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Abstract

Bipolar disorder (BD) is a common, complex, and heritable psychiatric disorder characterized by 

episodes of severe mood swings. The identification of rare, damaging genomic mutations in 

families with BD could inform about disease mechanisms and lead to new therapeutic 

interventions. To determine whether rare, damaging mutations shared identity-by-descent in 

families with BD could be associated with disease, exome sequencing was performed in 

multigenerational families of the NIMH BD Family Study followed by in silico functional 

prediction. Disease association and disease specificity was determined using 5 090 exomes from 

the Sweden-Schizophrenia (SZ) Population-Based Case-Control Exome Sequencing study. We 

identified 14 rare and likely deleterious mutations in 14 genes that were shared identity-by-descent 

among affected family members. The variants were associated with BD (p<0.05 after Bonferroni 

correction) and disease specificity was supported by the absence of the mutations in patients with 

SZ. In addition, we found rare, functional mutations in known causal genes for neuropsychiatric 

disorders including holoprosencephaly and epilepsy. Our results demonstrate that exome 

sequencing in multigenerational families with BD is effective in identifying rare genomic variants 

of potential clinical relevance and also disease modifiers related to coexisting medical conditions. 

Replication of our results and experimental validation are required before disease causation could 

be assumed.

Introduction

Bipolar disorder (BD) is a severe psychiatric disorder characterized by episodes of 

extremely elevated, expansive or irritable mood, grandiosity, flight of ideas, distractibility or 

agitation. These symptoms lead often to marked impairment in social and occupational 

functioning.1 Episodes of mania are frequently followed by severe and disabling depression. 

In general, BD is conceptualized as a complex disease with genetic and environmental risk 

factors.2 Heritability estimates range from 58% to 93% with monozygotic twin concordance 

of about .43.3,4 Nevertheless, the etiology of the disease remains unknown. Linkage studies 

and genome-wide association studies (GWAS) have suggested chromosomal and genomic 

regions potentially related to BD, but the identification of disease causing variants remains 

largely elusive.5,6 Exome-wide sequencing offers now a new opportunity to lead these 

investigations to a new level.

BD is a common psychiatric disorder with a population prevalence of 2–3%.7,8 However, 

families in which the disorder is transmitted over several generations are very rare. In the 

hope of finding genetic risk factors for BD with strong effect, the National Institute of 

Mental Health (NIMH) ascertained a number of these families in which a Mendelian mode 

of transmission was suggested by the pattern of disease segregation.9 However, after initial 

enthusiasm it was quickly realized that a single genetic risk factor with strong effect would 

most likely not explain the susceptibility to BD even in severely affected multigenerational 

families.10–12 Instead, mathematical model fitting suggested an oligogenic risk profile as the 

most likely cause of the disease, but indicated also substantial interfamilial heterogeneity.13 

Early linkage studies were not equipped to perform well under this scenario and knowledge 

about the human genome was still in its infancy.
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Since these early attempts had been unsuccessful in finding rare disease causing genes in 

BD, the search for common genomic polymorphisms as disease modifiers of BD dominated 

the literature. Many reviews on this subject have been published and it is beyond the scope 

of this paper to cover this extensive literature. Instead, it is the intend of this paper to collect 

and present supporting evidence for the hypothesis that rare mutations might contribute to 

the risk of developing BD under an oligo genic mode of inheritance.

With human genome data available and falling sequencing costs, the time seems right to 

revisit the original models of disease transmission in the families of the NIMH BD genetics 

initiative. We conducted a family-based exome sequencing study in multigenerational 

families of the NIMH to test the hypothesis that several rare functional mutations in gene 

coding regions are co-transmitted over several generations and shared identity by descent 

among the affected family members. We expected that the mutated genes would cluster into 

functional pathways suggesting potential disease path mechanisms. Large, population based 

samples of patients with schizophrenia and healthy controls were also available to test 

disease association and disease specificity.

Methods

Sample selection

The analysis presented in this article was based on publicly available data and biomaterial 

from families of the NIMH Bipolar Genetics Initiative.14 We selected nine affected 

individuals from four Caucasian families in which BD was transmitted over several 

generations following an apparently Mendelian mode of inheritance. In three families, we 

selected the two most distantly related affected family members for exome-wide sequencing. 

