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Here, we report that COVID-19 hospitalization rates follow an exponential
relationship with age, doubling for every 16 years of age or equivalently
increasing by 4.5% per year of life (R2 = 0.98). This mirrors the well-studied
exponential decline of both thymus volume and T-cell production, which
halve every 16 years. COVID-19 can therefore be added to the list of other
diseases with this property, including those caused by methicillin-resistant
Staphylococcus aureus, MERS-CoV, West Nile virus, Streptococcus pneumoniae
and certain cancers, such as chronic myeloid leukaemia and brain cancers.
In addition, the incidence of severe disease and mortality due to COVID-
19 are both higher in men, consistent with the degree to which thymic
involution (and the decrease in T-cell production with age) is more severe
in men compared to women. Since these properties are shared with some
non-contagious diseases, we hypothesized that the age dependence does
not come from social-mixing patterns, i.e. that the probability of hospitaliz-
ation given infection rises exponentially, doubling every 16 years. A Bayesian
analysis of daily hospitalizations, incorporating contact matrices, found that
this relationship holds for every age group except for the under 20s. While
older adults have fewer contacts than young adults, our analysis suggests
that there is an approximate cancellation between the effects of fewer con-
tacts for the elderly and higher infectiousness due to a higher probability
of developing severe disease. Our model fitting suggests under 20s have
49–75% additional immune protection beyond that predicted by strong
thymus function alone, consistent with increased juvenile cross-immunity
from other viruses. We found no evidence for differences between age
groups in susceptibility to infection or infectiousness to others (given disease
state), i.e. the only important factor in the age dependence of hospitalization
rates is the probability of hospitalization given infection. These findings
suggest the existence of a T-cell exhaustion threshold, proportional to
thymic output and that clonal expansion of peripheral T-cells does not
affect disease risk. The strikingly simple inverse relationship between risk
and thymic T-cell output adds to the evidence that thymic involution is an
important factor in the decline of the immune system with age and may
also be an important clue in understanding disease progression, not just
for COVID-19 but other diseases as well.
1. Introduction
Epidemiological patterns in the incidence of a disease can provide insight into
the mechanisms of disease progression [1–4]. The degradation of the adaptive
immune system with age is already acknowledged to be a major risk factor
for both infectious and non-infectious diseases and may play a role in under-
standing the emerging COVID-19 epidemic. Thymus volume, and the
concomitant production of T-cells, decrease exponentially with age with a
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half-life of 16 years, or equivalently by 4.5% per year [5,6]
(electronic supplementary material, figure S3a). These
changes in the adaptive immune system contribute to less
robust immune responses in elderly individuals [7]. In this
paper, we analyse age and sex trends in national COVID-19
hospitalization data, in order to investigate the role of
immune function in the ongoing coronavirus pandemic.

COVID-19 disease progression can be characterized by
three consecutive phases of increasing severity [8,9]. First,
there are mild symptoms such as a dry cough, sore throat
and fever. After this point, the majority of cases will undergo
spontaneous regression [10]. Second, some patients can
develop viral pneumonia, requiring hospitalization [8]. The
third stage, typically occurring three weeks after the onset
of symptoms, is characterized by fibrosis [8] and leads to
life-threatening symptoms [10–12]. COVID-19 patients often
exhibit lymphopenia, i.e. extremely low blood T-cell levels,
even in the first few days after the onset of symptoms,
which is a predictor of disease progression and mortality
[13,14]. Clinical trials are currently underway to test T-cell-
based immunotherapies [15,16] and vaccines that elicit
T-cell, as well as antibody, responses [17]. There is evidence
that T-cells may be more effective than antibodies as exposed,
asymptomatic individuals develop a robust T-cell response
without (or before) a measurable humoral response [18].

The relationship between COVID-19 risk and age has
been extensively explored [19–22], and age-stratified, con-
tact-based, transmission models have accurately explained
various aspects of the pandemic [20,21,23,24]. In particular,
these studies have found that the risk of severe disease rises
with age and is especially low for those under 20. Some
studies suggest that non-adults are as likely to be infected
as adults, but then have lower risk of disease progression
[24] while others find lower risk of both infection and disease
progression in the under 20s [21,23]. While these studies have
looked at COVID-19 risk and age, here we go further by relat-
ing these trends to thymic involution and T-cell production.
This may lead to a mechanistic understanding of disease
progression.

