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Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease,
and many other disease types, cause cognitive dysfunctions such as dementia via the
progressive loss of structure or function of the body’s neurons. However, the etiology of
these diseases remains unknown, and diagnosing less common cognitive disorders such
as vascular dementia (VaD) remains a challenge. In this work, we developed a machine-
leaning-based technique to distinguish between normal control (NC), AD, VaD, dementia
with Lewy bodies, and mild cognitive impairment at the microBNA (miRNA) expression
level. First, unnecessary miRNA features in the miBRNA expression profiles were removed
using the Boruta feature selection method, and the retained feature sets were sorted using
minimum redundancy maximum relevance and Monte Carlo feature selection to provide
two ranking feature lists. The incremental feature selection method was used to construct a
series of feature subsets from these feature lists, and the random forest and PART
classifiers were trained on the sample data consisting of these feature subsets. On the
basis of the model performance of these classifiers with different number of features, the
best feature subsets and classifiers were identified, and the classification rules were
retrieved from the optimal PART classifiers. Finally, the link between candidate miRNA
features, including hsa-miR-3184-5p, has-miR-6088, and has-miR-4649, and
neurodegenerative diseases was confirmed using recently published research, laying
the groundwork for more research on miRNAs in neurodegenerative diseases for the
diagnosis of cognitive impairment and the understanding of potential pathogenic
mechanisms.
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1 INTRODUCTION

Dementia is one kind of cognitive impairment that is
characterized by difficulties in memory, language, and
behavior. Of all chronic diseases, dementia has become one of
the most important contributors to dependence and disability
(Lliffe et al., 2009). With an increasing number of morbidity,
dementia has become a great concern worldwide (Prince et al.,
2016). Unfortunately, there is no cure for this disease at present,
and earlier diagnosis and interventions to slow down the disease
progress are needed (Iliffe et al., 2009). Therefore, researchers
have focused on searching effective diagnostic methods, including
the identification of new biomarkers for diagnosis, and
interventions for dementia.

Although young-onset cases are increasingly recognized,
dementia is typically a condition that affects older people.
Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder and the most common cause of intellectual deficit in
populations older than 65 years. More than 20% of individuals
over 80 years of age are affected by AD, and epidemiological data
predict that there will be over 35 million AD patients by 2050
(Danborg et al., 2014). Other less common causes of cognitive
impairment include vascular dementia (VaD) whose definition
and distinction remain controversial, mixed dementia, and
dementia with Lewy bodies (DLB) (Mckeith et al, 1996).
Diagnosing dementia is markedly difficult due to its insidious
onset and diversity of other presenting symptoms such as
difficulty in making decisions (Kostopoulou et al., 2008).
Recent studies have reported that certain protein biomarkers
in cerebrospinal fluid (CSF) can be applied in the clinical
diagnosis of AD with a high predictive accuracy (De Meyer
et al., 2010). However, such biomarkers have their limitations
in differentiating AD from other types of dementia. In addition,
biomarkers in CSF require an invasive collection process; thus,
new methods through less invasive procedures are needed.
Considering that the diagnosis of dementia subtypes is
important to manage different therapies, disease courses, and
outcomes for different dementias (Robinson et al, 2015),
development of better biomarkers for AD and other dementias
will contribute to more accurate diagnosis for an early and
specialized treatment.

For a better clinical care in disease prevention and treatment,
several computational models have been developed to predict
dementia risk or subtypes (Stephan et al.,, 2010). For example,
Licher et al. (2019) reported a dementia risk model using
optimism-corrected C-statistics, which can be used to identify
individuals with high risk of dementia with an accuracy of 0.86.
This model was based on comprehensive clinical information
such as age, cognitive impairment, and lifestyle factors.
Interestingly, a novel machine learning prediction model for
dementia risk identification using the voice data from daily
conversations was proposed by Shimoda et al. (2021). They
applied three strategies including extreme gradient boosting,
random forest (RF), and logistic regression methods in
developing models, which had AUCs of 0.86, 0.88, and 0.89,
respectively. Li et al. (2019) reported a deep learning model for
the early prediction of AD wusing hippocampal magnetic

MicroRNA Signatures for Neurodegenerative Diseases

resonance imaging data, which achieved a concordance index
of 0.762. In addition, genetic data were taken into account to
improve the ability of the prediction model given that many genes
were confirmed to be associated with AD (Seshadri et al., 2010).
So far, models in dementia prediction lack molecular signatures
such as transcriptional expression, which can reflect the
underlying pathogenic mechanisms.

MicroRNAs (miRNAs) are small non-coding RNA molecules
of approximately 22 nucleotides in length, which have been
shown to regulate gene expression by binding to
complementary regions of messenger transcripts (Lagos-
Quintana et al, 2001). The detection of circulating miRNA
levels has been proposed to be a potential diagnostic tool for a
number of diseases (Gilad et al., 2008). MiRNAs play a crucial
role in the control of neuronal cell development (Mistur et al.,
2009). The alteration of the expression of some miRNAs has been
shown to relate to various neurological diseases including AD.
For example, miR-137, miR-181c, and miR-29a/b were reported
to be involved in AD by modulating ceramide levels (Geekiyanage
and Chan, 2011). The downregulation of miR-16, miR-195, and
miR-103 was observed in the brain of AD patients, and these
miRNAs were shown to target the (-site amyloid precursor
protein cleaving enzyme 1 (BACEI), which is involved in
amyloid plaque formation (Bekris et al., 2013). Cogswell et al.
found significantly decreased expression of miR-9, which
regulates neuronal differentiation, in the human hippocampus
of AD patients (Cogswell et al, 2008; Coolen et al, 2013).
Different expression patterns of miRNAs have also been found
between AD and other neurodegenerative diseases; for example,
miR-15a is uniquely elevated in the plasma of AD patients (Bekris
et al,, 2013). Therefore, miRNAs in the blood or serum are easily
accessible and noninvasive biomarkers for diagnosing dementia.
In addition, some miRNAs can be used to distinguish different
subtypes of dementia for more precise treatment.

