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2009 A(H1N1) data for 13 European countries obtained from the weekly influenza surveillance overview (WISO) reports of
European Centre for Disease Prevention and Control (ECDC) in the form of weekly cumulative fatalities are analyzed. The
variability of relative fatalities is explained by the health index of analyzed countries. Vaccination and healthcare practices as
reported in the literature are used to explain the departures from this model.The timing of the vaccination with respect to the peak
of the epidemic and its role in the efficiency of the vaccination is discussed. Simulations are used to show that on-time vaccination
reduces considerably the final value of 𝑅(𝑡), 𝑅𝑓, but it has little effect on the shape of normalized curve 𝑅(𝑡)/𝑅𝑓.

1. Introduction

The 2009 A(H1N1) pandemic was a major influenza pan-
demic that caused global alert. It was a variant of 1918
influenza that caused millions of fatalities. All countries
applied some type of intervention and vaccines were devel-
oped but it turned out that the pandemic was not as deadly as
anticipated and vaccination campaigns were not as effective
as planned in most of the countries. As summarized in
Section 2.1, a large number of research papers addressed
various aspects of the pandemic: basic parameters were
measured from clinical information and review articles on
the healthcare measures and on epidemiological research
were published for various countries.

In this paper, we study the 2009 A(H1N1) pandemic in 13
European countries, based on weekly influenza surveillance
overview (WISO) reports published by European Centre for
Disease Prevention and Control (ECDC) [1]. The official
pandemic period forA(H1N1) is fromweek 18 of 2009 toweek
35 of 2010 and the formal end is declared as week 32 of 2010
[2]. Here we study the fatality data for the so-called second
wave (or autumn/winter wave), fromweek 36 of 2009 to week
15 of 2010. In the following, for practical purposes, we will
count weeks from the beginning of 2009, hence our data will
cover the period from week 36 to week 68.

The aim of the present work is to study the inference of
the epidemic parameters from fatality data only, as discussed
in our previous work [3]. We show that the scatter in relative
fatalities can be explained by the healthcare measures and
we use pulse vaccination simulations for the Susceptible-
Infected-Removed (SIR) model to measure the effects of
timing of vaccinations.

2. Preliminaries

2.1. Literature Survey. In the literature there are a number of
papers devoted to the study of 2009 A(H1N1) pandemic in a
single country such as Turkey [4], Denmark [5], Canada [6],
Iran [7], Morocco [8], and Mexico [9] or to a comparative
study [10–14]. Several others focus on the transmission
dynamics of the pandemic, providing estimates of “basic
reproduction number,” “incubation period (latent period),”
“generation time,” and “serial interval” as below.

The “basic reproduction number” (𝑅0) is the average
number of secondary cases generated from a single infected
case in a population with no immunity to the disease and
in the absence of interventions to control the infection. The
“incubation period” is defined as the time between infection
and symptom onset while the “latent period” is defined
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as the time of being infected and becoming infectious. The
latent period is the notion that is relevant in epidemiological
dynamics but for influenza type diseases the latent period and
incubation period are used synonymously. The “generation
time (interval)” is the average delay between the time of
infection of a case and the time of infection of secondary
cases infected by that case; and the “serial interval” is defined
as the difference between the onset of symptoms of the
primary and secondary cases [15, 16]. The serial interval is
more easily observable than the generation time; however
generation time is more relevant in the epidemic spread.
For influenza type diseases, the distinction is not crucial.
For A(H1N1), the mean incubation period is estimated as
1.4 days (95% confidence interval (CI), 1.0–1.8); the mean
generation time of the pandemic is estimated as 2.5 to 3 days,
and the serial interval is estimated as 2.2 to 2.3 days [11, 17].
Since 𝑅0 depends on the contact rate which may differ from
country to country, the estimate of 𝑅0 has certain spread. For
example, it is estimated as 1.1–1.4 in United Kingdom [12],
1.8 (95% CI, 1.5–2.2) in United States [17], 1.3–1.4 in Brazil
[12], 1.4–1.6 in Mexico [18], 1.2–1.6 in Peru [19], 1.8–2.1 in
Thailand [20], 1.2–1.5 in Australia [12], and 1.2–1.4 in Chili
[12]. A review of studies presenting estimates of transmission
parameters of the 2009 A(H1N1) pandemic is given in Boëlle
et al.’s [13] work, where they show that the mean generation
time of 2009 A(H1N1) pandemic was lower than the median
for 1889, 1918, 1957, and 1968 influenza pandemics; and the
median reproduction number was similar to 1968 pandemic
and slightly smaller than 1889, 1918, and 1957 pandemics.

