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Abstract
Hyperglycemia in diabetic patients results in a diverse range of complications such as dia-

betic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose

reductase (AR), the key enzyme in the polyol pathway, in these complications is well estab-

lished. Due to notable side-effects of several drugs, phytochemicals as an alternative has

gained considerable importance for the treatment of several ailments. In order to evaluate

the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified

from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Tri-
gonella foenum graecum (fenugreek). Molecular docking was performed for lead identifica-

tion and molecular dynamics simulations were performed to study the dynamic behaviour of

these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and

calebin A from these spices exhibited high docking score, binding affinity and sustained pro-

tein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simula-

tions produced binding scores that were better than the initially docked conformations.

Docking results, ligand interactions and ADMET properties of these molecules were signifi-

cantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranire-

stat. Thus, these natural molecules could be potent AR inhibitors.

Introduction
Diabetes mellitus is a complex metabolic illness characterized by elevated levels of blood glu-
cose. It is a major health threat that is rapidly growing globally. An International Diabetes Fed-
eration (IDF) estimate indicated that over 387 million people are living with diabetes and this
is expected to reach 592 million or more by 2035 [1]. A serious issue in diabetes is the gradual
development of complications in insulin independent tissues such as nerves, retina, lens glo-
merulus and vascular cells [2]. Increased oxidative stress and aldose reductase (AR) activity is
thought to play a pivotal role in complications such as diabetic neuropathy, retinopathy, car-
diomyopathy, nephropathy, cataracts, myocardial infarctions and even stroke [3–4]. One of
the most studied biochemical pathway associated with hyperglycemia is the polyol pathway
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(Fig 1). This is a two-step pathway in which AR is the major rate limiting enzyme [5]. It
reduces glucose to the alcohol sorbitol using NADPH as a cofactor. Sorbitol is subsequently
metabolized to fructose by the enzyme sorbitol dehydrogenase using NAD+ as a cofactor [6]
(Fig 1).

In normal glycemic conditions, most of the cellular glucose is channelled through the glyco-
lytic pathway; only minor amount of non-phosphorylated glucose enters the polyol pathway.
However, under hyperglycemic conditions, more than 30% of glucose is metabolized through
the polyol pathway, which in turn generates oxidative stress in cells [7]. Multiple mechanisms
have been proposed to explain how the polyol pathway induces oxidative stress and tissue dam-
age. Firstly, an increased consumption of NADPH could reduce the amount of NADPH avail-
able to the enzyme glutathione reductase (GR). GR uses NADPH as a cofactor for the
generation of glutathione (GSH). GSH is an important scavenger of reactive oxygen species
(ROS). Thus, NADPH depletion reduces the cellular capability to withstand oxidative stress.
Next, NAD+ is converted to NADH by sorbitol dehydrogenase (SDH). This increases NADH
ratio which is utilized by NADH oxidase leading to the production of reactive oxygen species
(ROS) that could attack mitochondrial membranes. Lastly, the fructose produced in this path-
way is metabolized to fructose-3-phosphate and 3-deoxyglucosone. Both compounds are
potent glycosylating agents which results in the formation of advanced glycation end products
(AGE) [8–9]. Moreover, intracellular sorbitol accumulation also promotes osmotic and oxida-
tive stress [10]. Thus, increased glucose flux through the polyol pathway increases cellular sus-
ceptibility to oxidative stress in a number of different ways. The key regulator of this pathway
is AR, a small monomeric protein belonging to the aldo-keto reductase superfamily. It consists
of a β/α-barrel structural motif with a large hydrophobic active site [11]. The significant role of
AR in hyperglycemic conditions has been ascertained in several biochemical and cellular stud-
ies. Highly overexpressed AR and increased level of sorbitol was observed in mouse Schwann
cells during hyperglycemic condition [12]. Increased sorbitol accumulation and AR activity
was also reported in diabetic patients [13]. Moreover, increased AR activity contributes to oxi-
dative stress and cataract formation in retina [14, 15] and inhibition of AR improves the glu-
cose metabolism in the heart of diabetic rats[16]. These observations suggest that AR could
play a significant role in long term diabetic complications. Thus, inhibition of AR is a potential
treatment for diabetic complications. Currenlty, the main types of AR inhibitors are carboxylic
acid inhibitors (e.g. epalrestat), spirohydantoin derivatives (e.g. sorbinil) and succinimide com-
pounds (e.g. ranirestat) [17–18]. A large number of molecules have been designed and synthe-
sized to inhibit AR. However, only a limited number of drugs have reached the market [19]. At
the moment, epalrestat is the only AR inhibitor which in available in markets like India and
Japan. Some drugs were withdrawn due to safety concerns and others are still in clinical trials

Fig 1. Polyol pathway.

doi:10.1371/journal.pone.0138186.g001
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[20]. Thus, it is very crucial to develop new AR inhibitors with improved efficacy and safety
profile.

