
and anxiety-related disorders in humans [64]. The ability to control the effects of oxidative
stress is likely to impact the response of an individual to stressful situations. Two of the
biomarkers, CP and GGT, are also associated with the acute-phase inflammatory immune
response. Psychological stress can activate an inflammatory response [65]. Proinflamma-
tory cytokines, which are mediators of the inflammatory response, communicate with the
brain and affect neuroendocrine activity in the brain, inducing emotional, cognitive, and
behavioural changes [66]. Indeed, prolonged exposure to chronic stress results in neuro-
physiological changes, including glucocorticoid resistance and changes in the cytokine
response that increase the susceptibility to stress.

The CP gene is located on BTA1 and is approximately 60 kb long. Ceruloplasmin is an
a-2 glycoprotein involved in copper transport and iron metabolism, and it is an antioxidant
produced by the liver [67,68]. Levels of ceruloplasmin increase in the plasma during the
acute phase of inflammation [69]. Genetically modified murine models of experimental
colitis show that CP plays a role in reducing bowel inflammation [70]. In CP knockout
mice, the impact of CP deficiency results in the accumulation of iron in the hippocampus
that impacts brain neurochemistry and behaviour. The CP knockout mice showed elevated
anxiety levels compared with normal mice [71]. This suggests that CP could be involved in
reducing anxiety in stressful situations, and indeed in dairy cattle, CP has been shown to
increase in relation to stress, e.g. around calving [58,72,73].

The gene encoding the acute-phase protein PON is located on BTA4 and is approx-
imately 33 kb long. PON is a high-density lipoprotein-associated enzyme that protects
lipoproteins against oxidation. PON1 knock-out mice on a high-fat, high-cholesterol diet
develop atherosclerosis more rapidly, and the LDL in their artery walls is more highly
oxidised than in controls [74]. In contrast, in PON1-overexpressing transgenic mice, there
are fewer lesions and the oxidation status of aorta is improved. Oxidative stress and the
consequent lipid oxidation are thought to play a role in psychiatric disorders. In humans,
decreased PON activity and specific polymorphisms in the gene have been associated
with clinical conditions, including depression, generalised anxiety disorder (GAD) and
schizophrenia [75]. The concentration of PON has been shown to be inversely related to
oxidative stress [76] and decreases during the acute-phase response induced by stress [36],
e.g. associated with calving [60,73]. Six polymorphisms in the PON1 gene promoter region
have been found to be associated with plasma PON levels in Brazilian Holstein [77].

The GGT1 and GGT5 genes are located on BTA17 and are approximately 22 kb long.
The GGT enzyme is a biomarker of liver function. GGT is a membrane-bound glycol-
protein, the production of which increases during the acute-phase response to stress-
induced inflammation and oxidative stress [78]. Under conditions of oxidative stress, GGT
plays a key role in the biosynthesis of glutathione (GSH), which is a potent antioxidant [79].
GGT1 knock-out mice showed chronic GSH deficiency, growth retardation, skeletal ab-
normalities and cataracts, and they died younger [80]. GGT1 is in a large linkage block
containing numerous genes, including GGT1, GGT5, GSTT1 and GSTT. GGT1 knock-out
mice have no glutathione activity in the spleen, small intestine and kidney, suggesting that
GGT5 does not compensate for the lack of GGT1.

The only SNPs above the genome-wide threshold for significance in the individual-
breed GWAS were those associated with CP, PON1, GGT1 and GGT5. However, two
additional signals were identified on BTAs 16 and 26 associated with the expression of
PON. The signal on BTA16 was above the genome-wide suggestive, the one on BTA26
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above the significant threshold in the meta-analysis, in which data from both breeds were
combined in the GWAS. Indeed, the significant SNP on BTA26 had a higher p value than
the SNP associated with PON on BTA4. The significant BTA26 SNPs are within the domain
containing the E3 ubiquitin protein ligase 2 (HECTD2) gene, which is involved in the
function of the innate immune system and is a crucial regulator of cytokine secretion [81].
The closest gene to the SNP with the highest suggestive-significance on BTA16 is castor
zinc finger 1 (CASZ1). CASZ1 is involved in blood pressure regulation [82], neuronal
development [83] and inflammation [84], all functions that are affected by stress. The next
closest gene is peroxisomal biogenesis factor 14 (PEX14), which also plays a role in countering
oxidative stress [85]. Interestingly, PEX14 seems to have been under selection during
domestication [86], where docility and the tolerance of stress are key traits.

