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Abstract
Objectives: Pegaptanib might be a promising anti‐tumour drug targeting VEGF to 
inhibit	 tumour	vascular	 endothelial	 cell	 proliferation.	However,	 the	poor	biostabil‐
ity	 limited	 its	 application.	 In	 this	 study,	we	 took	 tetrahedron	DNA	nanostructures	
(TDNs)	as	drug	nanocarrier	for	pegaptanib	to	explore	the	potent	anti‐angiogenesis	
and anti‐tumour activity of this drug delivery system.
Materials and methods: The successful synthesis of TDNs and pegaptanib‐TDNs 
was	determined	by	8%	polyacrylamide	gel	electrophoresis	(PAGE),	capillary	electro‐
phoresis	 and	dynamic	 light	 scattering	 (DLS).	 The	 cytotoxicity	 of	 pegaptanib	 alone	
and	pegaptanib‐TDNs	on	HUVECs	and	Cal27	was	evaluated	by	the	cell	count	kit‐8	
(CCK‐8)	assay.	The	effect	of	pegaptanib	and	pegaptanib‐TDNs	on	proliferation,	mi‐
gration	and	tube	formation	of	HUVECs	induced	by	VEGF	was	examined	by	CCK‐8	
assay,	wound	healing	assay	and	tubule	formation	experiment.	The	cell	binding	capac‐
ity	and	serum	stability	were	detected	by	flow	cytometry	and	PAGE,	respectively.
Results: Pegaptanib‐TDNs	had	stronger	killing	ability	than	pegaptanib	alone,	and	the	
inhibiting	 effect	was	 in	 a	 concentration‐dependent	manner.	What's	more,	 pegap‐
tanib‐loaded TDNs could effectively enhance the ability of pegaptanib to inhibit pro‐
liferation,	migration	and	tube	formation	of	HUVECs	induced	by	VEGF.	These	might	
attribute to the stronger binding affinity to the cell membrane and greater serum 
stability of pegaptanib‐TDNs.
Conclusions: These results suggested that pegaptanib‐TDNs might be a novel strat‐
egy to improve anti‐angiogenesis and anti‐tumour ability of pegaptanib.

1  | INTRODUC TION

Aptamers	are	DNA	or	RNA	oligonucleotides,	which	can	be	synthe‐
sized	and	have	high	affinity	and	specificity	to	a	number	of	biochemical	

targets.1‐3	Aptamers	have	many	advantages	over	antibodies	such	as	
cell‐free	 chemically	 synthesis,	 high	 tissue	 penetration,	 non‐immu‐
nogenicity,	 adaptable	 modification,	 low	 cost	 and	 thermostable.4 
Therefore,	aptamers	have	attracted	extensive	attention	in	terms	of	
targeted therapy.5	Pegaptanib	is	an	RNA	aptamer	that	is	specific	to	
VEGF165,	a	subgroup	of	the	VEGF	family.	In	December	2004,	the	US	Xueping	Xie	and	Yuxin	Zhang	contribute	equally	to	this	work.	
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FDA	approved	pegaptanib	for	the	treatment	of	all	types	of	AMD.2	As	
we	all	know,	tumour	blood	vessels	play	an	important	role	in	tumour	
growth,	providing	essential	oxygen	and	nutrients	for	tumour	metab‐
olism and metastasis.6,7 VEGF is a very important regulator of endo‐
thelial cell growth and survival.8	So	inhibiting	VEGF	may	be	a	viable	
way to treat cancer.9,10	Therefore,	pegaptanib	might	be	a	promising	
candidate for VEGF‐targeting drugs for cancer therapy. There are 
few studies on the anti‐tumour effect of pegaptanib.