2.2. Preprocessing of the Data. Data collected for the Euro-
pean Union and European Economic Area (EU/EEA) WISO
includes sentinel syndromic surveillance of influenza-like ill-
ness (ILI) and acute respiratory infection (ARI) and virolog-
ical surveillance data, hospital-based sentinel surveillance of
severe acute respiratory infection (SARI) data, and qualitative
reporting data as well as influenza deaths. Data related to
weakly influenza deaths includes case based deaths resulting
from severe acute respiratory infection (SARI) and weakly
aggregated influenza deaths reported by countries, which is
also complemented by active monitoring of official websites
for deaths [2, 21]. The first WISO report, published on
15.09.2009, includes the data of week 36 of 2009. Our study
covers the period fromweek 36 of 2009 to week 15 of 2010 (or
from week 36 to week 68 counted cumulatively for practical
purposes) called the “second wave.” In Table 1, we present 33
weeks of cumulative fatality data, from September 2009 to
May 2010, of 13 different European countries, obtained from
WISO reports.

Fatality data related to weeks 44, 45, and 52 were not
available in WISO reports; linear interpolation was used to
fill the missing values. It has been reported that the weekly
mortality reports might be unreliable due to reporting delays
[2].

The time series for fatalities for the analyzed countries
are presented in Figure 1. From this figure we can see that
the epidemic starts earlier in Netherlands, Ireland, Norway,
and Sweden and later in Czech Republic, Estonia, France,
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Figure 1: Normalized fatalities for analyzed European countries.

Germany, Hungary, Lithuania, Romania, and Slovenia. The
reason of this early start-up may be the early start of the
influenza season due to climate in Northern countries.

2.3. Demographic Structure and Healthcare Measures. Geo-
graphic and demographic information of various European
countries is presented in Table 2 [22]. This piece of informa-
tion is used to normalize and compare the number of fatalities
in different countries. The age structure of the population
is also a key issue since the 2009 A(H1N1) pandemic is
characterized with low infection rate among people over
the age of 60 presumably due to their prior exposure to
antigenically related influenza viruses, resulting in the devel-
opment of cross-protective antibodies [2, 23]. As opposed
to seasonal influenza, during the 2009 A(H1N1) pandemic,
80% of fatalities were within the age group under 65, and
about 25%–30% of fatalities were among healthy adults that
were not considered as part of risk groups [2]. It is reported
by several studies [14, 24, 25] that during the 2009 A(H1N1)
pandemic, the proportion of fatalities among the young
increased in comparison to seasonal influenza deaths. In fact,
VanKerkhove et al. [26] reported that globally themedian age
was 46 among fatalities.We have included information on age
structure for the countries we analyzed in Table 2; however
since their age structure was more or less homogeneous
we overlooked this information and decided to use total
figures. In this table, Human Development Index (HDI) and
health index (HI) of countries are also presented along with
average latitudes. The census data and average latitudes are
obtained from CIA (The World Factbook) [22] and Eurostat
Yearbook [27]; HDI and HI values are acquired from Human
Development Reports [28]. HI published in the framework
of the United Nations Development Program [28] is one of
the objective measures of the efficiency of the healthcare
system. HDI that includes HI as a component can also be
considered as an alternative [28]. HDI is a measure of human
development, and it has three basic dimensions: a long and
healthy life (health index), access to knowledge (education
index), and a decent standard of living (income index).
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Table 2: Demographic information.

Country 𝐷𝑓 𝑁 𝐴 𝑑 = 𝑁/𝐴 𝑁 < 65 (%) (𝐷𝑓/𝑁)10
3 HDI HI 𝜆

Czech Rep. 98 10 467 78 866 132.7 85.1 9.4 0.841 0.901 49.45
Estonia 19 1 340 45 226 29.63 82.9 14 0.812 0.851 59.00
France 312 64 367 643 548 100.0 83.3 4.9 0.872 0.976 46.00
Germany 253 82 002 357 021 229.7 79.6 3.1 0.885 0.953 51.00
Greece 141 11 260 131 940 85.34 81.3 13 0.855 0.945 39.00
Hungary 134 10 031 93 030 107.8 83.6 13 0.805 0.853 47.00
Ireland 26 4 450 70 280 63.32 88.9 5.8 0.895 0.955 53.00
Lithuania 23 3 349 65 200 51.37 84.0 6.9 0.783 0.824 56.00
Netherlands 61 16 485 41 526 397.0 85.0 3.7 0.890 0.955 52.30
Norway 29 4 799 385 252 12.46 85.3 6.0 0.938 0.966 62.00
Romania 122 21 498 238 391 90.18 85.1 5.7 0.767 0.842 46.00
Slovenia 19 2 032 20 253 100.3 83.6 9.4 0.828 0.931 46.00
Sweden 24 9 256 449 964 20.57 82.2 2.6 0.885 0.970 62.00
Note:𝐷𝑓: total fatality;𝑁: population in thousands; A: area (km2); 𝑑: population density (thousand/km2);𝑁 < 65 (%): percentage of 0–64 years; (𝐷𝑓/𝑁)10

3:
relative fatalities; HDI: Human Development Index; HI: health index; 𝜆: average latitude degree north.