In this study, on the basis of the miRNA expression profiles
from 1601 serum samples (Shigemizu et al., 2019a), including AD
cases, VaD cases, DLB cases, mild cognitive impairment (MCI)
cases, and normal controls (NC), we computationally analyzed
such expression data. The data was first analyzed by Boruta
(Kursa and Rudnicki, 2010), irrelevant miRNA features were
excluded. Remaining miRNA features were evaluated by
minimum redundancy maximum relevance (mRMR) (Peng
et al., 2005) and Monte Carlo feature selection (MCFS)
(Draminski et al., 2007), respectively. Two feature lists were
generated, which were fed into incremental feature selection
(IFS) (Liu and Setiono, 1998), incorporating random forest
(RF) (Breiman, 2001) or PART (Frank and Witten, 1998). As
a result, we identified the crucial miRNAs that show the most
relevance to the distinction of four different types of dementia
and NC, suggesting that these selected miRNAs may play crucial
roles in neuronal development. Furthermore, we also identified
interesting classification rules, which suggested different miRNA
expression patterns on different dementia subtypes and NC.
These results can guide further research about the interaction
between miRNAs and neurodegenerative diseases. Finally, we
constructed two optimal classifiers with high accuracy to group
individuals into the corresponding categories (four dementia
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TABLE 1 | Sample size for normal control and four neurodegenerative diseases.

Disease case Sample size

Alzheimer’s disease (AD) 1,021
Vascular dementia (VaD) 91
Dementia with lewy bodies (DLB) 169
Mild cognitive impairment (MCI) 32
Normal control (NC) 288

subtypes and NC). They can be useful tools for the precise
diagnosis of dementia subtypes. Our study highlights the
potential application of miRNAs in dementia subtype
diagnosis, indicating that the prediction framework using
serum miRNA expression data can provide feasible therapeutic
and diagnostic targets for dementia.

2 MATERIALS AND METHODS
2.1 Dataset

In this study, the miRNA expression profiles were obtained from
the Gene Expression Omnibus database under the accession code
GSE120584 (Shigemizu et al., 2019a; Shigemizu et al.,, 2019b;
Asanomi et al., 2021). These expression profiles include 1,601
samples, which are composed of AD cases, VaD cases, DLB cases,
MCI cases, and NC. The sample sizes of different cases are
provided in Table 1. A total of 2547 miRNAs were identified
in the expression profiles. Subsequently, we performed a
computational workflow to detect key miRNA features and
expression patterns in the expression profiles.

2.2 Boruta Feature Filtering

Aside from the time and energy costs of dealing with a high
number of features, most machine learning algorithms work
better when the number of predicting features employed is
kept as small as possible. We thus applied a Boruta analysis
on the miRNA expression profiles to reduce feature dimension
and retain important miRNA features (Kursa and Rudnicki,
2010). Boruta is a feature selection approach based on the RF
model to access feature importance (Z-score) by comparing the
relevance of real features with shadow features, which are
randomly shuffled from original features. The python
application ~ from  https://github.com/scikit-learn-contrib/
boruta_py with default parameters was used for Boruta feature
selection in this analysis.

2.3 Feature Ranking

2.3.1 Minimum Redundancy Maximum Relevance
The mRMR algorithm (Peng et al., 2005) is an entropy-based
feature selection method that calculates the mutual information
(MI) between a group of features and class variable. The MI is
defined as follows:

P(x’y) d (1)

I(X;Y) = JJ p(x y)logp(x)p 0) xdy
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where p (x, y) is the joint probability density function of X and Y,
p(x) and p(y) are the marginal probability density functions of
X and Y, respectively. In the mRMR method, the correlation (D)
between features and target label and the redundancy (R) between
features and other features are computed as follows:

1

= ] Xiesl(xﬁc), (2)

where S is the selected features and I (x;;c) is the MI between
feature x; and the target label c.

1
R= W Zx,',xjes I(X,‘,Xj), (3)

where I(x;, x;) is the MI between feature x; and feature x;. To
repeatedly add a new feature to a feature subset S, the following
objective function is optimized:

max® (D, R), ® =D —R, (4)

In this study, we used the mRMR program acquired from
http://home.penglab.com/proj/mRMR/ to rank all the features
obtained by Boruta analysis, resulting in an mRMR feature list.

2.3.2 Monte Carlo Feature Selection

The MCFS method (Draminski et al., 2007) evaluates the feature
importance by creating numerous decision trees. More
specifically, for a dataset with M features, MCFS first
randomly constructs s feature subsets with m features (m <<
M). For each feature subset, t decision trees are constructed using
the bootstrap sampling method. Finally, sXt classification trees
are constructed and evaluated. The RI score of feature g based on
these classification trees is defined as follows:

RI, = Zt (wAce)* Y IG(ng(T))<VMlng(T)> (5)

= el no.int

where wAcc is the weight accuracy of the decision tree T;
IG(ny (7)) denotes the gain information of node n,(7);
(no.inng (7)) and (no.int) represent the number of samples
of node n,(r) and the number of samples in tree T,
respectively; and u and v are parameters that are
recommended to be 1. After MCFS processing, all features are
ranked in a feature list in descending order of RI values. In this
study, we applied the MCFS program developed by Draminski
et al., which can be accessed at http://www.ipipan.eu/staff/m.
draminski/mcfs.html, for feature sorting, and the parameters
were set to default values. The obtained feature list was called
MCES feature list.