History of using plants, herbs and spices as medicines dates back to ancient times. Plants
are rich sources of active principles and a vast majority of currently available therapeutic drugs
were derived directly or indirectly from plants [21]. Spices are dried seeds, fruits, barks, leaves
or even roots of plants that are used as flavouring, colouring and preservative agents. The
medicinal properties of spices have been well appreciated in preventing various ailments such
as diabetes, cancer, inflammations, cardiovascular diseases, etc. [22]. The aim of the current
study was to identify any potential AR inhibitors that may be present in spices such as ginger,
turmeric, garlic and fenugreek. Ginger is the rhizome part of plant Zingiber officinale which
contains many bioactive principles such as gingerols, gingerenones and shogaols. A number of
in vitro and in vivo studies have examined the efficacy of ginger in controlling diabetes [23–
27]. Methanolic extract of garlic (Allium sativum) possess hypoglycemic properties and delays
the progression of diabetic complications [28–29]. Administration of turmeric (Curcuma
longa) in diabetic rats significantly lowered blood glucose level and reduces hyperglycemia
induced oxidative stress [30–31]. Trigonella foenum-gracecum, commonly known as fenugreek,
was also extensively studied for its hypoglycemic effects. Antioxidant potential of fenugreek
seed extract was shown to reduce the oxidative stress developed during diabetic conditions
[32–33]. The exact mechanism of action of these spices on the polyol pathway and various dia-
betic complications remain elusive. Therefore, the present study was designed to investigate
the effect of these spices, or more specifically the phytochemicals present in these spices, on
AR, the key regulator of the polyol pathway. Computational methods including molecular
docking and molecular dynamics (MD) simulations were employed to study the binding
modes and interactions of a collection of phytochemicals to AR. This provided detailed insights
into how some of the selected phytochemicals interact with AR possibly assisting in lead identi-
fication and further drug development.

Materials and Methods

Pre-processing of targets and ligands
Three high-resolution X-ray crystal structures of human AR (PDB IDs 4GCA [34], 4LAU [35],
1US0 [36]) with resolutions 0.90 Å, 0.84 Å, 0.66 Å were retrieved from the Protein Data Bank
[37]. Three AR structures were used so that the results were not biased by a single structure.
This ensures the validity of the results in the instance where the structure and size of the active
site are different. The active site of AR has a volume of 312.473 Å3 and is complexed with
NADP+ and IDD1219 in the structure with PDB ID 4GCA. The active site volume is 299.096
Å3 and complexed with NADP+ and {2-[(4-bromobenzyl)carbamoyl]-5-chlorophenoxy}acetic
acid in the structure with PDB ID 4LAU, while the active site volume is 298.753 Å3 and com-
plexed with the molecules NADP+ and IDD 594 in the structure with PDB ID 1US0.

The retrieved structures were pre-processed in Schrödinger Maestro [38]. This step included
simplification of multimeric structures, proper assignment of bond orders and ionization
states, addition and optimization of hydrogen bonds, location and deletion of unnecessary
water molecules, creation of disulphide bonds, conversion of selenomethionines to methionine,
aligning and capping of terminal amides, addition of missing atoms and side chain residues,
and assignment of partial charges. Finally, restrained minimization was performed to obtain a
geometrically stable structure [39]. A ligand library, consisting of 212 phytochemicals from the
4 spices mentioned above (S1 Table), was prepared using 2D structures obtained from Pub-
Chem and ChemSpider databases [40] as the starting point. For a comparative analysis, 2D
structures of the drug molecules epalrestat, sorbinil and ranirestat were also obtained from
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PubChem. Drug molecules and phytochemicals were pre-processed and conformers were gen-
erated using Schrödinger Ligprep [41]. Pre-processing of ligands included conversion of 2D
structures to 3D format, addition of hydrogen atoms, generation of tautomer and ionization
states, neutralization of charged groups, structure filtration and finally geometry optimization
of the molecule.

Active site identification and grid generation
Based on the NADPH cofactor binding location, the active site of the AR is located at carboxyl
terminal end of the beta barrel [42]. Nonetheless, binding site detection was performed which
showed that AR consists of only one druggable binding pocket as identified above. The amino
acid residues that are directly involved in the ligand binding were identified from the literature
[43]. The active site consists of anion binding region and specificity region. The anion binding
region is rigid and occupied by amino acids such as Trp 20, Val47, Tyr 48, Trp79, His 110, and
Trp111 [44]. The specificity pocket, which shows high range of selectivity and flexibility, is
lined by Trp111, Thr113, Phe122, Gln183, Trp 209, Cys 298, Leu 300, and Cys 303 [17, 45].
Therefore a receptor grid was generated incorporating all these functional residues.