In one family, we selected three affected individuals, since the disease appeared to be 

transmitted through the paternal and the maternal lineage. The ethnicity of the individuals 

was determined based on self-report. All affected and unaffected family members, and also 

the independent patients had been interviewed with the Diagnostic Interview for Genetic 

Studies (DIGS) by trained health care professionals blinded to the clinical diagnosis. The 

DIGS is an extensively validated, structured clinical instrument developed by principal 

investigators at the NIMH for the assessment and differential diagnosis of major mood and 

psychotic disorders. Medical and psychiatric comorbidities were also recorded.15 Non-

hierarchical Best Estimate consensus diagnoses were reached by at least three independent 

raters according to DSM-IV criteria.16,17 In addition, we randomly selected six unrelated 

individuals with BD for exome-wide sequencing, who had been evaluated under the same 

procedures.

Exome sequencing and bioinformatics analysis

DNA was isolated from immortalized lymphoblastoid cell lines. Genomic DNA extraction, 

library preparation, sequencing, and data analysis were performed using established 

procedures. Exome capture was carried out using the Illumina TruSeqTM Exome 

Enrichment Kit (Illumina Inc., San Diego, CA) and the DNA was sequenced using the 

HiSeq 2000 for a 100-bp paired-end run (Illumina Inc., San Diego, CA). An average of 50 

million independent paired reads were generated per sample to provide a mean 10-fold 
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coverage across the RefSeq protein-coding exons and flanking intronic sequence (±2 bp) of 

more than 87.5% of these bases and a mean 20-fold coverage of 78.9% of the targeted 

sequences (Supplementary Information). As technical controls during the sequencing 

process and to guard against technical artifacts, we used the DNA of 200 unrelated 

individuals who were sequenced in our laboratory under the same exon capture and 

sequencing conditions.

Variant annotation, filtering and interpretation

Single nucleotide variants (SNV) and small structural variants including insertions and 

deletions were annotated using Golden Helix SNP & Variation Suite (SVS) v8.1.19 Variants 

were filtered based on evidence for identity by descent sharing among affected family 

members, minor allele frequency (MAF) <= 0.01%, and predictions regarding consequence 

on protein function by the following in silico prediction tools: SIFT, PolyPhen 2, LRT, 

MutationTaster, Mutation Assessor, and FATHMM 20–26 (Figure 1). The filtered variants 

were then genotyped in additional affected family members. In addition, all selected variants 

were also genotyped in at least one unaffected family member per family. Based on these 

results, we selected variants that were present in the affected family members and absent in 

the unaffected family members. Finally, we used the exome data from the Sweden-

Schizophrenia (SZ) Population-Based Case-Control Exome Sequencing dataset (dbGAP 

accession: phs000473.v1.p1) for a case control association analysis on the selected variants. 

This dataset contained exomic data of 2 545 individuals with SZ and 2 545 controls.

Statistical analysis

To determine the statistical significance of mutation-frequency differences between cases 

and controls, we used the Fisher’s exact test for rare variants27 and corrected for multiple 

testing using the Bonferroni procedure.28 In this analysis, the family was considered to be 

the unit of observation since only variants shared among the affected family members were 

included in the analysis. Pathway analysis and gene set enrichment analysis (GSEA) of 

variants that were significant in the Fisher’s exact test were performed in DAVID (DAVID 

Bioinformatics Resource 6.7).29–32

Results

Sample characteristics

In four multigenerational families, multiple individuals were affected with a severe and 

complex type of BD (Table 1). The patients had been diagnosed with BD on average at 18 

years of age (SD=7.7), and at the time of interview, the majority of the patients had been ill 

for at least 15 years. Only one fifth of the patients were male (20%). Almost all selected 

patients (93%) had been diagnosed with bipolar disorder type 1 (BD1) according to DSM-IV 

criteria, but one independent patient carried the diagnosis of bipolar disorder type 2 (BD 2). 