Several diseases have risk profiles that increase exponentially
with age, doubling every 16 years, i.e. risk is proportional to
e0.044t, where t is age, or equivalently increasing by about
4.5% per year [4]. These diseases are caused by a range of
pathogens, from bacterial (methicillin-resistant Staphylococcus
aureus (MRSA), S. pneumoniae) to viral (West Nile virus,
MERS-CoV [25]) and even include some cancers (chronic
myeloid leukaemia, heart and brain cancers). Since thymus
volume and T-cell production both decrease with age expo-
nentially, halving every 16 years [5], disease risk is therefore
inversely proportional to T-cell production for these diseases.
A mechanistic model has been proposed to explain this inverse
relationship, incorporating an immune escape threshold and
stochastic fluctuations in antigen levels [4]. Furthermore, the
sex bias in thymic involution (and T-cell production) also
roughly matches the sex bias in disease risk, with men
having approximately 1.3–1.5 times higher overall cancer and
infectious disease risk [26–28] and approximately 1.5 ± 0.3
times lower T-cell production, as measured by T-cell receptor
excision circles (TRECs), a proxy for thymic output [4,6]. As
such, fundamental patterns in disease incidence with respect
to both age and sex can be directly linked to differences in
the adaptive immune system. We therefore tested to see if
COVID-19 follows the same trend.
2. Results
2.1. COVID-19 hospitalization rates
While data on confirmed cases can be highly variable and
largely influenced by testing strategies, the data on hospitaliz-
ations, which is the focus of this paper, are relatively more
reliable. The incidence of COVID-19 hospitalizations, in a
number of countries, consistently doubles with every 16
years of age (R2 = 0.98 for top three countries; figure 1a).
Meanwhile, the incidence of all confirmed cases (including
mild or asymptomatic) appears roughly constant across
adult ages (electronic supplementary material, figure S1).
One explanation that is consistent with the data is that
exposure is approximately uniform for adult age groups and
that after exposure, the probability of becoming hospitalized
is proportional to e0.044t, where t is age. We will address the
age dependence of exposure in more detail by accounting
for assortative social mixing as well as a range of additional
age-dependent factors in our Bayesian model (see below).

There is a sex bias in COVID-19 risk, which increases with
disease severity (figure 1c). This is similar to other diseases,
including cancer, where men have 1.33 times the risk of hos-
pitalization and 1.89 times the risk of death [26,29]. The sex
bias in COVID-19 is remarkably similar to a factor of 1.35 ±
0.4 for hospitalization incidence and 1.9 ± 0.4 for mortality
(mean ± s.d.; figure 1c). The slope of the logarithm of the
COVID-19 mortality curve is over twice that of the hospital-
ization curve, corresponding to an exponential with rate
0.109 ± 0.005 yr−1 (figure 1b). Another way of thinking
about the sex bias would be to say that for both hospital inci-
dence andmortality, men are effectively approximately 6 years
older than women in terms of risk. Other risk factors such as
BMI can also be viewed similarly to give an individualized
effective ‘Covid age’ [30]. The increase in mortality with age
may also be explained by comorbidities which increase with
age, such as cardiovascular disease, which rises exponentially
[31] with a rate of 0.071 ± 0.003 yr−1. Since 0.071 + 0.044 =
0.115≈ 0.109, a simple model where the risk of COVID-19
mortality is proportional to the risk of cardiovascular disease
and inversely proportional to T-cell production would have
the correct age dependence. This would suggest that cardio-
vascular disease is a risk factor just for the stages in between
hospitalization and death.