Pegaptanib is delivered through the bloodstream to the site of 
the	tumour,	which	is	different	from	intravitreal	injection.11 The rela‐
tively	poor	biostability	in	vivo,	such	as	the	susceptibility	to	nucleases	
and removed from the circulation rapidly limit the use of pegaptanib 
in cancer treatment.12 It is important to introduce an effective ap‐
tamer delivery system to improve the biostability and half‐time in 
vivo. 13‐16Heo	et	al	generated	an	aptamer‐antibody	hybrid	complex	
by reacting an anti‐continine antibody with the continnine‐conju‐
gated	pegaptanib	aptamer,	which	suggested	a	novel	aptamer	deliv‐
ery system for pegaptanib.5

DNA	nanomaterials	have	attracted	extensive	attention	 in	 recent	
years	due	to	their	nanometer	size,	molecular	recognition	and	control‐
lability.17‐19	TDNs,	self‐assembled	by	four	single‐stranded	DNAs	(ssD‐
NAs)	based	on	their	highly	specific	Watson‐Crick	base	pairing,	is	one	
of	the	hot	topics	in	the	research	field	of	the	DNA	nanomaterials.20,21 
In	our	previous	study,	we	investigated	the	applications	of	TDNs	in	mo‐
lecular	regulation,	disease	therapy	and	drug	delivery.22‐27	Zhang	et	al	
successfully	transported	antisense	peptide	nucleic	acids	(asPNAs)	into	
methicillin‐resistant Staphylococcus aureus cells by TDNs to effectively 
inhibit bacterial.26	Hyukjin	Lee	et	al	showed	TDNs	could	be	regarded	

as	siRNA	nanocarrier	to	silence	target	genes	in	tumours.28 More inter‐
estingly,	Ma	et	al	synthesized	an	intelligent	DNA	nanorobot	based	on	
TDNs	which	enhance	protein	lysosomal	degradation	of	HER2	in	vitro.29 
What's	more,	some	chemotherapeutic	drugs	loaded	TDNs	could	over‐
come drug‐resistant cancers.27,30	In	this	study,	we	took	TDNs	as	the	
nanocarrier	of	pegaptanib	 (Figure	1A)	 to	 investigate	 their	effects	of	
anti‐angiogenesis and anti‐tumour compared with pegaptanib alone.

2  | MATERIAL S AND METHODS

2.1 | Synthesis of TDNs and Pegaptanib‐loaded 
TDNs (pegaptanib‐TDNs)

TDNs were prepared as previously reported.31	Four	ssDNA	strands	
in	equal	concentrations	were	mixed	 in	TM	buffer	 (10	mmol/L	Tris‐
HCl,	50	mmol/L	MgCl2·6H2O,	pH	8.0).	The	solution	was	heated	to	
95°C for 10 minutes and then cooled down to 4°C for 20 minutes. 
The	pegaptanib‐TDNs	were	synthesized	using	S1,	S2,	S3	and	pegap‐
tanib‐S4	under	the	same	conditions	as	above.

2.2 | Characterization of TDNs and Pegaptanib‐
TDNs

The	 successful	 synthesis	 of	 TDNs	 and	 pegaptanib‐TDNs	 was	 ex‐
amined	by	8%	polyacrylamide	gel	electrophoresis	 (PAGE)	and	cap‐
illary electrophoresis.32‐34 Capillary electrophoresis was directed 
by Qsep100TM automatic nucleic acid protein analysis system. The 

F I G U R E  1  A,	Sketch	map	of	pegaptanib‐TDNs.	B,	Native	PAGE	to	verify	the	assembly	of	TDNs	and	pegaptanib‐TDNs.	C,	The	peak	chart	
of	marker	and	each	molecule	detected	by	capillary	electrophoresis.	D,	Typical	size	distribution	graphs	of	pegaptanib‐S4	and	pegaptanib‐TDNs
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hydrodynamic	sizes	of	TDNs	and	pegaptanib‐TDNs	were	measured	
by	A	Zetasizer	Nano‐ZS	(Malvern	Instruments).

2.3 | Cell culture

HUVECs	and	Cal27	were	purchased	from	the	American	Type	Culture	
Collection	(ATCC®CRL‐1730™,	ATCC,	USA;	ATCC	CRL‐2095).	They	
were	cultured	in	high	glucose	Dulbecco's	modified	Eagle's	medium	
(DMEM)	supplemented	with	10%	(v/v)	foetal	bovine	serum	(FBS)	and	
1%	(v/v)	penicillin/streptomycin	antibiotics	and	maintained	at	37°C	
in	5%	CO2.