The HDI value is calculated as the geometric mean of nor-
malized indices measuring achievements in each dimension.

During the 2009 A(H1N1) pandemic, several pharmaceu-
tical (antivirals, vaccination) and nonpharmaceutical (school
closures, travel restrictions, limiting public gatherings, etc.)
measures were recommended across communities [29, 30].
All countries agreed on EU Health Security Committee
(HSC) recommendations to immunize risk and target groups
such as healthcare workers, pregnant women, and those
older than six months with chronic ill health; however some
countries even targeted children or entire population [2, 10].
Hungary was the first EU country able to start vaccination
(during week 40), and other countries followed afterwards.
In EU/EEA, at least 46.2 million (9% of the population) was
vaccinated as of mid-July 2010 [2].

Vaccination coverage of various European countries is
presented in Table 3 based on Mereckiene et al.’s [10] study.
The vaccination coverage data for Lithuania was not available
and presented data related to Germany corresponds to the
vaccinated people above the age of 14.

In this table, 𝑡𝑖 and 𝑡𝑒 denote, respectively, the onset and
the end of the epidemic wave which are estimated as the week
before the first fatality and the week after the last fatality,
𝑡𝑒 being counted from the beginning of 2009. The values
𝑡1 and 𝑡2 denote the weeks at which vaccination starts and
ends, as reported in [10], 𝑡2 being counted cumulatively. Latest
reported time is week 86 corresponding to the end of the
survey. The duration of the epidemic wave, Δ𝑇, is defined
as Δ𝑇 = 𝑡𝑒 − 𝑡𝑖, with 𝑡𝑖 and 𝑡𝑒 estimated in Table 3. The
time span between the onset of the epidemic pulse and the
starting of the pulse vaccination Δ𝑉 is defined as Δ𝑉 =
𝑡1 − 𝑡𝑖. 𝑄𝑉 = Δ𝑉/Δ𝑇 is the relative timing of the vaccination
campaign within the epidemic pulse and a negative or small
positive value indicates on-time vaccination campaign. 𝑄𝑉
together with the total vaccination percentage 𝑉𝑓 will be
considered as a measure of the efficiency of the vaccination
strategy. In many countries, vaccination timing goes beyond

Table 3: Vaccination coverage.

Country 𝑡𝑖 𝑡1 𝑡𝑒 𝑡2 Δ𝑇 Δ𝑉 𝑄𝑉 𝑉𝑓

Czech Rep. 41 48 64 76 23 7 0.30 0.6
Estonia 45 51 63 86 18 6 0.33 3
France 42 43 67 86 25 1 0.04 8
Germany 42 44 67 85 25 2 0.08 8
Greece 46 47 68 86 22 1 0.04 3
Hungary 40 40 63 86 23 0 0.00 27
Ireland 38 43 51 86 13 5 0.38 23
Lithuania 45 53 61 86 16 8 0.50 —
Netherlands 41 44 61 56 20 3 0.15 30
Norway 40 43 51 66 11 3 0.27 45
Romania 45 48 61 77 16 3 0.19 9
Slovenia 45 44 57 58 12 −1 −0.08 5
Sweden 42 42 58 86 16 0 0.00 59
Note: 𝑡𝑖: the onset of the epidemic wave estimated as the week before the first
fatality; 𝑡1: the first week of vaccination; 𝑡𝑒: the end of the epidemic wave
estimated as the week after the last fatality; 𝑡2: the last week of vaccination
(counted from the beginning of 2009); Δ𝑇: the duration of the epidemic
wave, Δ𝑇 = 𝑡𝑒 − 𝑡𝑖; Δ𝑉: the time span between the onset of the epidemic
pulse and the starting of the pulse vaccination, Δ𝑉 = 𝑡1 − 𝑡𝑖; 𝑄𝑉 = Δ𝑉/Δ𝑇:
the relative timing of the vaccination campaign within the epidemic pulse
(a negative or small positive value indicated on time vaccination campaign);
𝑉𝑓: total vaccination percentage.

the end of the epidemic but presumably the vaccination rate
drops towards the end of the epidemic and the vaccination
percentage saturates. Thus we will assume that vaccination is
practically terminated at the end of the epidemic as if pulse
vaccination was applied.