Standard precision (SP) and extra precision (XP) docking
For predicting the binding orientation, affinity and activity of ligand molecules with the targets,
molecular docking was employed [46]. Grid based docking was carried out using Schrödinger
Glide [47]. Standard precision (SP) docking was performed followed by extra precision (XP)
docking [48]. To soften the potential of nonpolar parts of ligands, the scaling factor for the
ligand van der Waals radii was set in 0.80 with a partial atomic charge of 0.15. In both SP and
XP docking procedures, flexible ligand sampling was used to generate various ligand conforma-
tions. No constraints were used in the entire docking studies. OPLS 2005 force field was used
and post docking minimization was also performed. All phytochemicals and drug molecules
were docked flexibly to the three structures of the enzyme AR.

Analysis and visualization of docking results
After docking, top ranked compounds were arranged based on the GlideScore [49]. Lower Gli-
deScore represents more favourable binding. Hydrogen bond interactions, π interactions and
hydrophobic interactions of the best poses were visualized and interpreted using XP visualizer
and PyMol [50]. Binding energy based on molecular mechanics generalized Born surface area
(MM-GBSA) was calculated using Schrödinger Prime [51].

Molecular dynamics (MD) simulations
In order to explore the stability and variability of top ranking docked complexes, MD simula-
tions were performed [52]. Two top scoring protein-ligand complexes were simulated using
Desmond. Each protein-ligand complex, represented using the OPLS 2005 forcefield [53], was
solvated in an orthorhombic box of single point charge (SPC) water molecules [54] with a
box wall distance of 10 Å. The system was neutralized by adding the required number of
counter ions and a salt concentration of 0.15M was used.

The default six-stage system relaxation protocol was employed before starting production
runs. This consisted of a series of minimization and equilibration simulations to slowly relax
the system while not significantly deviating from the initial conformation. The first two stages
consisted of 2000 steps of steepest descent minimization with and without a restraint of 50
kcal/mol/Å2 on the solute atoms. Four short MD simulations were then performed: (i) 12 ps
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MD simulation in NVT (constant number of particles, volume and temperature) ensemble at
10 K with solute heavy atoms restrained with a force constant of 50 kcal/mol/Å2; (ii) 12 ps MD
simulation in NPT (constant number of particles, pressure and temperature) ensemble at 10 K
with the same restraint; (iii) 12 ps MD simulation in NPT ensemble at 300 K with the same
restraint; (iv) 24 ps MD simulation in NPT ensemble at 300 K without any restaints. Unre-
strained production simulations were then performed in the NPT ensemble for 100 ns at 300 K
temperature and 1.01325 bar pressure. For this, the Nosé-Hoover chain thermostat [55] was
used with a relaxation time of 1 ps and the isotropic Martyna-Tobias-Klein barostat [56] was
used with a relaxation time of 2 ps. A cutoff of 9 Å was used for evaluating short range interac-
tions, while long range coulombic interactions were evaluated using the smooth particle mesh
Ewald method (PME) [57]. The RESPA integrator [58] was used with an inner time step of 2 fs
and an outer time step of 6 fs. Simulation trajectories were saved by capturing frames every 4.8
ps. After simulations, root mean square deviations (RMSD), root mean square fluctuations
(RMSF), and protein-ligand contacts of the complexes were calculated. Rescoring of the pro-
tein-ligand interactions was perfomed using Glide with frames extracted every 5 ns from the
100 ns MD simulations.

Pharmacokinetic parameters
Drug likeliness and ADME studies of ligands was performed to eliminate unfavourable com-
pounds in the early stage of drug development process. Schrodinger Qikprop [59] was used for
predicting the pharmacokinetic properties of the selected ligands. Using Qikprop, the Lipins-
ki’s rule of five and various principal parameters such as absorption, metabolism, aqueous solu-
bility, blood-brain barrier penetration, and central nervous system (CNS) activity were
calculated [60].

Results and Discussions

Validation of molecular docking protocol
One of the most widely used methods for validating a docking protocol is the re-docking of co-
crystalized ligand to the target protein [61]. In this study, the co-crystallized ligands were
extracted from the three receptor proteins and re docked into the active site of the respective
receptor. After docking, the best pose of the ligand was aligned with the co-crystalized ligand
and RMSD of the ligand was calculated. This helps to determine the reliability and reproduc-
ibility of the docking protocol [62]. All docked conformations of ligands when superimposed
with respective co-crystallized ligands were within an RMSD of 2.0 Å indicating a valid docking
protocol.