2.4 | Cell proliferation assay

HUVECs	 and	 Cal27	 were	 cultured	 in	 96‐well	 microtitre	 plates	 at	
a	density	of	8	×	103	 cells/well.	On	the	other	day,	250	nmol/L	and	
375	 nmol/L	 TDNs,	 pegaptanib	 and	 pegaptanib‐TDNs	were	 added	
into	 the	 cell	 media,	 respectively.	 After	 incubation	 for	 48	 hours,	
cells	were	 rinsed	 thrice	with	phosphate‐buffered	saline	 (PBS),	 and	
the	cell	viability	was	measured	by	CCK‐8	assays.	To	detect	the	ef‐
fect	of	 these	drugs	on	proliferation	of	HUVECs	 induced	by	VEGF,	
HUVECs	 were	 cultured	 in	 VEGF	 (25	 ng/mL),	 VEGF	 (25	 ng/mL)	
+TDNs	(250	nmol/L	or	375	nmol/L),	VEGF	(25	ng/mL)	+pegaptanib	
(250	 nmol/L	 or	 375	 nmol/L)	 and	 VEGF	 (25	 ng/mL)	 +pegaptanib‐
TDNs	(250	nmol/L	or	375	nmol/L).	After	48	hours,	the	cell	viability	
was	monitored	by	CCK‐8.

2.5 | Wound healing assay

This section was prepared on the basis of the previously reported 
methods.35,36	HUVECs	were	 seeded	 in	 6‐well	 plates	 and	 cultured	
for	 24	 hours.	 After	 serum‐free	 starvation	 overnight,	 we	 used	 the	
sterilizer	tip	to	scrape	a	two‐way	wound	at	the	bottom	and	washed	
the	 cells	 three	 times	with	PBS.	The	 cells	were	 treated	with	VEGF	
(25	ng/mL),	VEGF	(25ng/mL)	+TDNs	(375	nmol/L),	VEGF	(25	ng/mL)	
+pegaptanib	(375	nmol/L)	and	VEGF	(25	ng/mL)	+pegaptanib‐TDNs	
(375	nmol/L).	Wound	closure	was	imaged	after	cultivation	for	0	and	
24	hours,	respectively.

2.6 | Measurement of the tube 
formation of HUVECs

50 μL	Matrigel	 solution	was	added	to	each	well	of	a	96‐well	plate	
and	incubated	for	1	hour	at	37°C.	After	being	serum‐starved	over‐
night,	HUVECs	were	 trypsinized	 and	 resuspended	 in	 high	 glucose	
DMEM	with	 0.5%	 FBS	 at	 1	 ×	 105	 cells/mL.	 100	 μL	 of	 the	 resus‐
pended	HUVECs	was	 added	 to	 the	Matrigel‐coated	wells	 and	 in‐
cubated	for	30	minutes	to	allow	cell	attachment.	Subsequently,	the	
media were replaced with high glucose DMEM containing VEGF 
(25	ng/mL),	VEGF	 (25	ng/mL)	 +TDNs	 (375	nmol/L),	VEGF	 (25	ng/
mL)	+pegaptanib	 (375	nmol/L)	and	VEGF	(25	ng/mL)	+pegaptanib‐
TDNs	(375	nmol/L).	The	cells	were	incubated	at	37°C	in	5%	CO2 for 

10	 hours.	 After	 incubation,	 HUVECs	were	 imaged	 by	 an	 inverted	
fluorescence	microscope	(Olympus	IX73).	The	mean	tube	length	was	
analysed	by	ImageJ.

2.7 | Cell binding capacity of pegaptanib and 
pegaptanib‐TDNs to HUVECs

HUVECs	were	seeded	in	6‐well	plates.	After	24	hours,	pegaptanib‐
cy5	 (pegaptanib	concentration:	0,	5,	10,	50,	100,	250	nmol/L)	and	
pegaptanib‐TDNs‐cy5	 (pegaptanib‐TDNs	 concentration:	 0,	 5,	 10,	
50,	100,	250	nmol/L)	were	added	to	the	culture	media.	Cells	were	
cultured	for	another	2	hours.	Then,	the	cells	were	rinsed	three	times	
with	PBS	 and	digested	with	 trypsin.	 The	detached	 cells	were	 col‐
lected into centrifuge tubes and centrifuged at 350 g for 5 minutes. 
The cell pellets were resuspended into 500 μL	PBS.	Subsequently,	
cell suspensions were measured by flow cytometry.