2.4. SIR and SEIR Epidemic Models with Vaccination.
Compartmental models in epidemiology are based on the
subdivision of the individuals in a society into distinct
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groups with respect to their status regarding the disease. The
basic compartmental models are the Susceptible-Infected-
Removed (SIR) and the Susceptible-Exposed-Infected-
Removed (SEIR) models that represent quite adequately the
spread of an epidemic in a society where the total population
is constant, the characteristics of the disease are time
independent, and no vaccination policy is in force. In these
models, it is further assumed that immunity, once acquired,
cannot be lost; hence the passage among the compartments
is one-directional. This situation fits well with the spread of
seasonal epidemics in a homogeneous closed society.

The standard Susceptible-Infected-Removed (SIR) and
Susceptible-Exposed-Infected-Removed (SEIR) models [31,
32] consist of differential equations governing the dynamics
of a population where the individuals can be “Susceptible”
(𝑆), “Exposed” (𝐸), “Infected” (𝐼), and “Removed” (𝑅).
Vaccination is incorporated in themodel by adding the group
of “Vaccinated” (𝑉) individuals who gain immunity without
going through an infectious period. We reserved the term
“Removed” to the group of individuals who gain immunity
after going through an infectious period.

The resulting differential equations for the SIR and the
SEIR system with vaccination are given as

𝑑𝑆

𝑑𝑡
= 𝛽𝑆𝐼 − ]𝑆 (𝑡) ,

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜂𝐼,

𝑑𝑅

𝑑𝑡
= 𝜂𝐼,

𝑑𝑉

𝑑𝑡
= ]𝑆 (𝑡) ,

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜀𝐸,

𝑑𝐼

𝑑𝑡
= 𝜀𝐸 − 𝜂𝐼.

(1)

In these equations, the parameters 𝛽, 𝜀, 𝜂, and ] are constants.
In the SIR and SEIR models, the ratio of the parameters 𝛽/𝜂
turns out to be equal to the basic reproduction number 𝑅0,
when a first-order approximation is used for 𝐼(𝑡) [33, 34].

The reciprocals of the parameters 𝜂 and 𝜀 are, respec-
tively, the infection period and the incubation period (latent
period), respectively. The parameter ] is the vaccination rate;
hence models without vaccination are obtained by putting
] = 0. Since the total population is assumed to be constant,
the normalization conditions are 𝑆 + 𝐼 + 𝑅 + 𝑉 = 1 and
𝑆 + 𝐸 + 𝐼 + 𝑅 + 𝑉 = 1.

2.5. Exact Solutions for Pulse Vaccination. The differential
equations for the SIR system with or without vaccination are
solved implicitly for 𝐼 and 𝑆 as

(𝐼 − 𝐼𝑖) + (𝑆 − 𝑆𝑖) + (
]
𝛽
) ln( 𝐼
𝐼𝑖

) − (
𝜂

𝛽
) ln( 𝑆
𝑆𝑖

) = 0, (2)

where 𝑆𝑖 and 𝐼𝑖 ̸= 0 are the initial values of 𝑆 and 𝐼,
respectively. For the SEIR systemwithout vaccinationwehave
a similar relation:

(𝐸 + 𝐼) − (𝐸𝑖 + 𝐼𝑖) + (𝑆 − 𝑆𝑖) − (
𝜂

𝛽
) ln( 𝑆
𝑆𝑖

) = 0, (3)

where 𝐸𝑖 is the initial value of 𝐸. The SEIR system with
vaccination is an essentially third-order system that could not
be integrated as in the case of the SIR systemwith vaccination.

In the following we assume that vaccination starts at 𝑡 =
𝑡1 and stops at 𝑡 = 𝑡2. The conditions as 𝑡 → −∞ are
characterized by 𝑆 → 1, 𝐼 → 0, 𝐸 → 0, and 𝑅 → 0;
hence the initial conditions should be specified according to
𝐼𝑖 +𝐸𝑖 + 𝑆𝑖 − (𝜂/𝛽) ln(𝑆𝑖) = 1. It follows that at the initial stage
prior to vaccination the implicit relations for the SIR and the
SEIR models are, respectively,

𝐼 + 𝑆 − (
𝜂

𝛽
) ln (𝑆) = 1,

𝐸 + 𝐼 + 𝑆 − (
𝜂

𝛽
) ln (𝑆) = 1,

(4)

regardless of the initial conditions. Let 𝑆𝑓, 𝑅𝑓, and 𝑉𝑓 be the
final proportions of Susceptible, Removed, and Vaccinated
individuals, respectively. Since the final state is characterized
by 𝐼 = 𝐸 = 0, for both models the implicit relations are
reduced to