2.2. Bayesian model
Similar to other diseases, COVID-19 hospitalization risk is
relatively high for very young children (e.g. 0.6 cases per
100 000 for ages 0–4 versus 0.2 cases per 100 000 for ages 5–
17 in USA; figure 1a). Additionally, older children have a
risk lower than expected based on the exponential increase
with age we have identified (figure 1a). This is similar to
MRSA and S. pneumoniae infection, but not West Nile virus
infection or cancers with similar exponential behaviour [4].
Potential factors underlying the apparent low risk in
juveniles include age dependence in (i) exposure (e.g. due
to heterogeneous social mixing among age groups),
(ii) disease progression, (iii) infection given exposure and/
or, (iv) infectiousness to others. Throughout this paper,
we use the term ‘severe infection’ synonymously with
hospitalization and we categorize all infections as either
mild or severe. In a preliminary analysis, we first incorpor-
ated contact matrices into a simple analytically tractable
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Figure 1. (a) For adults, incidence of COVID-19 hospitalizations rises exponentially with age, doubling with every 16 years of age. See electronic supplementary
material, table S3, for a full list of data sources. (b) Data from Spain on all confirmed cases, hospitalizations and mortality, from a single study early in the epidemic,
show a sex bias which increases with disease severity. (c) Boxplot showing male to female ratios for incidence, hospitalization rates and mortality, across all age
groups with non-zero entries, from the following countries: France, England, Wales and Spain.
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susceptible–infected–removed (SIR) model to predict the
steady state of the age distribution of hospitalizations
in France, with the assumption that the probability of
severe disease given infection is proportional to e0.044t (see
electronic supplementary material, figure S3). This model
suggested that age differences in social mixing could,
in part, account for the relatively low hospitalization of
non-adults (electronic supplementary material, figure S3).
However, the other possible factors in low juvenile
COVID-19 hospitalization were not considered in this
preliminary analysis.

To incorporate all relevant factors, and to rigorously test
the hypothesis that the probability of hospitalization given
infection rises with age at the same rate as thymic involution,
we conducted a more detailed analysis of age dependence
based on daily hospitalization, recovery and death data. We
focused on the single country France, for which an unusually
comprehensive age distributed dataset is available [20]. All
cases in the dataset are either biologically confirmed or pre-
sent with a computed tomographic image highly suggestive
of SARS-CoV-2 infection, and the dataset includes corrections
for reporting delays [20]. We formulated an age-structured
Bayesian SIR model of infection, partitioning the force of
infection into that arising from contacts with mild and
severely infected individuals, weighted by age-dependent
contact matrices, as well as contact-independent (environ-
mental) transmission. The model-fitting exercise focused on
inferring a posterior parameter distribution for the prob-
ability of severe disease given infection for each age cohort.
In addition, posterior distributions were inferred for a range
of secondary parameters (electronic supplementary material,
table S2, parameters of the Bayesian analysis), including
age-dependent transmissibility and susceptibility.

Our results reiterate that the probability of severe disease
given infection increases exponentially with age, at a rate that
is remarkably well matched by the rate of thymus decline for
all age groups above 20 years (electronic supplementary
material, figure S4; all adult age groups have 95% credible
intervals including the rate of thymus decline). In order to
investigate the nature of juvenile deviation from this expo-
nential relationship, we reformulated the analysis to allow
deviations from an exponential increase (for the probability
of severe disease given infection) for each age cohort
(figure 2). The posterior parameter distribution for the expo-
nential rate was found to match the rate of thymic
degradation (95% CI 0.043–0.053 yr−1; figure 2b). Only the
juvenile age cohort was found to significantly deviate from
the exponential response (figure 2c), showing a level of
additional protection to severe COVID-19 of between 49
and 75% (electronic supplementary material, table S1). Our
sensitivity analysis allowed—within each age cohort—for
deviation from uniform the probability of infection given
exposure, and, deviation from uniform infectiousness of
infected individuals. For both of these, we found that none
of the age cohorts deviated significantly (in all cases 95%
credible intervals included zero deviation; electronic sup-
plementary material, figure S5), allowing us to discount
these potentially confounding factors.

The low susceptibility to severe disease given infection in
non-adults may be due to cross-protection from other corona-
viruses [8,32–34], or even non-specific protection from
other respiratory viruses [35], which occur more frequently
in non-adults compared to adults [36]. Our estimate of
49–75% protection ties in with a study which found
SARS-CoV-2 reactive antibodies in approximately 60% of
unexposed individuals aged 6–16 and only 6% in adults
[37]. There is also evidence of unexposed individuals
having SARS-CoV-2 reactive CD4+ T-cells [38]. Another
possible explanation for the low risk in non-adults might
come from some intrinsic feature of the immune system.
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For example, we speculate that the cause may be related to
the high risk of T-lymphoblastic leukaemia for ages 5–20
(see [4]; electronic supplementary material, figure S5).
2

3. Discussion
Although we have demonstrated a clear relationship between
the probability of severe disease and age, it is possible that
the relationship is due, in part, to alternative physical pro-
cesses other than T-cell production, such as age-related
changes in the bone marrow, spleen or lymph nodes. Bone
marrow also shrinks with age, but at a rate that is substan-
tially slower than the thymus [39]. Further experiments are
needed to determine the degree of causation between T-cell
production and disease risk, for example, by measuring
TRECs and performing a prospective study or quantifying
the increase in risk in thymectomized individuals [40].
Furthermore, a mechanism for why the probability of hospi-
talization is inversely proportional to T-cell production is
currently lacking. One possible model features stochastic fluc-
tuations in the number of infected cells and an immune
escape threshold which is proportional to T-cell production
[4]. This model has the added benefit that it can also explain
most of the other (non-exponential) relationships between
risk and age seen in various cancer types [4].