2.8 | Detection of Serum Stability of Pegaptanib and 
Pegaptanib‐TDNs

Pegaptanib and pegaptanib‐TDNs were suspended in the high glu‐
cose	DMEM	with	10%	(v/v)	FBS	and	incubate	at	37°C	in	5%	CO2 for 
0,	2,	6,	8,	10,	12,	24,	36	hours,	respectively.	8%	PAGE	was	used	to	
detect the degradation of pegaptanib and pegaptanib‐TDNs at dif‐
ferent time points.

2.9 | Statistical analysis

One‐way	ANOVA	 (analysis	of	 variance)	or	Student‐Newman‐Keuls	
test was used to perform statistical analysis of data and P < 0.05 in‐
dicated	that	group	means	were	significantly	different.	All	quantita‐
tive	results	were	presented	as	mean	±	standard	deviation	(SD).

3  | RESULTS

3.1 | Characterization of TDNs and pegaptanib‐
TDNs

Pegaptanib	was	linked	to	the	5’	terminal	of	S4	to	form	pegaptanib‐S4.	
The	ssDNA	sequences	were	listed	in	Table	1.	After	the	synthesis	pro‐
cess,	four	single‐stranded	nucleic	acids	were	self‐assembled.	8%	PAGE	
was	applied	to	examine	the	successful	synthesis	of	TDNs	and	pegap‐
tanib‐TDNs.	In	Figure	1B,	lane	1‐7	represented	S1,	S1	+	S2,	S1	+	S2+S3,	
TDNs,	 pegaptanib‐TDNs,	 S4	 and	 pegaptanib‐S4,	 respectively.	
Pegaptanib	added	to	S4	and	TDNs	resulted	in	that	pegaptanib‐S4,	and	
pegaptanib‐TDNs	migrated	more	slowly	than	S4	and	pegaptanib‐TDNs.	
Capillary	electrophoresis	was	also	utilized	to	examine	the	synthesis	of	
these	materials.	As	shown	in	Figure	1C,	the	peak	of	pegaptanib‐S4	and	
pegaptanib‐TDNs	shifted	to	the	right	compared	with	S4	and	TDNs.	Size	
of	TDNs	and	pegaptanib‐TDNs	which,	respectively,	was	about	10nm	
and	22nm	was	measured	by	DLS	(Figure	1D).	All	the	results	proved	that	
pegaptanib was successfully loaded onto TDNs.
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3.2 | Cell proliferation of HUVECs and Cal27

The	 cell	 proliferation	 was	 evaluated	 by	 CCK‐8	 assay.	 As	 shown	
in	 Figure	 2A,	when	HUVECs	were	 incubated	 in	 the	 250	 nmol/L	
materials,	 cell	 proliferation	 had	 not	 been	 influenced	 by	 TDNs,	
pegaptanib	and	pegaptanib‐TDNs.	When	the	materials	were	at	the	
concentration	of	375	nmol/L,	TDNs	and	pegaptanib	had	no	effect	
on	 the	proliferation	of	HUVECs,	whereas	45%	of	HUVECs	were	
inhibited by pegaptanib‐TDNs (Figure 2B). In order to investigate 
the	 effect	 of	 these	 materials	 on	 the	 proliferation	 of	 Cal27,	 the	
human	oral	cancer	cells,	in	the	same	way,	the	cells	were	cultured	
in	 the	materials	 at	 250	 and	 375	 nmol/L	 concentrations,	 respec‐
tively.	None	of	them	at	250	nmol/L	had	a	significant	effect	on	the	

proliferation	of	Cal27	(Figure	2C).	When	the	concentration	went	
up	to	375	nmol/L,	26%	of	Cal	27	were	killed	by	pegaptanib‐TDNs,	
and	meanwhile,	both	TDNs	and	pegaptanib	had	no	toxic	effect	on	
the	viability	of	Cal27	(Figure	2D).	The	inhibiting	effect	of	pegap‐
tanib‐TDNs	 on	 the	 proliferation	 of	HUVECs	 and	Cal27	was	 in	 a	
concentration‐dependent manner.