Standard precision and extra precision docking
To confirm the validity of the results, docking was performed with three structures of AR
(PDB IDs: 4GCA, 4LAU, 1US0). All ligand conformers were flexibly docked into the selected
AR X-ray crystal structures. Initially, SP docking method was employed and the highest scoring
compounds were subjected to XP docking. After XP analysis, the best interacting compounds
were ranked based on GlideScore and the best pose of the ligand was chosen. The top ranked
compounds that docked to AR are shown in Table 1 along with the drug molecules epalrestat,
sorbinil and ranirestat. For comparison, SP GlideScore for these compounds are provided in S2
Table. Out of the 212 natural compounds selected initially, gingerenone A, gingerenone B,
quercetin, lariciresinol, gingerenone C and calebin A showed high GlideScores (Table 1) and
binding energies (Table 2). The chemical structures of these lead compounds are shown in
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Fig 2. These compounds interacted with the target proteins by forming hydrogen bonds,
hydrophobic interactions and π–π interactions with the active site residues including Trp20,
Val47, Tyr48, Trp79, His110, Trp111, Thr113, Phe122, Gln183, Tyr209, Ala299, and Leu300.
These are crucial amino acid residues that are directly involved in the binding of an inhibitor.

Interaction analysis of phytocompounds with AR
From Tables 1 and 2, out of the six compounds, gingerenones A and B exhibited high binding
score and binding energy towards AR. Gingerenones are diarylheptanoids seen in the rhizome
of plant Zingiber officinalae and the basic structure consist of two aromatic rings connected by
a heptane chain [63]. Only the antifungal property of gingerenones has been reported so far
[64]. Due to the hydrophobic nature of active site, aromatic compounds serve as the best sub-
strate for this enzyme [65]. In agreement with this, π–π stacking also contributes to the binding
energy in these compounds apart from the high lipophilic and van der Waals’ contributions
(Table 2). Quercetin also showed a high docking score. In fact quercetin has already been
reported as a strong AR inhibitor [66]. In the present study, gingerenones A and B showed bet-
ter GlideScore and binding energy than quercetin. However, calebin A, lariciresinol and ginger-
enone C exhibited lower GlideScore compared to natural AR inhibitor quercetin.

Table 1. GlideScore and interacting residues from XP docking of various phytocompounds and drugs on AR targets.

Target Ligand XP GlideScore (kcal/mol) Hydrogen bonding residues Residues forming π–π interactions