𝑆𝑓 − (
𝜂

𝛽
) ln (𝑆𝑓) = 1. (5)

It follows that the basic reproduction number 𝑅0 = 𝛽/𝜂 is
expressed in terms of 𝑆𝑓 as

𝑅0 =
𝛽

𝜂
= −

ln (1 − 𝑅𝑓 − 𝑉𝑓)

(𝑅𝑓 + 𝑉𝑓)

= −

ln (𝑆𝑓)
1 − 𝑆𝑓

, (6)

regardless of the vaccination coverage. If vaccination has
never been applied, 𝑆𝑓 = 1 − 𝑅𝑓, while if pulse vaccination
has been in effect, 𝑆𝑓 = 1 − 𝑅𝑓 − 𝑉𝑓. Thus in the case of
pulse vaccination, 𝑅0 can be obtained by knowing the total
percentage of Removed and Vaccinated individuals.

3. The Effects of Healthcare
Quality of Countries

The basic parameter of the epidemic 𝑅0 and the final pro-
portion of the Removed individuals 𝑅𝑓 in the SIR and SEIR
models are related by a one-to-one nonlinear relationship.
Thus the basic reproduction number that can be measured
from clinical studies at the early phases of an epidemic
can also be found from the total proportion of Removed
individuals at the postepidemic phase. The difficulty here lies
in the fact that the final proportion of Removed individuals is
hard to estimate. Nevertheless, the total number of fatalities
can be considered as a measure of the individuals affected
by the disease. The proportion of individuals who die from
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Figure 2: Relative fatalities versus the health index.

a disease is known as the case fatality rate (CFR). In the
case of an influenza-like illness, the case fatality rate possibly
depends on the quality of healthcare. The purpose of this
section is to study the effects of healthcare, specifically, the
relation between the relative fatalities and the healthcare
indices for the countries that we study.

In order to examine the correlations between the relative
fatalities and HDI and HI values, associated correlation coef-
ficients are calculated. Weak negative correlations are found
based on correlation coefficients of −0.4386 and −0.4834,
respectively. Relative fatalities (𝐷𝑓/𝑁)10

3 versus the health
index (HI) are shown in Figure 2, which displays roughly this
negative correlation, despite numerous exceptions that will be
discussed. In preliminary work, we have studied the effect of
both indices and we have seen that for the countries under
consideration they are closely correlated and we decided to
work with HI values of the countries.

In this figure, the linear fit is obtained by minimizing the
number of outliers with trial and errormethod.The countries
that lie well off the linear fit are Lithuania and Romania
with lower than expected relative fatalities and Greece with
higher than expected relative fatalities. These countries are
considered as outliers with the minimum error of 2.9%.

At the right lower part of the graph, corresponding to
high HI, we observe that the relative fatalities are lower
for Germany compared to France and lower for Sweden
compared to Norway. Furthermore, the relative fatalities of
Netherlands are also well below the regression line. In the
next subsections, we discuss these relations.

3.1. Discussion of the Results for Netherlands. The time evolu-
tion of the data has excessive fluctuations butwemay consider
the total number of fatalities data reliable. From Table 3,
we can see that vaccination timing was appropriate and the
coverage was as high as 30%.Thismay explain the low relative
fatalities but we should also take into account the fact that
Netherlands is the most densely populated country among
the ones analyzed and the dependency of the parameter 𝛽 on
the population density may have a saturation effect.
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Figure 3: Vaccination timing versus vaccination coverage.

3.2. Comparison of the Results for Germany and France.
Merler et al. [35] reported that the peak of the pandemic was
delayed in France due to timing of the school holidays (weeks
44 and 45) and the peak was predicted to happen on average
at week 43.6 but actually happened at week 49. We can see
that althoughGermany and France have similar demographic
structures and vaccination policies and even though France
has higher HI, the relative fatalities of France were higher
than Germany. Detailed vaccination policies and strategies
followed by France are presented in Schwarzinger et al.’s [36]
study. The difference can be explained by epidemic-specific
precautions andhealthcare procedures applied inGermany as
reported in [37].Wilking et al. [37] suggested thatmortality in
Germany due to 2009 A(H1N1) pandemic seems to have been
one of the lowest fatality ratios in Europe and early treatment
might have had an impact on overall mortality.