2.4 Incremental Feature Selection

In the previous analysis, the mRMR and MCEFS feature ranking
lists were obtained, but it was not possible to determine the
optimal feature subsets for classifying disease cases. Thus, the IFS
method (Liu and Setiono, 1998) was used in this study to identify
the best number of features in a feature list for a specific
classification algorithm. IFS first generates a series of feature
subsets on the basis of a step size. For example, if the step size
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equals to 1, the first feature subset includes one top-ranked
feature, the second feature subset is made up of two top-
ranked features, and so on. Then, the sample datasets
represented by these feature subsets are trained by one
classification algorithm (RF or PART in this study). The
classifiers are evaluated by using 10-fold cross-validation
(Kohavi, 1995; Tang and Chen, 2022; Yang and Chen, 2022).
The evaluation metrics (e.g., Matthews correlation coefficient
[MCC]) for each classifier with different number of features
are obtained and used to plot IFS curves, where the X-axis is
the number of features and the Y-axis is the evaluation metrics. In
the end, the optimal feature subsets that achieves the best
classification results are identified, and the optimal classifiers
are built.

2.5 Classification Algorithms

2.5.1 RF

The RF (Breiman, 2001) is an ensemble learning algorithm that
takes decision trees as the base learner. It first produces a number
of training sets from the original dataset using a bootstrapping
method with randomized put-back sampling. These training sets
are then used to train the decision tree model individually, and
the generated decision trees are formed into a forest. Lastly, the
final result is determined by aggregating the voting results of
many tree classifiers. As RF is powerful, it is always an important
candidate for constructing efficient classifiers (Chen et al., 2017;
Zhao et al., 2018; Chen et al., 2021; Li X. et al., 2022; Li Z. et al.,
2022; Chen et al., 2022; Ding et al., 2022). In this study, the RF
program in Weka (Frank et al., 2004) was employed with default
parameters.

2.5.2 PART

In contrast to black-box models, such as RF, rule learning models
may learn rules from data to make discriminations on unknown
data, and these rules are commonly expressed in an IF-THEN
structure, which clearly expresses the patterns existing in the data.
PART is a rule-generating method that combines the Ripper and
C4.5 approaches without the need for global optimization (Frank
and Witten, 1998). It uses a separate-and-conquer technique to
develop several partial decision trees, in which a rule is
constructed each time. Then, the instances it covers are
eliminated, and rules are created recursively for the remaining
instances until the end. The PART program in WEKA was used
with the default parameters in this investigation.

2.6 SMOTE

The distribution of samples under five cases is uneven, which may
lead to the poor performance of the established classifiers. To
address this issue, we applied SMOTE methods to increase the
sample size of the minority class, which is an oversampling
technique presented by Chawla et al. (2002). SMOTE
generates synthetic samples randomly between samples of a
minority class and their neighbors on the basis of the
k-nearest neighbor concept. The SMOTE algorithm in Weka
software was used to process the miRNA expression profiles in
this investigation, resulting in an equal number of samples in each
class. It was necessary to pointed out that SMOTE was only used
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in evaluating the performance of classifiers in the IFS method.
Pseudo samples generated by SMOTE did not participate in the
mRMR or MCFS methods as they can influence the feature
selection results.

2.7 Performance Measurement

For the 10-fold cross-validation, we used the MCC as a predictive
metric for the evaluation of classifiers. In this study, considering
that the analyzed miRNA dataset includes multiple disease cases,
the multi-categorical version of MCC (Gorodkin, 2004) was
applied and calculated as follows:

cov(X,Y)

MCC =
Veov (X, X)cov(Y,Y)

(6)

where the binary matrix X represents the prediction results, the
binary matrix Y indicates the real class label, and cov(X,Y)
stands for the covariance of the two matrices. The MCC ranges
from —1 to 1, with a value closer to 1 indicating stronger model
performance.

To fully display the performance of classification models, we
also calculated other measurements, including individual
accuracy on each class and overall accuracy (ACC). For one
class, its individual accuracy was defined as the proportion of
correctly predicted samples in this class. The ACC was defined as
the proportion of correctly predicted samples.

3 RESULTS

3.1 Feature Selection Results on miRNA

Expression Profiles

A flow chart of the present study is illustrated in Figure 1. We
started by removing unnecessary features using the Boruta feature
selection method, and the 108 retained features are listed in
Supplementary Table S1.

Then, using mRMR and MCEFS, remaining 108 features were
ranked according to feature importance, yielding two ranked
feature lists (mRMR feature list and MCFS feature list), as shown
in Supplementary Table S1. Top ten miRNA features in these
two lists were investigated, as shown in Figure 2. Four miRNAs,
including hsa-miR-3184-5p, hsa-miR-1227-5p, hsa-miR-3181,
and hsa-miR-6088, appeared in the top 10 features yielded by
two methods, highlighting their visibility and importance. The
biological roles of these miRNA features will be explored in
Section 4.