Eight patients (53%) fulfilled criteria for rapid cycling BD, a disease subtype characterized 

by at least four separate mood episodes over the course of one year. Ten patients (67%) had 

experienced symptoms of hallucinations and/or delusions and ten patients (67%) had 

attempted suicide at least once during the disease course. All patients had been diagnosed 

with one or more psychiatric comorbidities, including anxiety disorders (73%), substance 
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use disorders (SUDs) (60%), attention-deficit hyperactivity disorder (40%), obsessive 

compulsive disorder (OCD) (27%), sleep disorders (27%), eating disorders (20%), and 

antisocial personality disorder (20%). In addition, some patients also had medical disorders 

that could have contributed to the phenotype variability. Among these disorders were 

migraine (67%), seizure disorders (33%), thyroid disorders (20%), gastrointestinal disorders 

(20%), metabolic disorders (13%), and cardiovascular disorders (7%). Almost half of the 

sample had been diagnosed with learning disability (40%).

Identification of rare, damaging, and disease-specific mutations

Whole-exome sequencing and genotyping of the 15 affected individuals identified 14 rare 

and likely damaging mutations that were shared identity-by-descent. The mutations were 

absent in the unaffected family members and also in the technical controls (Figure 1, Table 

2). Seven of these mutations were novel and seven variants had been described previously in 

un-phenotyped population samples at very low frequency (Table 3). The variants were of 

high quality and predicted to be damaging for the protein structure or function by at least 

three functional predictors (Supplementary Information Table S1 and S2). In addition, we 

found one novel frameshift mutation and one known, rare deletion/insertion mutation, both 

with unknown functional consequences (Table 3). The mutations were private to the 

individual families, in which they were discovered, and none of the mutations were present 

in 2 545 ethnically matched controls (P≤1.6×10−3). Furthermore, none of the 2 545 exomes 

of patients with SZ carried the same mutations, indicating disease-specificity. Three of the 

mutated genes, myosin IXA (MYO9A), TBC1 domain family, member 10C (TBC1D10C), 
and Rho GTPase activating protein 32 (ARHGAP32) had GTPase-activating function, but in 
silico analysis in DAVID revealed no statistically significant clustering of the mutated genes 

in any known pathophysiological pathway.

In addition to these 15 variants, we discovered two known, rare, compound heterozygous 

variants in the gene solute carrier family 22 (organic cation transporter), member 1 
(SLC22A1) in one severely affected individual. The first mutation (rs55918055) was 

inherited through the paternal lineage and the second mutation (rs34059508) was inherited 

through the maternal lineage. These non-synonymous coding mutations were predicted to be 

deleterious. We also identified mutations in known, disease-causing genes for several 

medical conditions that could have had disease modifying effects (Supplementary 

Information Tables S3 to S6). For example, a patient with seizure disorder carried a mutation 

in the gene prickle homolog 1 (Drosophila)] (PRICKLE1), a known gene for progressive 

myoclonic epilepsy 1B (EPM1B, MIM:612437). In one family, a novel mutation in the gene 

dispatched homolog 1 (Drosophila) (DISP1) segregated with the disease phenotype. 

Mutations in DISP1 are known to cause holoprosencephaly (HPE) type 2–4 (HPE2, MIM:

157170; HPE3, MIM:142945; HPE4, MIM:142946; HPE5, MIM:609637), and in addition, 

this gene is also known as the main suspect in the Chromosome 1q41–q42 deletion 

syndrome (MIM:612530). Since epilepsy and holoprosencephaly could present with 

seizures, mood symptoms, psychosis, developmental delay, and learning disabilities, 

mutations in these two genes could explain some of the neuropsychiatric phenotypes that 

segregated in two of the families. The gene Ankyrin Repeat and Kinase Domain Containing 

1 (ANKK1), which has been related to migraine and alcohol dependence,33–35 also carried a 
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likely damaging mutation. The gene T-box 2 (TBX2) has been related to cognitive and 

behavioral abnormalities in the chromosome 17q23.1-q23.2 deletion syndrome (MIM:

613355), and toll-like receptor 5 (TLR5) has been associated with systemic lupus 

erythematosus (SLEB1, MIM:601744). None of the variants could be replicated in the 

independent patients with BD.