4.2. Search for Candidate Causative Variants

Significant GWAS associations were identified for the plasma levels of CP, PON and
GGT. The significant SNPs in the GWAS were close to the locations of the genes coding for
these proteins. Therefore, it is likely that the functional variants are close to these genes
in sequences regulating their expression levels. A search of the 1000 bull sequence data
identified a total of 556 variants in LD with the most significant SNP for each of the three
genes, of which 457 were in CP, 373 in IH and 86 in IS, of which two were in common.
None of the variants were above the LD threshold for PON1, in either breed. In IH,
76 variants were in GGT1 and 33 in GGT5, most of which were within the coding region or
introns (Supplementary Table S5). Among these, a single missense variant in CP in IH was
classified as deleterious by SIFT. All other variants were classified as tolerated. Although
we cannot exclude that these variants may affect the level of the proteins investigated, we
focus our discussion on variants in transcription factor binding sites that are more likely to
affect the expression of the three proteins.

The CP gene has 25 variants upstream of the coding start site that affect known tran-
scription factor binding sites, and among these, two were identified that are in strong LD
with the significant SNP, one of which, 1347 bp upstream (BTA1:118900034) overlapped
Serum Response Factor (SFR) and Elk-1 binding sites. ELK-1 and SRF form a tertiary
complex [87] and have several functions, including intermediate gene activation associ-
ated with neuronal development, learning and memory [88]. The second at 698 (BTA1:
118900683) is within a FOXJ2 binding site. FoxJ2 can be expressed as two isoforms, FHX.L
and FHX.S, that differ in their C-terminal ends. FoxJ2 is expressed early in embryonic
development, in many tissues [89].

There have been 54 variants described upstream of the PON1 coding region, among
which six have been associated with increased PON expression, e.g. in relation to calving
stress [90], of which two, at 12,576,347 and 12,576,853, are in weak linkage
(0.2 < r2 < 0.3) with BovineHD0400003479, the second most significant SNP associated
with PON in the present study. The first SNP is in a GATA3 binding site. GATA3 is a
transcription factor involved in the development and survival of sympathetic neurons [91].
The second SNP is within a cJUN binding site. The cJUN transcription factor activates the
response to oxidative stress due to ROS produced by mitochondrial dysfunction [92]. We
also identified a variant at 12,576,853 in linkage with the significant SNP in our study, which
has been associated with an increase in PON expression by Silveira et al. [77]. However,
we did not find this SNP associated with a transcription factor binding site. Three other
SNPs have been reported associated with PON levels within PON1 transcription binding
sites in cattle [77]; however, in the present study, these were not in linkage with the SNP
significant for PON.

The GGT1 gene has 69 variants upstream of the coding region of which eight were
in LD with the significant SNP for serum GGT levels. We identified transcription factor
binding sites at four of these at 71,471,816, 71,472,255, 71,472,377 and 71,473,234 bp on
BTA17. The SNP at BT17:71471816 is within an activating transcription factor (AFT)
binding site, the SNP at BT17:71472255 is within a Vitamin D Receptor (VDR), and the
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SNP at BT17:71472377 is within a Myc-associated zinc-finger protein (MAZ) binding
site and a Specific protein 1 (Sp1) binding site. MAZ expression is increased in chronic
inflammation [93]. Sp1 is a zinc finger transcription factor expressed in many tissues. In
neuronal tissues, Sp1 and Sp3 expressions is increased in response to oxidative stress, and
in rodent models, protects against neuronal loss [94]. The SNP at BTA17:71473234, which is
significantly associated with GGT, is within COUP-TF1 and ER-α binding sites. COUP-TF1
is activated in response to oxidative stress, as is the ER-α transcription factor, as discussed
for PON1.

The GGT5 gene has 45 variants upstream of the coding region, of which three are in
LD with the most significant SNP in the single-SNP GWAS. Only one (BTA17:71455325) is
within a transcription binding site, which is SMAD4. Smad-dependent signalling regulates
the expression of the TGF-β family of cytokines, which in turn, negatively regulates
neuronal morphogenesis during brain development and plays a role in neuronal disease in
humans [95,96].

5. Conclusions

We assessed variations in potential biomarkers of stress and the genetic control of their
expression. Three biomarkers, all associated with oxidative stress, showed strong genetic
associations that indicated that their expression was primarily under cis-acting control. In
the case of PON, two additional genetic loci were identified that were associated with the
level of PON expression. Candidate genes at these loci are also implicated in oxidative
stress. In this study, the genetic association between levels of biomarkers was examined
in non-stressed animals. It would be interesting to assess changes in the levels of these
biomarkers in stressed animals, and in particular, if genetic variations predict the response
of animals to stress, which would facilitate the selection of animals that respond better to
stressful situations and hence remain healthier and more productive.
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plot of GGT single-SNP GWAS meta-analysis. Table S1: Significance of fixed effects and number of
animals and SNPs in the working dataset. Table S2: SNPs significantly associated with CP, PON and
GGT identified by single-SNP GWAS. Table S3: Haplotypes significantly associated with CP, PON
and GGT identified by haplo-GWAS. Table S4: SNPs significantly associated with CP, PON and GGT
identified by single-SNP meta-GWAS. Table S5. Variants in CP, PON1, GGT1 and GGT5 genes linked
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