4GCA Gingerenone A -13.02 Thr113, Gln183 Trp20, His110, Trp111, Tyr209

4GCA Gingerenone B -11.87 Thr113 Trp20, His110, Trp111, Tyr209

4GCA Quercetin -11.87 Leu300, His110 Trp20, His110, Trp111

4GCA Lariciresinol -11.77 Gln183 Trp20, His110, Trp111, Tyr209

4GCA Calebin A -11.76 Thr113, Gln183 Trp20, His110, Trp111, Tyr209

4GCA Gingerenone C -11.41 Thr113, Gln183 Trp20, His110, Trp111, Tyr209

4GCA Ranirestat -9.7 Trp111, Tyr48 Nil

4GCA Epalrestat -9.5 Trp20 Trp111

4GCA Sorbinil -7.4 Tyr48, His110 Nil

4LAU Gingerenone B -11.92 Trp111, Gln183 Trp20, His110, Trp111, Tyr209

4LAU Gingerenone A -11.66 Thr113, Gln183 His110, Trp111, Tyr209

4LAU Quercetin -11.55 Thr113 Trp79,Trp111

4LAU Calebin A -11.13 Thr113, Asn160, Ala299 Trp20, His110, Trp111

4LAU Lariciresinol -11.05 Gln183 Trp20, His110, Trp111, Tyr209

4LAU Gingerenone C -10.68 Tyr48, His110, Thr113 Trp111

4LAU Epalrestat -9.7 Trp20 Trp111

4LAU Ranirestat -9.2 Tyr48, His110 Trp111

4LAU Sorbinil -7.7 Trp20, Trp111 Phe122

1US0 Gingerenone B -11.63 Tyr48, His110 Trp111

1US0 Gingerenone A -11.77 Thr113, Gln183 His110, Trp111, Tyr209

1US0 Quercetin -11.53 Thr113 Trp79, Trp111, Phe122

1US0 Gingerenone C -11.50 Thr113, Gln183 His110, Trp111, Tyr209

1US0 Lariciresinol -11.48 No H bonds His110, Trp111, Tyr209

1US0 Calebin A -11.48 Thr113, Gln183 Trp20, His110, Trp111, Tyr209

1US0 Ranirestat -9.7 Trp111 Trp111

1US0 Epalrestat -9.4 Trp20 Trp111

1US0 Sorbinil -8.7 Trp111 Trp111

doi:10.1371/journal.pone.0138186.t001
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In the case of 4GCA-gingerenone A complex (Figs 3B and 4A), the ligand interacted with
the protein by forming two hydrogen bonds, four π–π interactions and several hydrophobic
contacts. The two aromatic rings of gingerenone A are firmly anchored in the anionic binding
site by the formation of π–π interactions with Trp20, His110, Trp111, and Tyr209. Further-
more, it forms hydrogen bonds with Thr113 (1.73 Å) and Gln183 (1.85 Å). The residues
Trp111 and Gln183 are part of the specificity pocket [67]. By interacting with these residues
gingerenone A show higher selectivity for AR [68]. Moreover it possesses a high GlideScore of
-13.02 kcal/mol and binding energy of -95.01 kcal/mol. Likewise, in 4LAU-gingerenone A
complex (S1 and S4 Figs), the ligand is bound to the active site by forming hydrogen bonds,

Fig 2. Chemical structure of lead molecules.

doi:10.1371/journal.pone.0138186.g002
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hydrophobic interactions and π–π interactions. In 1US0-gingerenone A complex (S2 and S5
Figs), two hydrogen bonds three π–π interactions and numerous hydrophobic interactions
were observed. The mode of binding and interaction of residues were also similar to 4GCA and
4LAU.

In 4GCA-gingerenone B complex (Figs 3C and 4B), one hydrogen bond, four π–π interac-
tions and numerous hydrophobic interactions were observed. Thr113 formed a hydrogen bond
(1.96 Å) and Trp20, His110, Trp111, and Tyr209 were involved in π–π interactions. These resi-
dues were seen in the anion binding site and specificity region of the active site [64]. Gingere-
none B exhibited a similar binding mode as that of gingerenone A as both the aromatic rings
were bound to the active site by the formation π–π stacking interactions. In 4LAU (S1 and S4
Figs), the ligand gingerenone B exhibited the same interactions by forming hydrogen bonds
and π–π stacking with Trp20, His110, Trp111, Gln183, and Tyr209. In 1US0 (S2 and S5 Figs),
the ligand forms hydrogen bonds with hydrophilic residues such as Tyr48 (2.77Å) and His110
(1.71Å). The aromatic ring forms a π–π stacking interaction with Trp111. In the three protein
structures, gingerenone B exhibited a GlideScore ranging from -11.63 to -11.92 kcal/mol. Thus,
in the three protein structures used in this study, gingerenones A and B showed a high affinity
towards AR.

Lariciresinol docked into 4GCA and 4LAU (Figs 3F and 4E, S1 and S4 Figs) by the forma-
tion of one hydrogen bond and four π–π interactions. The residues involved in these interac-
tions are Trp20 and His110 Trp111, Tyr209, and Gln183. In 1US0 (S2 and S5 Figs),
lariciresinol forms π–π interaction with Trp20, His110, and Trp111. In the three AR target
structures, lariciresinol exhibited a GlideScore of -11.77, -11.05, and -11.48 kcal/mol respec-
tively. Calebin A, the phytochemical present in Curcuma longa produced interactions with
structures 4GCA (Figs 3E and 4D) and 1US0 (S2 and S5 Figs) by forming hydrogen bonds and
π–π stacking with Trp20, His110, Trp111, Thr113, Gln183, and Tyr 209. In 4LAU (S1 and S4
Figs), calebin A formed hydrogen bonds with Thr113, Asn160, and Ala 299 which are seen in
the specificity pocket of the active site. Trp20, His110, and Trp111 were involved in the π–π
interactions with target protein. Gingerenone C is another diarylheptanoid present in Zingiber
officinalae. It interacted with AR structures by forming hydrogen bonds, hydrophobic interac-
tions and π–π interactions (Figs 3D and 4C, S1, S2, S4 and S5 Figs). The residues involved in
forming hydrogen bonds are Tyr48, His110, Thr113, and Gln183. These are residues seen in
both anion binding pocket and specificity pocket. Trp20, His110, Trp111, and Tyr209 were
involved in π–π interactions with the ligand.

The GlideScore of the lead compounds were then compared with AR inhibitors epalrestat,
sorbinil and ranirestat (S3 Fig). The results revealed that, in the three structures used in this
study, the drugs epalrestat, sorbinil and ranirestat exhibited lower GlideScores than the natural
compounds discussed above (Table 1). Remarkably, the phytochemicals discussed here showed
a higher affinity for AR than drugs developed to target this protein. From Table 2 it is evident
that in most cases, the identified natural compounds produced better MM-GBSA based bind-
ing energies due to more favorable coulombic interactions, lipophilic interations and van der
Waals’ interactions when compared to current drugs. Other physicochemical parameters were
also calculated to explore the potential of these molecules to be lead compounds.