Discussion

We identified rare, deleterious, and likely disease-causing mutations in gene-coding regions 

through unbiased, exome-wide sequencing in families with bipolar disorder (BD). Each 

family carried rare mutations in several genes that were shared identity-by-descent by 

affected family members and the variants were absent in the unaffected family members. All 

variants were predicted to be damaging by several in silico functional predictors. In each 

several rare, damaging mutations were associated with the disease. These findings are 

consistent with the currently favored hypothesis of oligo genic disease-causation in BD.36,37

Exome-sequencing is increasingly utilized to identify very rare and likely disease causing 

mutations in many neuropsychiatric disorders.38 Our focus on rare and even private 

mutations is consistent with current trends in genetic epidemiologic research; however, our 

study is one of the first to examine the exomes of BD patients from multigenerational 

families in an unbiased, genome-wide approach, and to evaluate the results in the context of 

a large number of population-based healthy controls and patients with SZ. The results of this 

study reveal a complex scenario of rare and private missense and loss-of-function mutations 

in novel candidate genes. In addition, we found mutations in known disease-causing genes 

for medical conditions that could have potentially had disease modifying effects, for 

example on intellectual ability or immune status.

Our results could be viewed in the context of previously published linkage analyses in the 

families of the NIMH genetics initiative. Genome-wide significant linkage signals have been 

reported in the chromosomal regions 16p12.2 and 17q1239, 40 (Dick et al, 2003; Chen et al., 

2006). The region 16p12.2 has also been linked to the sub-phenotype psychosis and 

suggestive linkage has been found to the chromosomal regions 19p13 with the same 

phenotype40 (Chen et al., 2006). However, when considering linkage results it has to be kept 

in mind that linkage regions on average contain hundreds of genes, and therefore, 

conclusions about supporting evidence of linkage results should be viewed with great 

caution.

Our conclusion about a causal relationship between the described variants and BD is 

plausible and coherent with some pathophysiological theories. Especially GTPase-activation 

is a pathophysiological process that is supported by animal models and cell culture 

experiments.41–43 GTPases are a target of lithium, a drug frequently used to treat BD; and 

therefore, a role for G-proteins in disease processes of BD has long been hypothesized.44–59

The patients with BD had also been diagnosed with a number of medical and neurological 

disorders including seizure disorders and learning disability. Therefore, it is highly likely 

that some of the identified genes might in fact be related to these disorders rather than to BD 
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itself. In fact, we were able to identify rare mutations in genes that have previously been 

linked to seizure disorders and holoprosencephaly. These conditions could potentially 

modify the disease expression and the disease course of BD. Since none of the protein-

damaging mutations were present in patients with SZ, shared genetic risk factors between 

BD and SZ might be uncommon.

Limitations of our study are (1) the very small sample size of BD patients in this data set. 

This limitation could result in an underestimation or overestimation of the effect size of 

these rare and private mutations. Given the rare nature of the variants in the general 

population, replication of individual variants is highly unlikely. Another limitation of our 

analysis was the dependence on in silico functional predictions. Many examples indicate that 

these predictions might not always reflect the true biological, cell-specific consequences of a 

specific mutation on an individual’s genetic background. Therefore, it is recommended to 

test the functional consequences of the identified mutations and experimentally validate the 

effect in cell culture assays and in in vivo models. Despite obvious limitations, our results 

are consistent with previous publications in the literature. For example, several groups have 

identified rare functional mutations in BD families,60–62 even though statistical significance 

after correction for multiple testing in larger samples still needs to be established. In 

addition, rare structural variants have been associated with BD, but the functional 

consequences of these variants remain to be determined.63,64

While individual mutations and genes still require further support before generalizable 

conclusion can be drawn, it has become clear that BD is by far more heterogeneous than 

previously anticipated. Our results support a rare-variant oligo genic disease models in 

families with BD and stress the importance of protein-coding regions. Based on these 

results, we recommend to fund studies that focus on multi-generational families to identify 

functional mutations. Furthermore, in clinical practice, it should be recognized that in some 

families, BD might be transmitted with higher risk than generally anticipated in the 

framework of common, complex disorder, and that genetic counseling might be 

recommended. Exome-wide sequencing could be useful in high-risk families to identify 

known disease-causing mutations for neuropsychiatric disorders that might resemble BD, 

such as holoprosencephaly and seizure disorders.