3.2 IFS Results on the mRMR Feature List

Based on the mRMR feature list, it was fed into the IFS method
with a step size of 1, returning 108 feature subsets. For example,
the first feature subset includes the first feature, the second feature
subset includes the first two features, and so on. The RF and
PART classifiers were trained using the sample set consisting of
these feature subsets, and the performance was assessed using 10-
fold cross-validation. Obtained measurements are provided in
Supplementary Table S2. To clearly display the performance of
classifiers on different feature subsets, an IFS curve was plotted
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GEO Database

Data Collection Feature selection Incrememtal feature selection
Boruta feature selection d %

mRMR feature MCFS feature
subsets subsets

{ miRNA expression J

profiles : [ Random forest ] [ PART ] :
E{> A4 \ 2 5 5
e l __________________ . : SMOTE 10-fold cross- :
: : mRMR MCFS :l | [ validation \ '
: Information  Labels : O ),
i H =
1 1601 samples O Alzheimer’sdisease (AD) ! Ve N\
| 2347 miRNA features O Vascular Dementia (VaD) : [ Essential miRNA features ]
E O Dementia with lewy Badles(DLB)E
i O Mild cognitive impairment (MCI) ! [mRMR feature list] ‘ MCFS feature list ] [ Best classifiers ]
1 O Nature control (NC) !
L : [ Classification rules ]
N Y 4 N J

and PART algorithms.

FIGURE 1 | Analysis flowchart for this study, which consists of three main steps: 1) miRNA dataset collection; 2) filtering and ranking of miRNA features in the
dataset using Boruta, mRMR, and MCFS; 3) determining the essential miRNA features and building the best classifiers and classification rules using IFS method with RF

Top ten miRNA features
yielded by mRMR

FIGURE 2 | Venn diagram to show top ten miRNA features obtained by mRMR and MCFS methods. Four miRNA features are commonly identified.

op ten miRNA features
yielded by MCFS

for each classification algorithm, which is shown in Figure 3A.
When RF was selected as the classification algorithm in the IFS
method, the highest MCC was 0.683, which was obtained by using
top 106 features. Accordingly, the optimal RF classifier can be
built with these features. The ACC of such classifier was 0.802, as
listed in Table 2. As for PART, the highest MCC was 0.359. It was
obtained by using top 72 features, with which the optimal PART
classifier can be built. The ACC of such PART classifier was 0.570,
as listed in Table 2. Clearly, the optimal PART classifier was

much inferior to the optimal RF classifier. As for their
performance on five classes, individual accuracies are shown in
Figure 4A. Evidently, the optimal RF classifier provided better
performance than the optimal PART classifier on all classes. Both
MCI and VaD have an individual accuracy of over 0.900 in the
optimal RF classifier.

Although the optimal RF classifier gave good performance, it
was not very proper to do large-scale tests because lots of miRNA
features involved. In view of this, we carefully checked the IFS
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A
IFS curves of the mRMR method
0.7- [106, 0.683]
0.6-
0.5-
© 0.4-
4 R 2
s 1722, 03559
0.3-
0.2-
0.1
i 11 21 31 41 51 61 7 81 91 101
Number of features
B IFS curves of the MCFS method
0.7- [106, 0.681]
0.6-
0.5-
0.4-
8 [89, 0.360]
=
0.3-
0.2-
0.1-
003 11 21 31 41 51 61 7 81 91 101
Number of features
— PART — Random forest
FIGURE 3] IFS curves with different number of features in RF and PART under the mRMR and MCFS feature lists. (A). With the mRMR feature list, RF reaches the
highest point (MCC = 0.683) with the top 106 features, and PART obtains the highest MCC (0.359) when using the top 72 features. The RF with top 41 features also
provides high performance (MCC = 0.587). (B). With the MCFS feature list, RF and PART reach the highest points (MCC = 0.681 and 0.360, respectively) at the top 106
and 89 features. The RF with top 31 features also yields high performance (MCC = 0.575).

— : results with RF and found that RF provided the MCC of 0.587
'rl'nl-;?AL:fia!tS;rf"oSr{nance of key classifiers with different algorithms based on the when top 41 features were used (Figure 3 A). This classifier
‘ yielded the ACC of 0.743 (Table 2). Its performance on five

Classification algorithm Number of features ACC MCC  classes is shown in Figure 4A. Although it provided lower
Random forest 106 0.802 0esy  performance th.an the optimal RF classifier, it was n.luch faster
Random forest 41 0.743 0587  as much less miRNA features were needed. This classifier can be
PART 72 0.570 0.359  an efficient tool to identify four dementia subtypes and NC.
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VaD DLB

NC MCI

—Optimal RF classifier
-RF classifier with top 41 features
Optimal PART classifier

B AD

FIGURE 4 | Performance of the key RF and PART classifiers on each class based on mRMR (A) and MCFS (B) feature lists. AD, VaD, DLB, MCl, and NC stand for
Alzheimer’s disease, Vascular dementia, Dementia with Lewy bodies, Mild cognitive impairment and Normal control, respectively.