Fig 3. Molecular interactions of lead compounds with AR (PDB ID: 4GCA). (A) Structure of AR with the binding site region enclosed in a red box. (B) AR-
gingerenone A complex (C) AR-gingerenone B complex (D) AR-gingerenone C complex (E) AR-calebin A complex (F) AR-lariciresinol complex (G) AR-
quercetin complex. Protein is shown in grey cartoon representation, amino acid side chains are shown in stick representation and the docked ligand is in
orange. Hydrogen bonds are shown as black dotted lines and π–π interactions are shown as blue lines.

doi:10.1371/journal.pone.0138186.g003
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Pharmacokinetic properties of natural inhibitors and drugs
Since molecular docking analysis produced several promising leads, various physicochemical
parameters of these compounds were calculated using Qikprop. This provides a computed
value for various physical and chemical parameters and ensures that these are within the
acceptable range for a drug molecule. Molecular weight, oral absorption, central nervous sys-
tem activity, blood brain barrier penetrations, aqueous solubility, LogP, solvent accessible sur-
face area (SASA) were calculated. Table 3 lists the values for these descriptors for the natural
compounds and commercially developed drugs. Molecular weight and aqueous solubility val-
ues are in the recommended range. The values indicate that gingerenones A, B and C are much
more soluble than sorbinil. The solvent accessible surface area (SASA) of the phytochemicals
were typically higher than the drugs. Orally administered drugs must be properly absorbed in
the intestine; here the analysis showed that gingerenones A, B and C have the highest oral
absorption rate of 100% and quercetin showed the least absorption value of 52.68%. Due to
safety concerns, blood brain barrier (BBB) penetration rate and central nervous system activity
were also calculated. The brain is protected from systemic circulation by the BBB. All natural
compounds discussed here were found to be highly CNS inactive whereas epalrestat and
ranirestat showed minimal amount of CNS activity. Here all predicted compounds were BBB
negative suggesting safe administrability. Thus the natural compounds showed better drug
likeliness and pharmacokinetic properties than existing drugs and quercetin (natural AR inhib-
itor) indicating their potential as lead compounds to inhibit AR.

Molecular dynamics simulations of top scored docked complex
To study the dynamic interaction of AR with the docked phytochemicals, molecular dynamics
(MD) simulations of the AR structure (PDB ID: 4GCA) complexed with gingerenones A and B
were performed using Desmond. 100 ns simulations of these structures were performed to
observe how the binding site adapts to the docked ligand. RMSD of the protein Cα atoms with
respect to the initial structure in these simulations stabilized to under 2 Å indicating a stable
conformation of the protein (S6 and S7 Figs). The simulations reach equilibrium in the first

Fig 4. Ligand interaction diagram of lead compounds with AR (PDB ID: 4GCA). (A) AR-gingerenone A complex (B) AR-gingerenone B complex (C) AR-
gingerenone C complex (D) AR-calebin A complex (E) AR-lariciresinol complex (F) AR-quercetin complex. Colored circles indicate amino acids that interact
with the bound ligand. Negatively charged amino acids are represented with red circles, positively charged amino acids are represented with dark blue
circles, polar amino acids are represented with light blue circles and hydrophobic amino acids are represented with green circles. Hydrogen bonds are
represented with purple arrows–dashed arrows for hydrogen bonds involving amino acid side chain and regular arrows for hydrogen bonds involving amino
acid backbone. π–π interactions are shown with green lines.

doi:10.1371/journal.pone.0138186.g004

Table 3. Pharmacokinetic parameters of natural compounds and drugs.

Name Molecular weight Oral absorption CNS activity BBB partition coefficient Aqueous solubility LogP SASA

Range <500 >80%high <25%low -2 inactive2 active (-3.0 to 1.2) (-6.5 to 0.5) <5 300–1000

Gingerenone A 356.4 100 -2 -1.372 -5.117 3.757 659.968

Gingerenone B 386.4 100 -2 -1.437 -5.722 4.326 748.61

Quercetin 302.2 52.68 -2 -2.34 -4.043 0.383 514.629

Calebin A 360.4 75.156 -2 -2.494 -4.928 2.571 685.211

Lariciresinol 286.2 88.808 -2 -1.297 -4.655 2.545 621.894

Gingerenone C 326.3 100 -2 -1.482 -5.185 3.926 671.736

Epalrestat 319.3 84.701 -1 -0.945 -4.448 3.62 567.965

Sorbinil 236.2 83.38 0 -0.294 -2.331 1.132 390.557

Ranirestat 420.1 88.24 -1 -0.743 -4.301 2.945 555.515

doi:10.1371/journal.pone.0138186.t003
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few nanoseconds. While the secondary structures were faithfully conserved during the entirety
of the simulations, the loop region between residues 217–223 exhibited the most fluctuation in
both simulations (S6 and S7 Figs).