3.3 | Pegaptanib‐TDNs can inhibit proliferation, 
migration and tube formation of HUVECs induced 
by VEGF

VEGF,	 an	 angiogenic	 factor,	 is	 crucial	 to	 promote	 the	 prolifera‐
tion	of	HUVECs.	HUVECs	were	 incubated	with	VEGF	 (25	ng/mL),	

TA B L E  1  Sequence	of	each	single‐stranded	nucleic	acid

ssDNA Sequence

S1 5 ‐́ATTTATCACCCGCCATAGTAGACGTATCACCAGGCAGTTGAGACGAACATTCCTAAGTCTGAA‐3´

S2 5 ‐́ACATGCGAGGGTCCAATACCGACGATTACAGCTTGCTACACGATTCAGACTTAGGAATGTTCG‐3´

S3 5 ‐́ACTACTATGGCGGGTGATAAAACGTGTAGCAAGCTGTAATCGACGGGAAGAGCATGCCCATCC‐3´

S4 5 ‐́ACGGTATTGGACCCTCGCATGACTCAACTGCCTGGTGATACGAGGATGGGCATGCTCTTCCCG‐3´

pegaptanib 5 ‐́C^G*G*AAU^C^A*G*U^G*A*A*U^G*C^U^U^A*U^A*C^A*U^C^C^G*‐3 ‐́dT‐5´

Pegaptanib‐S4 5 ‐́C^G*G*AAU^C^A*G*U^G*A*A*U^G*C^U^U^A*U^A*C^A*U^C^C^G*‐3 ‐́dT‐5 ‐́TTTTTACGGTATTG
GACCCTCGCATGACTCAACTGCCTGGTGATACGAGGATGGGCATGCTCTTCCCG‐3´

a*,	2 ‐́O‐methylated	purines;	^,	2 ‐́fluorine‐modified	pyrimidines.	

F I G U R E  2  Cell	proliferation	of	HUVEC	exposed	to	TDNs,	pegaptanib	and	pegaptanib‐TDNs.	A,	250	nmol/L,	(B)	375	nmol/L.	Cell	
proliferation	of	Cal27	exposed	to	TDNs,	pegaptanib	and	pegaptanib‐TDNs.	C,	250	nmol/L,	(D)	375	nmol/L.	Data	are	presented	as	mean	±	SD	
(n	=	3).	Statistical	analysis:	*P	<	0.05,	**P < 0.01
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F I G U R E  3  Cell	proliferation	of	HUVECs	induced	by	VEGF	was	inhibited	by	pegaptanib‐TDNs	in	a	dose‐dependent	manner;	(A)	
250	nmol/L,	(B)	375	nmol/L.	C,	Pegaptanib‐TDNs	inhibited	the	VEGF‐induced	migration	of	HUVECs.	The	materials	concentration	was	
375	nmol/L.	D,	The	semi‐quantitative	analysis	of	wound	closure.	Data	are	presented	as	mean	±	SD	(n	=	3).	Statistical	analysis:	*P	<	0.05,	
**P < 0.01

F I G U R E  4  A,	Pegaptanib‐TDNs	inhibited	the	VEGF‐induced	tube	formation	in	HUVECs.	B,	Quantification	of	the	mean	tube	length.	Data	
are	presented	as	mean	±	SD	(n	=	3).	Statistical	analysis:	*P	<	0.05,	**P < 0.01



6 of 8  |     XIE Et al.

VEGF	(25	ng/mL)	+TDNs	(250	nmol/L	or	375	nmol/L),	VEGF	(25	ng/
mL)	 +pegaptanib	 (250	 nmol/L	 or	 375	 nmol/L)	 and	 VEGF	 (25	 ng/
mL)	 +pegaptanib‐TDNs	 (250	nmol/L	or	 375	nmol/L)	 for	 48	hours.	
In	 Figure	 3A,	 pegaptanib	 (250	 nmol/L)	 and	 pegaptanib‐TDNs	
(250	nmol/L)	could	not	inhibit	the	proliferation	of	HUVECs	induced	
by	VEGF.	In	Figure	3B,	375	nmol/L	pegaptanib‐TDNs	had	a	stronger	
inhibitory	 effect	 compared	 with	 375	 nmol/L	 pegaptanib	 alone.	
Pegaptanib	and	pegaptanib‐TDNs	reduced	VEGF‐induced	HUVECs	
proliferation in a dose‐dependent manner.