Conclusions

The results of our study indicate that rare, deleterious mutations in gene-coding regions 

could be related to a BD phenotype in families, in which the disease is transmitted over 

several generations. Exome sequencing in multigenerational families with BD is effective in 

identifying rare genomic variants with potential clinical relevance. Our results further 

support the rare-variant oligo genic disease model of BD. The disease association of the 

identified mutations need to be replicated and the functional consequences of the mutations 

validated before the information could be used in clinical settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Selection algorithm for rare variants in families with bipolar disorder
The figure delineates the algorithm that was used to select potentially disease-causing 

mutations in four families with bipolar disorder. SZ, schizophrenia.
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Table 1

Phenotype of affected individuals in four families with bipolar disorder

N=15, %

Age, years (SD) 38.4 (15.6)

Age of onset of bipolar disorder, years (SD) 18.2 (7.7)

Gender, male 3 (20)

Diagnosis of bipolar disorder type 1, 14 (93)

Rapid cycling 8 (53)

Suicide attempts 10 (67)

Psychosis 10 (67)

Psychiatric comorbidity

Anxiety disorder 11 (73)

Attention deficit hyperactivity disorder 6 (40)

Substance use disorder 9 (60)

Obsessive compulsive disorder 4 (27)

Antisocial personality disorder 3 (20)

Medical comorbidity

Seizure disorder 5 (33)

Migraine 10 (67)

Disorders of the endocrine system 3 (20)

Disorders of the metabolic system 2 (13)

Disorders of the cardiovascular system 1 (7)

Disorders of the gastrointestinal system 3 (20)

Learning disability 6 (40)

Sleep disorder 4 (27)

Eating disorder 3 (20)
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Table 2

List of mutated genes in bipolar disorder families

Entrez # Gene Name Function

9743 ARHGAP32 Rho GTPase activating protein 32 GTPase activator activity (GO:0005096), phosphatidylinositol binding 
(GO:0035091)

60314 C12orf10 chromosome 12 open reading frame 
10

locomotory exploration behavior (GO:0035641)

84516 DCTN5 dynactin 5 (p25) Centrosome (GO:0005813)

2060 EPS15 epidermal growth factor receptor 
pathway substrate 15

calcium ion binding (GO:0005509) protein binding (GO:0005515)

2568 GABRP Gamma-Aminobutyric Acid (GABA) 
A Receptor, Pi

GABA-A receptor activity (GO:0004890)

115399 LRRC56 leucine rich repeat containing 56 unknown

4649 MYO9A myosin IXA regulation of small GTPase mediated signal transduction (GO:0051056)

84700 MYO18B myosin XVIIIB vasculogenesis (GO:0001570)

284434 NWD1 NACHT and WD repeat domain 
containing 1

ATP binding (GO:0005524)

5286 PIK3C2A phosphatidylinositol-4-phosphate 3-
kinase, catalytic subunit type 2 alpha

1-phosphatidylinositol-3-kinase activity (GO:0016303)

4660 PPP1R12B Protein Phosphatase 1, Regulatory 
Subunit 12B

small GTPase mediated signal transduction (GO:0007264)

5829 PXN Paxillin activation of MAPK activity (GO:0000187)

374403 TBC1D10C TBC1 domain family, member 10C regulation of Rab GTPase activity (GO:0032313)

7158 TP53BP1 tumor protein p53 binding protein 1 RNA polymerase II activating transcription factor binding (GO:
0001102)

143630 UBQLNL ubiquilin-like protein binding (GO:0005515)

146862 UNC45B Unc-45 Homolog B (C. Elegans) chaperone-mediated protein folding (GO:0061077)

Mol Psychiatry. Author manuscript; available in PMC 2017 April 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rao et al. Page 15

Ta
b

le
 3

M
ol

ec
ul

ar
 c

ha
ra

ct
er

is
tic

s 
of

 m
ut

at
io

ns
 in

 f
am

ili
es

 w
ith

 b
ip

ol
ar

 d
is

or
de

r

L
oc

at
io

n
C

hr
om

os
om

e
G

en
e

Id
en

ti
fi

er
T

ra
ns

cr
ip

t
E

xo
n

C
od

in
g

P
ro

te
in

11
:1

28
83

89
29

11
q2

4.
3

A
R

H
G

A
P3

2
no

ve
l

N
M

_0
14

71
5

13
c.