Chronic myeloid leukaemia (CML) is a type of cancer
with an age dependence remarkably similar to COVID-19.
In both diseases, the risk of hospitalization rises exponen-
tially, inversely proportional to T-cell production [4], with
sex bias ratios of 1.35 ± 0.4 for COVID-19 and 1.35 ± 0.3 for
CML. The mortality risk profiles are also similar (exponential
rates: 0.109 ± 0.005 yr−1 for COVID-19 and 0.103 ± 0.007 yr−1

for CML; sex bias ratios: 1.9 ± 0.4 for COVID-19 and 1.8 ±
0.6 for CML; electronic supplementary material, figure S2).
CML is characterized by a single genomic feature,
a chromosomal translocation known as the Philadelphia
chromosome. This suggests that the probabilities of Philadel-
phia chromosome formation and COVID-19 infection are
approximately age independent, but that the probabilities
of subsequent hospitalization are T-cell dependent. A good
candidate for a potential mechanism involves the phenom-
enon that increased antigenic load can lead to T-cell
exhaustion, characterized by low effector function and
clone-specific depletion [41]. T-cell exhaustion is a factor in
both cancer and infectious diseases, including COVID-19
[42,43], where it has even been shown to be a predictor of
mortality [44]. As T-cell production decreases with age, this
may lead to an increase in the probability of T-cell exhaus-
tion. In support of this hypothesis, low precursor T-cell
numbers have been shown to lead to T-cell exhaustion and
disease progression in a mouse cancer model [45]. More
specifically, we predict a step in disease progression with a
probability exactly inversely proportional to the number of
precursor T-cells.

When looking at sex biases for COVID-19 hospitalization
and mortality (figure 1c), we found factors of 1.35 and 1.9,
respectively. We can speculate that since 1.352≈ 1.9, this
might be an indication that among the steps of disease
progression, there could be two T-cell-dependent steps,
one pre-hospitalization and one post-hospitalization. This
would imply that the risk of death would involve two factors
of e0.044t and therefore mortality would increase at least as
fast as e0.088t. The log-slope of the mortality curve being
0.109 ± 0.005 yr−1 is consistent with this hypothesis.
One feature of post-hospitalization disease progression is an
IL-6 driven cytokine storm [46], which has been related
to T-cell dysfunction in a mouse model [47]. These T-cell
dysfunction-related cytokine storms were attenuated by nico-
tinamide adenine dinucleotide precursors and blocking of
TNFα signalling.
4. Conclusion
Here, we have shown that the risk of COVID-19 hospitaliz-
ation rises exponentially with age, inversely proportional
to T-cell production, in a similar way to several other
diseases. Consistently, the sex bias in disease risk also fits
this trend. These features suggest that the risk of hospitaliz-
ation is related to an immune deficiency, rather than an
immunopathology. By contrast, long-COVID follows patterns
similar to autoimmune diseases, with middle-aged women
having the highest risk [48]. In addition, we found that the
under-20 age group benefits from additional protection
from severe disease by a factor similar to the prevalence of
SARS-CoV-2 cross-reactive antibodies. Our mathematical
model suggests that the age dependence of hospitalization
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rates does not arise from differences in social-mixing patterns,
but rather from the probability of hospitalization given infec-
tion. The model could be easily extended to assess which age
groups and socioeconomic groups would be most valuable to
vaccinate and therefore to optimize vaccination strategies.

These findings add to the growing evidence that thymic
involution is a major component of immunosenescence and
that restoring thymus function may be an effective preventa-
tive measure for many common diseases. Additionally, our
understanding of host–pathogen dynamics is not complete.
There is currently no detailed mechanistic model to explain
why the probability of hospitalization would be proportional
to the reciprocal of thymic T-cell production, for COVID-19 or
any other disease. We hope that these findings will be an
important clue in understanding the precise mechanisms
involved in disease progression.
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