VaD DLB

NC MCI

—Optimal RF classifier
RF classifier with top 31 features
Optimal PART classifier

3.3 IFS Results on the MCFS Feature List

For the MCFS feature list, the same procedures were
conducted. Detailed performance of RF and PART on
different number of features is listed in Supplementary
Table S3. Likewise, an IFS curve was plotted for each
classification algorithm to display the performance of them
on different feature subsets, as illustrated in Figure 3B. It can
be observed that the highest MCC for RF was 0.681, which was
obtained by using top 106 features. Thus, we can build the
optimal RF classifier with these features. The ACC of such
classifier was 0.803, as listed in Table 3. Its performance on
each class is shown in Figure 4B. Compared with the
performance of the optimal RF classifier in Section 3.2,
their performance was almost equal. As for PART, its
highest MCC was 0.360. It was obtained by using top 89
miRNA features. Accordingly, the optimal PART classifier
was built using these features. The ACC of this classifier
was 0.555 (Table 3). The performance of this classifier on
each class is shown in Figure 4B. Evidently, this PART
classifier provided equal performance to the optimal PART
classifier in Section 3.2. However, they were all inferior to the
optimal RF classifiers.

Similar to the optimal RF classifier in Section 3.2, this optimal
RF classifier also need several features. It was necessary to
discover another RF classifier with a higher efficiency. After
careful checking, we found that RF classifier with top 31
features can produce the MCC of 0.575 (Figure 3B) and ACC

TABLE 3 | Performance of key classifiers with different algorithms based on the
MCFS feature list.

Classification algorithm Number of features ACC MCC
Random forest 106 0.803 0.681
Random forest 31 0.713 0.575
PART 89 0.555 0.360

of 0.713 (Table 3). Its performance on five classes is shown in
Figure 4B. Clearly, it was inferior to the optimal RF classifier.
However, it had a higher efficiency because it used much less
features. Thus, it can be a useful tool to identify four dementia
subtypes and NC. Furthermore, the performance of such RF
classifier and RF classifier with top 41 features yielded by mRMR
method was almost equal.

3.4 miRNA Expression Patterns Extracted
From the Optimal PART Classifiers

Although the performance of two optimal PART classifier was
much lower than two optimal RF classifiers, they can give
interpretable rules, which can help us uncover the difference
between four dementia subtypes and NC at miRNA level. For the
mRMR feature list, the optimal PART classifier used top 72
features. With these features, PART was applied to all
samples, resulting in 245 rules. These rules are provided in
Supplementary Table S4. Likewise, for the MCFS feature list,
top 89 features were adopted in the optimal PART classifier. 251
decision rules were obtained by applying PART on these features,
which are also available in Supplementary Table S$4.
Accordingly, we accessed two groups of decision rules. For
each group, each class received some rules. The number of
rules for each class on each group is shown in Figure 5. With
the exception of MCI, which has a relatively small number of
rules, the numbers of rules of other classes were quite
considerable. Some key expression rules are listed in Tables 4,
5 and the relevance of these rules in differentiating neurological
disorders will be reviewed in Section 4.1.

3.5 Comparison of Optimal Classifiers

Without SMOTE

In the IFS method, we employed SMOTE to reduce the influence
of imbalanced problem. To elaborate the utility of SMOTE, the
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73 74
° 56 56
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FIGURE 5 | Number of rules generated by the optimal PART classifiers based on mRMR and MCFS feature lists. AD, VaD, DLB, MCl, and NC stand for Alzheimer’s
disease, Vascular dementia, Dementia with Lewy bodies, Mild cognitive impairment and Normal control, respectively.

RF and PART classifiers mentioned in Sections 3.2, 3.3 were
tested when SMOTE was not adopted. All classifiers were assessed
by 10-fold cross-validation. The ACCs and MCCs of these
classifiers are listed in Table 6. Compared with the ACCs and
MCCs listed in Tables 2, 3, MCC greatly decreased by at least
19%, even over 30% for the optimal RF classifiers. The ACC also
decreased, but the degree was much smaller than that of the
MCC. As the dataset was imbalanced, classifiers directly built on
such dataset may be apt to the major classes (AD and NC in this
study). Individual accuracies on these classes may be high,
whereas individual accuracies on other classes may be low.
The individual accuracies shown Figure 6 confirmed this fact.
The individual accuracies on AD were very high, followed by
those on NC, whereas the individual accuracies on other three
classes were very low, even zero. By employing SMOTE, the
individual accuracies on AD decreased and those on other classes
greatly increased, improving the entire performance of the
classifiers. All these indicated the utility of the SMOTE.

4 DISCUSSION

The alteration of miRNA expression has been shown to relate
with many pathological processes, including nervous system
disorders. In this study, using the expression data of serum
miRNAs, two optimal classifiers were constructed with high
accuracy to identify the expression features of miRNAs
through mRMR and MCFS method. We identified several
putative miRNA biomarkers, which displayed strong relevance
to the classification, suggesting that these miRNAs have specific

effect in different types of neurodegenerative diseases.
Additionally, the optimal PART classifiers yielded by mRMR
and MCEFS feature lists were then applied to generate 245 and 251
decision rules, respectively, which can classify each sample into
one of five categories, namely, AD, VaD, DLB, MCJ, and NC. In
this section, we mainly focused on several optimal and common
features identified both by mRMR and MCFS methods,
considering that common features are much more important
in the classification. We examined the selected features and
decision rules and searched for the function and target genes
of each miRNA using miRBase, an online database of miRNA
sequences and annotation (Kozomara et al, 2018). For some
miRNAs that have never been reported, we conducted
bioinformatic analysis using miRDB for miRNA target
prediction and functional annotation (Liu and Wang, 2019).
Through literature review, several pieces of experimental
evidence have been found to support the reliability of our
prediction.