The binding site is a dynamic region and the simulations indicate that the protein structure
is adapting around the docked ligand (Fig 5). Gingerenones A and B interacted with AR
throughout the simulation by forming hydrogen bonds, hydrophobic interactions, π–π interac-
tions and water bridges. In the AR-gingerenone A simulation, π–π interaction with the crucial
His110 was maintained throughout, while the π–π interaction with Trp111 was intermittently
broken. Interactions with the His110 and Trp111 in the anionic binding site of AR were main-
tained consistently in the AR-gingerenone B simulation. During the course of the simulation,
new interactions were also developed between gingerenone A and Ser210, and gingerenone B
and Lys77 and Ser159. These residues belong to the anionic binding and specificity region of
the active site. Water molecules can also been observed to make transient contacts with the
ligands and assists in the formation of bridged interactions with the protein.

Rescoring of the protein-ligand interactions was done using Glide after extracting frames
every 5 ns from the equilibrium MD simulation. Ligand interaction diagrams depicting the
protein-ligand interactions in the highest and the lowest scoring frames are shown in S8 and S9
Figs. In the case of gingerenone B, the average rescored GlideScore was -10.98 ± -1.92 kcal/mol
along the equilibrium simlation with the final frame producing a GlideScore of -13.74 kcal/
mol, which was a significant improvement on the initially docked GlideScore of -11.87 kcal/
mol (Table 1). Gingerenone A simulation produced an average GlideScore of -12.41 ±1.43
kcal/mol and a slight improvement from -13.02 kcal/mol to -13.36 kcal/mol in the final frame
of the simulation.

Conclusion
Aldose reductase, the major rate limiting enzyme in the polyol pathway, plays a critical role in
diabetic complications. Molecular docking revealed that natural compounds such as gingere-
none A, gingerenone B, gingerenone C, quercetin, lariciresinol and calebin A from spices
exhibited much better binding score and binding energy than commercially available drugs.
MD simulations were performed to study how protein-ligand interactions evolved on a tempo-
ral scale. At the end of 100 ns simulations, rescoring of the protein-ligand interactions pro-
duced an improvement in the docking score due to novel interactions with proteins and water
molecules. Thus, MD simulations could be an effective tool for refining protein-ligand interac-
tions and obtaining a more accurate indication of the dynamic evolution of the binding site
interactions. Molecular interactions and pharmacokinetic properties of these compounds are
extremely favourable for developing new therapeutic strategies. Further in vitro and in vivo
experimental studies are being considered for the validation of the results. Thus, this study
sheds light on a mechanism through which these spices may have a positive effect for diabetics.
The results further our understanding about how these natural molecules, present in our diet,
may interact with proteins in our body.

Fig 5. Residues of AR (PDB ID: 4GCA) that interact with the bound ligand and the number of
interactions these residuesmake during the course of a 100 ns MD simulation. (A) AR-gingerenone A
complex (B) AR-gingerenone B complex. The x-axis represents the MD simulation time at which the
interaction was evaluated and the y-axis shows all the residues that interacted with ligand at some point
during the simulation. The intensity of brown bar at any time point indicates howmany contacts (hydrophobic,
hydrogen bonds, etc.) a residue makes with the ligand at that time.

doi:10.1371/journal.pone.0138186.g005
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Supporting Information
S1 Table. List of spices and phytochemicals used in this study.
(DOCX)

S2 Table. GlideScore after SP docking of phytocompounds and current drugs to AR.
(DOCX)

S1 Fig. Molecular interactions of lead molecules with AR (PDB ID: 4LAU). (A) AR-gingere-
none A complex (B) AR-gingerenone B complex (C) AR-gingerenone C complex (D) AR-cale-
bin A complex (E) AR-lariciresinol complex (F) AR-quercetin complex. Protein is shown in
grey cartoon representation, amino acid side chains are shown in stick representation and the
docked ligand is in orange. Hydrogen bonds are shown as black dotted lines and π–π interac-
tions are shown as blue lines.
(TIF)