3.3. Comparison of the Results for Norway and Sweden.
Norway and Sweden have similar geographic, demographic,
and social characteristics. The difference between Sweden
and Norway can be explained by their vaccination strategies.
From Table 3, we can see that although vaccination started
almost at the same time in both countries, for Norway it was
almost 1/3 of the epidemic pulse, but for Sweden it was right
at the beginning. It has actually been reported that in Norway
vaccination campaign started too late to be effective [38]
although probably above 40% of the Norwegian population
got vaccinated [39]. In the study of de Blasio et al. [38], the
effect of vaccination timing and sales of antivirals in Norway
is analyzed with an age-structured SEIR model, and it is
indicated that the countermeasures only prevented 11-12% of
the potential cases relative to an unmitigated pandemic, and if
the vaccination campaign would have started 6 weeks earlier,
rather than week 43/2009, it is estimated that the vaccination
alone might have reduced the clinical attack rate by 50%.

3.4. Vaccination Timing and Coverage of Analyzed Countries.
In Figure 3, vaccination timing (𝑄𝑉) versus vaccination cov-
erage percentage (𝑉𝑓) are shown for each analyzed country.

In this figure, lower right corner corresponds to late
vaccination campaigns with low percentage coverage. The
ones at the upper right correspond to late vaccination and
high coverage so these are relatively inefficient campaigns.
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France: vaccination coverage 8%
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Germany: vaccination coverage 8%
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Greece: vaccination coverage 3%
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Hungary: vaccination coverage 27%
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Ireland: vaccination coverage 23%
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Figure 4: Continued.
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Norway: vaccination coverage 45%
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Romania: vaccination coverage 9%
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Slovenia: vaccination coverage 5%
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Sweden: vaccination coverage 59%

35 40 45 50 55 60 65 70
Week

N
or

m
al

iz
ed

 fa
ta

lit
y

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(l)

Figure 4: The normalized fatality data and the vaccination timings.

The ones at the upper left are the most efficient with on-
time vaccination campaigns and high coverage. This fig-
ure explains the difference between Sweden and Norway.
Both countries have similar HI, and their geographic and
demographic properties are similar, the absolute timing
difference for starting vaccination is just 1 week but the
relative difference is large, and this reflects to the burden of
the epidemic.

In Figures 4(a)–4(l), we present the data for each country
and the vaccination timings, based on the vaccination infor-
mation given in Table 3. Many countries claim having con-
tinued vaccination past the epidemic wave but the number
of vaccinated people as a function of time is not given. It is
reasonable to assume that the majority of the people have
been vaccinated during the epidemic wave and vaccination
continues only for specific target groups.

The timing of the vaccination should be measured by its
location in the epidemic wave, as indicated in Table 3. For
an efficient vaccination campaign, the ratio 𝑄𝑉 should be
small, even negative. We see that in many countries the ratio
𝑄𝑉 is too high to be effective. From Table 3, we see that
vaccination campaigns should have been most effective in
Hungary, Sweden, and Netherlands. In Figures 4(a)–4(l), we
can see this effect clearly for Sweden and Netherlands but not
for Hungary.

4. Simulations for Pulse Vaccination Strategies

In this section, we present simulations for vaccination cover-
age and timing to conclude that on-time vaccinations have a
considerable impact in reducing the final value 𝑅𝑓, but vac-
cination effects are practically unobservable in normalized
time evolution curves 𝑅(𝑡)/𝑅𝑓.

In Table 3, the latest reported week is 86, corresponding
to the end of the survey, but our study stops at week 68.
The temporal distribution of vaccination rates is not given in
these reports. However, it is reasonable that mass vaccination
campaigns would be discontinued after the stabilization of
the number of fatalities which signals the end of epidemic.
In fact, the vaccination rates for France [10] confirm this.
We thus assumed that total vaccination ratios are achieved
by the end of week 68. Even if vaccination goes beyond the
stabilization of𝑅(𝑡), it does not change𝑅𝑓; it simply decreases
𝑆𝑓 to zero.

4.1. The Effect of Very Low Vaccination Coverage. The total
vaccination coverage given in Table 3 shows that total per-
centage of Vaccinated individuals was as low as 3% except
for Hungary, Ireland, Netherlands, Norway, and Sweden. A
comparison of the no vaccination and 3% vaccination for the
SIR model is shown in Figures 5(a)-5(b).
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Figure 5: Comparison of no vaccination (a) and 3% vaccination (b) for the SIR model.

In this simulation, vaccination starts when 𝐼(𝑡) reaches
half of its peak value and it is applied for 14 days. The final
value of 𝑆(𝑡) ismore or less the same, but the final value of𝑅(𝑡)
is lower. This issue is discussed in some detail in [40], where
it is shown that the predicted number of cases of infections
decreases linearly with vaccination coverage. Based on this,
we considered vaccination to be effective on 𝑅𝑓 only for
Hungary, Ireland, Netherlands, Norway, and Sweden, where
the coverage was above 20%.