4.1 Analysis of Decision Rules Identified by
mRMR and MCFS Methods

The most impactful feature in our computational analysis is miR-
3184-5p, the mature miRNA product originating from the
stem-loop  precursor miRNA  through cleavage by
ribonuclease. As demonstrated by miRNA array experiment in
multiple system atrophy disorders, a downregulated expression of
miR-3184-5p was found in the FFPE sample of pons compared
with controls, which indicates that this miRNA molecule plays an
important role in normal brain development and may contribute

Frontiers in Genetics | www.frontiersin.org

April 2022 | Volume 13 | Article 880997


https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Lietal

MicroRNA Signatures for Neurodegenerative Diseases

TABLE 4 | Some important rules extracted by the optimal PART classifier under the mRMR feature list.

Index Decision Rules

1 (hsa-miR-6088 < 10.1065) & (hsa-miR-520f-5> 2.0854) & (hsa-miR-6836-3 <8.6821) & (hsa-miR-6811-5>1.8782) & (hsa-
miR-4667-5> 6.1925) & (hsa-miR-6823-5 > 1.8811) & (hsa-miR-7851-3> 5.1826) & (hsa-miR-4667-5 <7.1244) & (hsa-
miR-6756-5 <8.7714)

2 (hsa-miR-6088 < 9.9516) & (hsa-miR-4327 > 7.8591) & (hsa-miR-6861-5> 6.5728) & (hsa-miR-4485-5 <6.5037) & (hsa-
miR-3622a-3> 4.5067) & (hsa-miR-6875-5 <10.0546) & (hsa-miR-7854-3 <4.8701)

3 (hsa-miR-208a-5> 5.8741) & (hsa-miR-548f-3 <2.1097) & (hsa-miR-4667-5> 6.7261) & (hsa-miR-6761-3> 4.7880) & (hsa-
miR-520f-5 <1.8849)

4 (hsa-miR-208a-5> 5.8741) & (hsa-miR-548f-3 <2.1097) & (hsa-miR-4649-5>10.8160) & (hsa-miR-3622a-3 <4.4907) &
(hsa-miR-6070 > 1.8843) & (hsa-miR-663b < 8.7018)

5 (hsa-miR-520f-5 <1.8945) & (hsa-miR-6840-3 <7.6738) & (hsa-miR-185-5 <2.9551)

Class

Normal control

Alzheimer’s disease

Vascular dementia

Dementia with lewy bodies

Mild cognitive impairment

TABLE 5 | Some important rules extracted by the optimal PART classifier under the MCFS feature list.

Index Decision rules Class

1 (hsa-miR-6088 < 10.1065) & (hsa-miR-520f-5> 2.0854) & (hsa-miR-6836-3 <8.6821) & (hsa-miR-6811-5> 1.8782) & (hsa- Normal control
mMiR-4667-5> 6.1925) & (hsa-miR-4746-3 <7.4409) & hsa-miR-3917 > 5.1453) & (hsa-miR-6070 < 2.9233) & (hsa-miR-
6869-3>1.8805)

2 (hsa-miR-6088 < 9.9516) & (hsa-miR-4327 > 7.8591) & (hsa-miR-1292-3> 4.0332) & (hsa-miR-6861-5> 6.5728) & (hsa- Alzheimer’s disease
mMiR-125b-1-3 < 4.7145) & (hsa-miR-128-1-5> 7.0405) & (hsa-miR-7854-3 <4.8762) & (hsa-miR-6088 < 9.7663) & (hsa-
miR-4506 < 3.6756)

3 (hsa-miR-520f-5 <1.8945) & (hsa-miR-4485-3> 1.8928) & (hsa-miR-3184-5 <8.4938) & (hsa-miR-4496 > 1.8938) & (hsa- Vascular dementia
miR-6756-5 <8.5013) & (hsa-miR-548f-3 <1.8935) & (hsa-miR-6822-5> 3.4091) & (hsa-miR-4472 < 6.3202) & (hsa-miR-
1914-5 <4.1342) & (hsa-miR-6776-3> 4.0568) & (hsa-miR-5480-3> 1.8798)

4 (hsa-miR-208a-5> 5.8741) & (hsa-miR-548f-3 <2.1097) & (hsa-miR-4667-5 <6.7261) & (hsa-miR-4649-5>10.8290) & Dementia with lewy bodies
(hsa-miR-195-3> 1.8967)

5 (hsa-miR-520f-5 <1.8945) & (hsa-miR-4485-3> 1.8928) & (hsa-miR-1254 > 6.9170) & (hsa-miR-197-5> 7.3729) Mild cognitive impairment

in the prevention of neurodegenerative disorders (Wakabayashi
et al,, 2016). In another research of spinocerebellar ataxia type 3
(SCA3), which is known as a highly heterogeneous
neurodegenerative  disorder, significantly =~ downregulated
expression of miR-3184 was observed in plasma from SCA3
patients compared with healthy controls (Hou et al, 2019).
Therefore, we concluded that miR-3184-5p is necessary for the
normal function of the brain, and the depletion of this molecule
will lead to certain neurodegenerative disorders. Consistent with
this finding, several decision rules in which miR-3184-5p is
implicated show similar prediction that low expression levels
of miR-3184-5p indicate AD and VaD categories, while relatively
high expression levels indicate healthy controls.

In many decision rules that indicate the AD category, a
relatively high expression of miR-6088 is required for the
classification. Although little has been known about this
miRNA, we found a report that miR-6088 displays a
significantly upregulated expression in patients with stroke
compared with NC (Gui et al,, 2019). Considering that stroke
is a brain disease induced by deficient blood supply and will lead
to nervous system injury, we inferred that miR-6088 may also
participate in the process of neurodegeneration. Additionally,

miR-6088 was identified as one of the differentially methylated
genes with high relevance to Parkinson’s disease and
neurodegeneration (Marsh et al., 2016), which provides strong
support for the crucial role of miR-6088 in pathological processes
of the nervous system.