S2 Fig. Molecular interactions of lead molecules with AR (PDB ID: 1US0). (A) AR-gingere-
none A complex (B) AR-gingerenone B complex (C) AR-gingerenone C complex (D) AR-cale-
bin A complex (E) AR-lariciresinol complex (F) AR-quercetin complex. Protein is shown in
grey cartoon representation, amino acid side chains are shown in stick representation and the
docked ligand is in orange. Hydrogen bonds are shown as black dotted lines and π–π interac-
tions are shown as blue lines.
(TIF)

S3 Fig. Molecular interactions of drugs with AR (PDB ID: 4GCA). (A) AR-epalrestat com-
plex (B) AR-ranirestat complex (C) AR-sorbinil complex. Protein is shown in grey cartoon
representation, amino acid side chains are shown in stick representation and the docked ligand
is in orange. Hydrogen bonds are shown as black dotted lines and π–π interactions are shown
as blue lines.
(TIF)

S4 Fig. Ligand interaction diagrams of lead compounds with AR (PDB ID: 4LAU). (A) AR-
gingerenone A complex (B) AR-gingerenone B complex (C) AR-gingerenone C complex (D)
AR-calebin A complex (E) AR-lariciresinol complex (F) AR-quercetin complex. Colored circles
indicate amino acids that interact with the bound ligand. Negatively charged amino acids are
represented with red circles, positively charged amino acids are represented with dark blue cir-
cles, polar amino acids are represented with light blue circles and hydrophobic amino acids are
represented with green circles. Hydrogen bonds are represented with purple arrows–dashed
arrows for hydrogen bonds involving amino acid side chain and regular arrows for hydrogen
bonds involving amino acid backbone. π–π interactions are shown with green lines.
(TIF)

S5 Fig. Ligand interaction diagrams of lead compounds with AR (PDB ID: 1US0). (A) AR-
gingerenone A complex (B) AR-gingerenone B complex (C) AR-gingerenone C complex (D)
AR-calebin A complex (E) AR-lariciresinol complex (F) AR-quercetin complex. Colored circles
indicate amino acids that interact with the bound ligand. Negatively charged amino acids are
represented with red circles, positively charged amino acids are represented with dark blue cir-
cles, polar amino acids are represented with light blue circles and hydrophobic amino acids are
represented with green circles. Hydrogen bonds are represented with purple arrows–dashed
arrows for hydrogen bonds involving amino acid side chain and regular arrows for hydrogen
bonds involving amino acid backbone. π–π interactions are shown with green lines.
(TIF)
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S6 Fig. RMSD and RMSF fromMD simulation of AR (PDB ID: 4GCA) with gingerenone
A. (A) RMSD of Cα atoms of AR with respect to the initial structure during the course of the
simulation. Simulation reaches equilibrium in the first few nanoseconds as indicated by the
plateauing of the RMSD plot. (B) RMSF of Cα atoms of AR indicating backbone regions with
major motions. Significant movement is observed in the loop region between residues 217–
223.
(TIF)

S7 Fig. RMSD and RMSF fromMD simulation of AR (PDB ID: 4GCA) with gingerenone
B. (A) RMSD of Cα atoms of AR with respect to the initial structure during the course of the
simulation. Simulation reaches equilibrium in the first few nanoseconds as indicated by the
plateauing of the RMSD plot. (B) RMSF of Cα atoms of AR indicating backbone regions with
major motions. Significant movement is observed in the loop region between residues 217–
223.
(TIF)

S8 Fig. Ligand interaction diagrams from frames of the 4GCA-gingerenone A MD simula-
tion. The top 3 highest and lowest scoring frames are shown along with the corresponding
rescored GlideScore. Colored circles indicate amino acids that interact with the bound ligand.
Negatively charged amino acids are represented with red circles, positively charged amino
acids are represented with dark blue circles, polar amino acids are represented with light blue
circles and hydrophobic amino acids are represented with green circles. Water molecules are
represented with gray circles. Hydrogen bonds are represented with purple arrows–dashed
arrows for hydrogen bonds involving amino acid side chain and regular arrows for hydrogen
bonds involving amino acid backbone. π–π interactions are shown with green lines.
(TIF)

S9 Fig. Ligand interaction diagrams from frames of the 4GCA-gingerenone B MD simula-
tion. The top 3 highest and lowest scoring frames are shown along with the corresponding
rescored GlideScore. Colored circles indicate amino acids that interact with the bound ligand.
Negatively charged amino acids are represented with red circles, positively charged amino
acids are represented with dark blue circles, polar amino acids are represented with light blue
circles and hydrophobic amino acids are represented with green circles. Water molecules are
represented with gray circles. Hydrogen bonds are represented with purple arrows–dashed
arrows for hydrogen bonds involving amino acid side chain and regular arrows for hydrogen
bonds involving amino acid backbone. π–π interactions are shown with green lines.
(TIF)
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