HUVECs	 migration	 is	 a	 necessary	 process	 of	 angiogenesis.	
VEGF	 is	 a	 chemokine	 of	 HUVECs,	 which	 can	 promote	 HUVECs	
migration by activating cytoskeleton remodelling signalling path‐
ways.9,37	A	wound	healing	assay	was	applied	to	assess	the	inhibition	
of pegaptanib and pegaptanib‐TDNs on VEGF‐induced migration 
of	 HUVECs.	 After	 incubation	 with	 375	 nmol/L	 pegaptanib	 for	
24	hours,	wound	closure	was	39%,	whereas	it	was	just	23%	when	
cell	cultured	in	375	nmol/L	pegaptanib‐TDNs	for	24	hours.	At	the	
same	 time,	wound	 closure	 in	 control	 and	 VEGF	 group	was	 38%	
and	 62%	 (Figure	 3C,D).	 Both	 pegaptanib	 and	 pegaptanib‐TDNs	
could	inhibit	migration	of	HUVECs	induced	by	VEGF.	But	pegap‐
tanib‐TDNs showed remarkably stronger inhibition compared with 
pegaptanib alone which was statistically significant.

Tube formation assay was carried out in order to test the in‐
fluences of these materials on angiogenesis. Capillary tube forma‐
tion	induced	by	VEGF	was	reduced	when	HUVECs	incubated	with	

375	nmol/L	pegaptanib‐TDNs,	but	the	inhibition	effect	was	not	ob‐
vious	in	the	375	nmol/L	pegaptanib	group	(Figure	4A).	Quantitative	
analysis	of	mean	tube	length	was	measured	by	ImageJ.	As	shown	in	
Figure	4B,	pegaptanib‐TDNs	remarkably	decreased	the	tube	length	
(VEGF:	155	±	7.07	μm; VEGF + TDNs: 132 ± 1.95 μm; VEGF + pegap‐
tanib: 121 ± 6.36 μm;	 VEGF	 +	 pegaptanib‐TDNs:	 98	 ±	 6.36	 μm; 
VEGF + pegaptanib‐TDNs vs VEGF or VEGF + TDNs: P < 0.01; 
VEGF + pegaptanib‐TDNs vs VEGF + pegaptanib: P < 0.05).

These results suggested that pegaptanib loaded onto TDNs 
could effectively enhance the ability of pegaptanib to inhibit prolif‐
eration,	migration	and	tube	formation	of	HUVECs.

3.4 | Cell binding capacity of pegaptanib and 
pegaptanib‐TDNS to HUVECS

Pegaptanib and pegaptanib‐TDNs were labelled with cy5. 
Fluorescent signal was detected by flow cytometry to measure 
pegaptanib	binding	to	HUVECs.	When	the	concentration	was	below	
50	 nmol/L,	 the	 fluorescence	 signal	 of	 pegaptanib‐TDNs	 slowly	 in‐
creased,	 but	 with	 the	 increase	 of	 the	 concentration,	 especially	 at	
250	 nmol/L,	 the	 fluorescence	 signal	 obviously	 increased	 whereas	
the fluorescent signal was not observed any change in pegaptanib 
group	 (Figure	 5A).	 Quantitative	 analysis	 of	 fluorescence	 intensity	
was shown in Figure 5B. The results suggested that TDNs conjugated 
with pegaptanib could enhance cell binding capacity of pegaptanib.