Another important miRNA (miR-4327) is significantly
associated with dementia, especially AD, through literature
review. In the decision rules, we found that high expression of
miR-4327 will lead to the classification of dementia, while
relatively low expression indicates the normal cohort. As
demonstrated by a miRNA expression profile experiment with
Down syndrome, the expression level of miR-4327 was
significantly higher in the case group than in the control
group, suggesting that dysregulated miR-4327 may be related
to abnormal development (Karaca et al., 2018). Individuals with
Down syndrome usually show characteristics of damaged brain
and intellectual disability, suggesting that miR-4327 affects brain
development and results in several pathological processes
including neurodegeneration. Moreover, using miRDB website
tools, we found that the OTUDI gene is predicted as one of the
target genes of miR-4327. OTUDI encodes a deubiquitinase, and
mutations in this gene were reported to be associated with the
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TABLE 6 | Performance of key classifiers without SMOTE.
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Feature selection method Classification algorithm Number of features ACC McCC
mRMR Random forest 106 0.691 0.323
Random forest 41 0.690 0.313
PART 72 0.550 0.158
MCFS Random forest 106 0.690 0.319
Random forest 31 0.691 0.317
PART 89 0.547 0.162
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FIGURE 6 | Performance of the key RF and PART classifiers without SMOTE. (A). Classifiers obtained by using mRMR feature list; (B). Classifiers obtained by using
MCFS feature list. AD, VaD, DLB, MCI, and NC stand for Alzheimer’s disease, Vascular dementia, Dementia with Lewy bodies, Mild cognitive impairment and Normal
control, respectively.

development of neurological phenotypes including ataxia with
cerebellar atrophy and dementia (De Roux et al,, 2016). On the
basis of this finding, OTUDI is necessary for the normal
neurological function, while excessive miR-4327 levels may
inhibit OTUDI transcription and break the normal expression
status. Therefore, the high level of miR-4327 is a risk indicator of
dementia, which is consistent with our prediction model.

The high expression levels of miR-208a-5p display a strong
indication to the categories of dementia in decision rules,
suggesting that this miRNA plays a potential role in the
associated processes. Several studies have described the role of
miR-208a in cardiovascular diseases; for example, circulating
levels of miR-208a are significantly elevated in patients with
acute coronary syndrome (De Rosa et al, 2011). MiR-208a

was undetectable in the blood from healthy individuals, while
upregulated expression was observed in the plasma of patients
with acute myocardial infarction (Wang et al., 2010). Transgenic
overexpression of miR-208a in heart tissue led to hypertrophic
growth and arrhythmias in mice (Callis et al., 2009), providing
reliable experimental evidence regarding the key function of miR-
208a in cardiovascular diseases. Healthy brain functioning is
dependent on adequate blood supply, while certain vascular
diseases will cause brain injury such as VaD. We inferred that
high expression of miR-208a first induces disorders in the
vascular system that gradually develop into VaD, which is
consistent with the decision rules. Our study is the first to
present the role of miR-208a in neurodegenerative diseases,
and this will contribute to the clinical diagnosis of dementia.
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Top 41 miRNA features
yielded by mRMR metho

Top 31 miRNA features
yielded by MCFS method

FIGURE 7 | Venn diagram to show top 41 miRNA features obtained by
mRMR method and top 31 miRNA features obtained by MCFS method.
Nineteen miRNA features are commonly identified.

The high expression of miR-520f, one of the identified features
implicated in both decision rules, indicates dementia. MiR-520f
was found to be significantly increased in the CSF of patients with
Huntington’s disease compared with controls, suggesting that
miR-520f can be used as a CSF biomarker for evaluating
treatments (Reed et al, 2018). Huntington’s disease is a
neurodegenerative disease typically diagnosed in midlife, and
this disease shares similar neuropathologic phenotypes to
dementia. Thus, we inferred that an elevated level of miR-520f
may also influence the pathologic processes of dementia. In
addition, miR-520f is also significantly upregulated in multiple
system atrophy, and its expression is negatively correlated with
the target gene AKT3 (Kim et al., 2019). AKT3 has been reported
to be related to neuronal insulin resistance in neurodegenerative
diseases (Schubert et al., 2004). Taken together, we concluded that
miR-520f acts as a transcriptional inhibitor of AKT3, and AKT3
reduction will cause the neuropathologic processes of dementia.

The expression level of miR-1227 can be efficiently used to
distinguish the types of dementia and NC in the prediction
model, which suggests that miR-1227 is another important
functional molecule involved in neurodegeneration. On the
basis of a rabbit AD model, the specific expression pattern of
miR-1227 was observed, which showed similar profiles to those
observed in human AD samples (Liu et al.,, 2014), indicating the
potential role of miR-1227 in AD and other dementia diseases. A
recent study reported that LINC00639, the target gene of miR-
1227, was downregulated in HIV-associated dementia (HAD), a
kind of cognitive impairment induced by HIV infection (Li et al.,
2018). Even though the pathogenesis of HAD remains unclear,
the aberration of certain miRNAs such as miR-1227 can provide
novel direction for further research. Similarly, increased
expression of miR-1227 was detected in CSF from patients
with intracerebral hemorrhage (Shi et al,, 2018). In summary,
miR-1227 displays distinct expression profiles in many brain
injury disorders or dementia, suggesting that it may be an
auxiliary diagnostic biomarker for these diseases. These
findings confirmed the reliability of our decision rules and

MicroRNA Signatures for Neurodegenerative Diseases

implied that the expression criteria of identified miRNAs can
be used in disease risk classification and clinical diagnostic.