4.2. The Effect of Vaccination Timing. It is well known that
the timing of pulse vaccination is crucial in controlling the
spread of the infection. It is reported that the progression
of the epidemic is from west to east, as seen from Figure 1
where we present the timing of the epidemic. We also note
that it started earlier in Norway compared to Sweden and
this had a crucial effect on the efficiency of vaccination [2].
In Table 3, the onset of the epidemic wave is considered as the
week before the first fatality and the end of the epidemic as the
week after the stabilization of 𝑅(𝑡). We thus measure “early”
or “late” vaccination by the location of the starting time of the
vaccination within this epidemic wave period.

In Figures 6(a)-6(b) we present a simulation of 30%
vaccination, starting “early” and “late.” The terms early and
late refer to the timing of the vaccination with respect to the
time 𝑡𝑚 where 𝐼(𝑡) for the no vaccination model reaches its
maximum value. In our simulations, we used early and late
pulse vaccinations as the ones starting one week earlier or
later than 𝑡𝑚. The reductions in 𝑅𝑓 for each case show the
importance of the vaccination timing.

Here we see that vaccination that starts late has little effect
in reducing the number of Removed individuals. Vaccination

that continues beyond the stabilization of 𝑅(𝑡) is useless for
influenza type epidemics.The simulations also show that even
2-week or 4-week campaigns may be sufficient.

4.3. The Effect of Vaccination on Normalized Curves.
Although the efficiency of the vaccination on reducing the
burden of the epidemic is unquestionable, it was a surprise to
see that it had little effect on the shape of the time evolution
curve, 𝑅(𝑡). In Figures 7(a)-7(b), we present the actual and
normalized time evolution curves 𝑅(𝑡) and 𝑅(𝑡)/𝑅𝑓 for
various vaccination coverage percentages, ranging from
no vaccination (top and right) to 50% vaccination. From
Figure 7(b), we see that the effect of high vaccination
coverage on the normalized curves is a back-shift in time,
rather than a distinguishable change in the shape. From these
figures, we see that vaccination at low rates is practically
unobservable in normalized curves. Even at high rates, it
appears as a shift and a reduction in the curvature of the first
turn if it is applied early and a reduction of the curvature of
the second turn, if it is applied late.

4.4. The Efficiency of Vaccination Campaigns. In order to
compare the efficiency of various vaccination campaigns,
we ran a pulse vaccination simulation using SIR model.
The simulation runs over 3 parameters, the duration of
the vaccination campaign, the onset of the campaign, and
the percentage of Vaccinated individuals. For each of these
cases, we ran the SIR model with pulse vaccination using
representative parameters 𝑅0 = 1.5, 𝜂 = 1/4 and we
computed the final percentage of Removed individuals 𝑅𝑓 as
a function of these 3 parameters.
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Figure 6: Comparison of early (a) and late (b) timings for 30% vaccination for the SIR model.
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Figure 7: The effect of vaccination on actual (a) and normalized (b) 𝑅(𝑡).

We have chosen the duration of the pulse vaccinations
as 𝑘 = 14, 28, 70, and 140 days, as presented, respectively,
in Figures 8(a)–8(d). In these figures, the curves from top
to down correspond to vaccination ratios ranging from
10% to 50% in steps of 5%, respectively. Points of these
curves are the ratio of the final percentage of Removed
individuals with pulse vaccination (𝑅𝑓) and without pulse
vaccination (𝑅𝑓0). The horizontal axis is day 𝑗 of the onset
of the vaccination campaign and the time origin is chosen
at the peak 𝐼(𝑡) without vaccination. As an example, the
top curve in Figure 8(a) corresponds to a 14-day campaign

with 10% vaccination ratio and one can see that a campaign
that starts about 40 days before the expected peak of the
epidemic reduces the final percentage of individuals affected
by the epidemic to approximately 60% of this value when no
vaccination is applied.

These figures can be useful in decisions related to vac-
cination strategies. For example, a short (𝑘 = 14) but early
(𝑗 = −80) campaign with low coverage (15%) is as efficient as
a long (𝑘 = 70) but relatively late (𝑗 = −40) campaign with
higher (20%) coverage, both leading to approximately 30%
improvement. On the other hand, campaigns with duration
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Figure 8: The improvement in 𝑅𝑓 for total vaccination ratios ranging from 10% (top curves) to 50% in steps of 5% for the SIR model. Time
origin is chosen as the peak of 𝐼(𝑡)with no vaccination. Pulse vaccination starts at day 𝑗 (horizontal axis) and lasts for 14 days (a), 28 days (b),
70 days (c), and 140 days (d).

𝑘 = 70 that start later than day 𝑗 = −30 can never reach
this improvement level. Thus, vaccination campaigns should
start as early as possiblewith respect to the expected peak of the
epidemic and one should be aware that longer campaigns that
start late would have limited efficiency despite their higher
coverages.