50
90

G
>

T
p.

G
ly

16
97

V
al

12
:5

36
94

01
0

12
q1

3.
13

C
12

or
f1

0
no

ve
l

N
M

_0
21

64
0

2
c.

29
3A

>
G

p.
Ty

r9
8C

ys

16
:2

36
72

53
2

16
p1

2.
2

D
C

T
N

5
no

ve
l

N
M

_0
01

19
97

43
4

c.
27

8T
>

C
p.

Il
e9

3T
hr

1:
51

82
68

56
1p

32
.3

E
PS

15
rs

14
88

21
17

1
N

M
_0

01
15

99
69

12
c.

15
89

C
>

T
p.

A
la

53
0V

al

5:
17

02
38

97
9

5q
35

.1
G

A
B

R
P

no
ve

l
N

M
_0

14
21

1
10

c.
10

40
A

>
T

p.
G

lu
34

7V
al

11
:5

49
98

2
11

p1
5.

5
L

R
R

C
56

no
ve

l
N

M
_1

98
07

5
7

c.
40

7_
40

8i
ns

T
p.

Se
r1

36
fs

15
:7

21
91

03
8

15
q2

3
M

Y
O

9A
no

ve
l

N
M

_0
06

90
1

25
c.

38
06

G
>

A
p.

A
rg

12
69

G
ln

22
:2

62
24

87
7

22
q1

2.
1

M
Y

O
18

B
rs

37
31

13
81

6
N

M
_0

32
60

8
15

c.
29

21
G

>
A

p.
A

rg
97

4H
is

19
:1

68
60

39
6

19
p1

3.
11

N
W

D
1

rs
14

88
48

88
0

N
M

_0
01

00
75

25
6

c.
94

3C
>

T
p.

A
rg

31
5C

ys

11
:1

71
72

05
1

11
p1

5.
1

PI
K

3C
2A

no
ve

l
N

M
_0

02
64

5
3

c.
13

21
T

>
G

p.
C

ys
44

1G
ly

1:
20

23
98

00
4

1q
32

.1
PP

P1
R

12
B

rs
19

98
16

57
3

N
M

_0
01

16
78

57
6

c.
86

8G
>

A
p.

A
la

29
0T

hr

12
:1

20
65

02
60

12
q2

4
PX

N
no

ve
l

N
M

_0
25

15
7

11
c.

11
32

C
>

T
p.

A
rg

37
8C

ys

11
:6

71
72

59
1

11
q1

3.
2

T
B

C
1D

10
C

rs
20

10
81

45
5

N
M

_1
98

51
7

3
c.

18
8G

>
A

p.
A

rg
63

G
ln

15
:4

37
62

07
7

15
q1

5.
3

T
P5

3B
P1

rs
28

90
30

74
N

M
_0

01
14

19
79

11
c.

13
62

_1
36

7d
el

TA
T

C
C

C
p.

45
4_

45
6d

el
in

sP
ro

11
:5

53
73

97
11

p1
5.

4
U

B
Q

L
N

L
rs

79
33

55
7

N
M

_1
45

05
3

1
c.

27
5A

>
T

p.
A

sp
92

V
al

17
:3

35
04

14
8

17
q1

2
U

N
C

45
B

rs
13

79
17

89
7

N
M

_0
01

03
35

76
16

c.
21

38
G

>
A

p.
A

rg
71

3G
ln

Mol Psychiatry. Author manuscript; available in PMC 2017 April 12.


	Abstract
	Introduction
	Methods
	Sample selection
	Exome sequencing and bioinformatics analysis
	Variant annotation, filtering and interpretation
	Statistical analysis

	Results
	Sample characteristics
	Identification of rare, damaging, and disease-specific mutations

	Discussion
	Conclusions
	References
	Figure 1
	Table 1
	Table 2
	Table 3