4.2 Analysis of the Top Features Identified
by mRMR and MCFS Methods

In addition to the quantitative analysis discussed above, we have
also identified many miRNAs that can be used as indicators for
dementia. As the RF classifier with less features provided slight
lower performance than the corresponding optimal RF classifier,
miRNA features used in these two RF classifiers with less features
were investigated in this section. Based on the mRMR feature list,
41 miRNA features were obtained, whereas 31 miRNA features
were accessed from the MCFS feature list. After taking the union
of these two feature subsets, 53 different miRNA features were
obtained, which are listed in Supplementary Table S5. A Venn
diagram was plotted to show the distribution of these miRNA
features in two feature sets, as shown in Figure 7. It can be
observed that nineteen miRNA features were commonly
identified. These features were thought to be more reliable
than others. Some of them were discussed as follows.

MiR-4649-5p exhibits an upregulated expression profile in
neurodegenerative disorders (Viswambharan et al, 2017). In
amyotrophic lateral sclerosis (ALS), which is a fatal
neurodegenerative disease, increasing concentration of miR-
4649-5p was observed in the plasma of ALS patients,
suggesting that this miRNA can be used in the diagnosis of
ALS (Takahashi et al., 2015). On the basis of the miRDB database,
we found that miR-4649-5p can target INSYN2, a protein coding
gene implicated in inhibitory synapses. This synaptic inhibition is
fundamental for the functioning of the central nervous system,
shaping and orchestrating the flow of information through
neuronal networks to generate a precise neural code (Uezu
et al,, 2016). Therefore, miR-4649-5p plays an important role
in neural development, which confirms the reliability of our
computational analysis.

MiR-3181 is one of the most related features in our
computational analysis, and many studies indicate the close
association between this miRNA and vascular diseases.
Significantly upregulated miR-3181 was detected in endothelial
cells treated with acrolein, which is a component of cigarette
smoke and has been implicated in the development of vascular
disease, suggesting that this miRNA may improve the diagnosis of
vascular disease induced by environmental pollutants (Lee et al.,
2015). As discussed previously, the development of vascular
disease may be accompanied by brain injury such as VaD,
suggesting the role of miR-3181 in dementia. The TCLIB
gene, which is predicted as one target of miR-3181, showed
significant differential expression between Parkinson’s disease
patients and NC (Infante et al., 2015). TCLIB is also an activator
of Akt, a kinase involved in neuron survival (Hashimoto et al.,
2013), and abnormal Akt signaling has been reported to induce
dopamine neuron degeneration (Greene et al., 2011).

The expression profile of miR-128-1-5p is also a strong
indicator for the classification in our analysis. MiR-128 is a
neuronally enriched miRNA that plays a crucial role in
neuronal differentiation and survival (Guidi et al., 2010). The
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expression of miR-128 is increased in the hippocampus of AD
patients (Lukiw and Pogue, 2007). In addition, upregulated miR-
128 can cause a decreased expression of SNAP25 and lead to the
perturbation of neuronal activity (Eletto et al, 2008). These
results support the role of miR-128 in neurodegenerative
disease. Using RNA sequencing techniques, miR-128 showed
decreased expression in Huntington’s disease (Marti et al,
2010). MiR-128 displays distinct expression patterns in
different neurodegenerative diseases, indicating its potential
capability of distinguishing varied disease subtypes and
confirming the ability of our prediction model to classify
different dementias.

Besides above commonly identified miRNAs, some miRNAs
identified by exact one feature selection method (mRMR or
MCES) were also quite essential. For example, miR-185-5p is
identified as one of the most relevant features that contribute to
the classification. MiR-185 has been suggested to participate in
the pathogenesis of major depression, a psychosocial impairment,
and finally lead to suicide. It was thought to influence neuronal
and circuit formation by regulating target downstream gene,
TrkB-T1, which has been associated with suicidal behavior
(Serafini et al, 2014). This finding suggests the key role of
miR-185-5p involved in nervous system development,
physiology, and diseases.

In this section, we discussed the verified or speculative
functions of miRNAs identified by our computational analysis.
All these miRNAs have been confirmed to contribute to
distinguishing patients with dementia from healthy and varied
disease subtypes. Strikingly, many miRNAs related to vascular
diseases usually play a putative role in neurodegenerative
diseases. This finding suggests the interaction between these
two distinct disease types. In summary, this study presented a
novel computational approach to identify potential biomarkers
for diagnosis and therapy, and also set up a basic research
foundation for further studies on the detailed pathological
mechanism of miRNAs in neurodegenerative diseases.

5 CONCLUSION

We employed a computational analysis approach to discovery key
miRNA  properties  that  differentiate  normal and
neurodegenerative disease subgroups in this work. The Boruta
feature selection method was utilized to exclude unnecessary
miRNA features, and then mRMR and MCEFS were used to
rank the remaining features. A series of feature subsets was
generated from these ranked feature lists using the IFS
method, and the sample data containing these feature subsets
was used to train the RF and PART classifiers. As a result, the
optimal miRNA biomarker set was identified on the basis of the
evaluation metrics of classifiers under varying number of features,
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