5. Discussion

We have studied the relation between the HI and the relative
fatalities of countries and obtained a linear fit by minimizing
the outlierswith trial and errormethod.We realized a roughly
negative correlation and Lithuania, Romania, and Greece
were considered outliers. Netherlands had lower relative

fatalities than expected and this may be due to appropriate
timing, high coverage of vaccination, and the saturation
effect of the parameter 𝛽 on the high population density
of Netherlands. The relative fatalities in France were higher
than in Germany although they have similar demographic
structures and vaccination policies and the difference may
be explained by epidemic-specific precautions and healthcare
procedures applied by Germany. Norway had higher relative
fatalities than Sweden although they are demographically and
HI-wise similar, and this can be explained by vaccination
strategies, specifically by the timing of the vaccination and
vaccination coverage percentage. Even though vaccination
started almost at the same time in both countries, in Norway
it was too late to be effective since the relative timing of the
starting time of the vaccination, its location in the epidemic
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wave, is significant. For an efficient vaccination campaign the
ratio 𝑄𝑉 should be small and even negative and in many
countries the 𝑄𝑉 ratio was too high to be effective.

We presented simulations for vaccination coverage and
the timing of the vaccination with respect to the peak of
the epidemic to study their role in vaccination efficiency. We
realized that on-time vaccinations considerably reduce the
final value of 𝑅𝑓, but these effects are practically too little to
be observed on the shape of the normalized curve 𝑅(𝑡)/𝑅𝑓.
To study the effect of percentage of vaccination coverage, we
compared no vaccination policy and 3% vaccination for the
SIR model and realized that 𝑅𝑓 is lower in 3% strategy than
no vaccination policy even though final value of 𝑆(𝑡) is more
or less the same. Hungary, Ireland, Netherlands, Norway, and
Sweden have vaccination coverage percentages above 20%, so
in these countries vaccinationswere considered to be effective
on 𝑅𝑓. To study the effect of the timing of pulse vaccination,
we presented SIR model results of 30% vaccination coverage
percentage starting early and late, one week earlier or later
than the time 𝑡𝑚, where 𝐼(𝑡) for the no vaccination model
reaches its maximum value. Based on these results, we see
that vaccinations that start late have little effect on reductions
of 𝑅𝑓, and also even 2–4-week campaigns may be sufficient
and campaigns that continue beyond the stabilization of
𝑅(𝑡) are not effective for influenza type epidemics. To study
the effect of vaccination coverage percentages on actual and
normalized curves, we presented 𝑅(𝑡) and 𝑅(𝑡)/𝑅𝑓 curves
for different vaccination coverage percentages and realized
that percentage of vaccination had little effect on the shape
of 𝑅(𝑡). Low rates were practically unobservable in 𝑅(𝑡)/𝑅𝑓
curves but at high vaccination percentage rates the effect
on 𝑅(𝑡)/𝑅𝑓 was a shift and a reduction in the curvature of
the first turn for early vaccination timing and a reduction
of the curvature of the second turn for late vaccination
timing. Finally, SIR model simulations were used to show the
relative improvements in𝑅𝑓 when different pulse vaccination
strategies are used.

6. Conclusions

We have seen that healthcare practices and HI of countries as
well as vaccination campaigns explain the variations among
relative fatalities. On-time vaccinations have a considerable
effect on reducing the ratio of individuals that are Removed
after going through an infections cycle, 𝑅𝑓; however, this
effect is not practically observable in normalized time evo-
lution curves 𝑅(𝑡)/𝑅𝑓, especially at low vaccination rates.
An efficient vaccination campaign should start early in the
phases of the epidemic but does not need to continue over
the peak of the epidemic. We recall that 𝑅0 can be estimated
at the beginning of an epidemic; hence the peak of 𝐼(𝑡) can
be estimated without the vaccine intervention. Based on this
pieces of information, the timing and the coverage percentage
of the vaccination can be planned effectively.

As a tool for controlling the epidemic, the timing of
the pulse vaccination is crucial. The simulations show the
importance of the timing of the vaccination and show that
vaccinations that start late have little effect in reducing 𝑅𝑓.
In order to be effective, vaccination should start in the early

phases of the epidemic but does not need to continue over
the peak of the epidemic. The comparison of the vaccination
timings for Norway and Sweden is a good example for this
situation.The simulation results presented in Section 4.4 sup-
port the importance of the timing in vaccination campaigns.

Our study is limited to what can be inferred from publicly
available data; we usedWISO reports of ECDC and restricted
our investigation to European countries. These countries
display relatively small variations in their demographic struc-
tures and healthcare systems; hence our conclusions should
not be generalized worldwide.
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