F I G U R E  5  A,	Pegaptanib‐TDNs	and	pegaptanib	at	a	series	of	concentrations	binding	to	HUVECs	were	measured	by	flow	cytometry.	B,	
Quantification	of	fluorescence	intensity	in	different	concentrations.	C,	The	serum	stability	of	pegaptanib‐TDNs	and	pegaptanib	incubated	
with	10%	FBS	in	37°C.	D,	Quantification	of	the	relative	intensity	at	different	time	points.	Data	are	presented	as	mean	±	SD	(n	=	3).	Statistical	
analysis: *P	<	0.05,	***P < 0.001 (pegaptanib‐TDNs vs pegaptanib)
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3.5 | The serum stability of pegaptanib and 
pegaptanib‐TDNs

Subsequently,	the	serum	stability	of	pegaptanib	and	pegaptanib‐TDNs	
was evaluated. The result of gel electrophoresis demonstrated that 
pegaptanib‐TDNs was almost completely degraded after incubated 
with	10%	(v/v)	FBS	at	37°C	in	5%	CO2	for	24	hours,	but	pegaptanib	
occurred obvious degradation at 2 hours and complete degradation 
<6	hours	 (Figure	5C).	Statistical	 analysis	 in	Figure	5D	showed	 that	
pegaptanib was degraded more rapidly than pegaptanib‐TDNs.

4  | DISCUSSION

In	 this	 study,	 we	 synthesized	 pegaptanib‐TDNs	 and	 investigated	
the	 effect	 of	 anti‐tumour	 and	 anti‐angiogenesis.	 Pegaptanib,	 an	
RNA	aptamer,	was	successfully	linked	to	a	vertex	of	TDN	(Figure	1).	
Pegaptanib‐TDNs	could	 inhibit	proliferation	of	HUVECs	and	Cal27	
in	 a	 concentration‐dependent	manner.	When	 these	 two	 cell	 lines	
were	cultured	with	375	nmol/L	pegaptanib‐TDNs,	a	significant	inhi‐
bition	of	cell	proliferation	was	observed.	However,	pegaptanib	had	
no apparent restraint on cell proliferation in the same concentra‐
tion	(Figure	2).	Cal27	with	VEGF	high	expression	is	a	human	tongue	
squamous	cell	carcinoma	cell	line.38	Abundant	blood	vessels	provide	
essential conditions for its growth and metastasis.39	Some	antibod‐
ies and aptamers binding to VEGF might interfere with notch signal‐
ling	pathways,40 which finally cause cell inhibition. Pegaptanib‐TDNs 
could	on	the	one	hand	 inhibit	HUVECs	proliferation	to	cut	off	 the	
nutritional	supply	to	the	tumour,	and	on	the	other	hand,	inhibit	the	
proliferation	 of	 tumour	 cell	 itself.	 Then,	we	 observed	 that	 pegap‐
tanib‐TDNs	could	 inhibit	 the	proliferation,	migration	and	 tube	 for‐
mation	of	HUVECs	 induced	by	VEGF,	while	pegaptanib	had	no	or	
just a little effect (Figures 3 and 4). The results demonstrated that 
antagonism of pegaptanib towards VEGF was increased when it 
was	 loaded	onto	TDNs.	To	explore	 the	possible	mechanism	of	 the	
increased anti‐tumour and anti‐angiogenesis ability of pegaptanib‐
TDNs,	we	evaluated	 the	cell	binding	capacity	 to	HUVECs	and	 the	
serum	 stability	 of	 pegaptanib	 and	 pegaptanib‐TDNs.	 As	 shown	 in	
Figure	5,	 pegaptanib‐TDNs	had	 stronger	 cell	 binding	 capacity	 and	
serum	stability.	When	they	were	added	into	the	cell	media	respec‐
tively,	 pegaptanib‐TDNs	had	 enough	 time	 and	quantity	 to	 bind	 to	
VEGF	and	make	a	difference	in	cell	proliferation,	migration	and	tube	
formation. It suggested that pegaptanib‐TDNs could circulate in the 
body as far as possible long time and resist to the degradation of 
various	 enzymes.	 These	 could	 enhance	 the	 anti‐angiogenesis	 and	
anti‐tumour activity of pegaptanib in vivo.

5  | CONCLUSIONS

Taken	together,	we	put	forward	a	novel	drug	carrier	for	pegaptanib.	
TDNs could help pegaptanib overcome the limitations of aptamer 

and broaden its application in VEGF‐targeting cancer therapy. Our 
results demonstrated again that TDNs might be a vehicle of potential 
value for disease therapy.
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