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Abstract

HMGB1 isoforms.

Background: High Mobility Group Box 1 (HMGB1) was first identified as a nonhistone chromatin-binding protein
that functions as a pro-inflammatory cytokine and a Damage-Associated Molecular Pattern molecule when released
from necrotic cells or activated leukocytes. HMGB1 consists of two structurally similar HMG boxes that comprise the
pro-inflammatory (B-box) and the anti-inflammatory (A-box) domains. Paradoxically, the A-box also contains the
epitope for the well-characterized anti-HMGB1 monoclonal antibody “2G7”, which also potently inhibits HMGB1-
mediated inflammation in a wide variety of in vivo models. The molecular mechanisms through which the A-box
domain inhibits the inflammatory activity of HMGB1 and 2G7 exerts anti-inflammatory activity after binding the A-
box domain have been a mystery. Recently, we demonstrated that: 1) the TLR4/MD-2 receptor is required for HMGB1-
mediated cytokine production and 2) the HMGB1-TLR4/MD-2 interaction is controlled by the redox state of

Methods: We investigated the interactions of HMGB1 isoforms (redox state) or HMGB1 fragments (A- and B-box) with
TLR4/MD-2 complex using Surface Plasmon Resonance (SPR) studies.

Results: Our results demonstrate that: 1) intact HMGB1 binds to TLR4 via the A-box domain with high affinity but an
appreciable dissociation rate; 2) intact HMGB1 binds to MD-2 via the B-box domain with low affinity but a very slow
dissociation rate; and 3) HMGB1 A-box domain alone binds to TLR4 more stably than the intact protein and thereby
antagonizes HMGB1 by blocking HMGB1 from interacting with the TLR4/MD-2 complex.

Conclusions: These findings not only suggest a model whereby HMGB1 interacts with TLR4/MD-2 in a two-stage process
but also explain how the A-box domain and 2G7 inhibit HMGBI.
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Background

As its name implies, High Mobility Group Box 1
(HMGB1) is a small protein that migrates rapidly on
SDS-PAGE gels and was first identified as a nonhistone
chromatin-binding protein that has important biological
activities in human health and diseases (Kang et al. 2014;
Andersson and Tracey 2011; VanPatten and Alabed
2017). HMGBI resides in the nucleus of most eukaryotic
cells, where it functions as a transcriptional regulator fa-
cilitating the binding of several regulatory protein
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complexes to DNA (Wang et al. 2007; Stros 2010). Upon
cellular activation, injury or death, HMGBI1 translocates
to the cytoplasm, where it can activate autophagy by
interacting with beclin-1 (Kang et al. 2010), and to the
extracellular medium, where it acts as a prototypic
Damage Associated Molecular Pattern (DAMP) mol-
ecule. This DAMP has cytokine, chemokine, and growth
factor activities, orchestrating the inflammatory and im-
mune responses (Bianchi et al. 2017). When extracellular
HMGBI is released passively from damaged necrotic
cells or actively from immune and/or stressed cells, it
promotes inflammatory responses by binding to key pat-
tern recognition receptors such as the Receptor for
Advanced Glycation Endproducts (RAGE) and Toll-like
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Receptors (TLRs) (Schmidt et al. 2000). Upon binding to
its receptors, HMGBI1 induces nuclear translocation of
nuclear factor-kB (NF-kB), leading to secretion of pro-
inflammatory cytokines including tumor necrosis factor-
a (TNF-a), interleukin-6 (IL-6), and interleukin-1
(IL-1B) (Wu et al. 2016).

HMGBL is highly conserved among various species,
with 99% identity between human, rat and bovine pro-
tein sequences (Sessa and Bianchi 2007). Structurally,
HMGBI consists of a single 215-amino acid polypeptide
organized into two DNA-binding domains linked by a
short basic hinge, and an acidic C-terminal tail (Stros
2010) (Fig. 1). Each of the DNA binding, L-shaped
HMG-box domains, termed A-box and B-box, is ap-
proximately 80 amino acids long and about 43% identi-
cal to the other (Read et al. 1993; Weir et al. 1993). The
C-terminal tail consists of 30 acidic residues (aspartates
and glutamates) (Weir et al. 1993). HMGBI1 has three
conserved, redox sensitive cysteines (Fig. 1). Two of the
cysteine residues are located in A-box: Cys23 and Cys45.
These residues can rapidly form an intramolecular disul-
fide bond, and the redox reaction is reversible (Sahu et
al. 2008). The formation of the disulfide bond in the A-
box induces significant structural change in the loop,
particularly, the flipping of Phe38 ring which is the key
residue interacting with cisplatinated DNA (Wang et al.
2013). The third cysteine residue, Cys106, remains in its
reduced state in B-box (Yang et al. 2013a). The oxidative
state of the three cysteines determines the receptor pref-
erence of extracellular HMGB1 (Yang et al. 2013a).

HMGBI1-TLR4 signaling has been strongly implicated
in the pathogenesis of sterile injury (Maroso et al. 2010;
Yang et al. 2013b). TLR4-deficient animals are signifi-
cantly protected from tissue injury during hepatic ische-
mia. TLR4, a pivotal receptor for activation of innate
immunity, including cytokine release and tissue damage,
is required for HMGB1-dependent activation of macro-
phage TNF release, whereas RAGE and TLR2 are dis-
pensable. TLR4 activity and interaction with its ligands
depend on a molecular collaboration with the extracellu-
lar adaptor protein Myeloid Differentiation factor 2
(MD-2) (Miyake 2004; Visintin et al. 2006). Surface plas-
mon resonance (SPR) studies indicate that HMGBI1
binds specifically to TLR4/MD-2, and that this binding
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requires cysteine 106 (Yang et al. 2010). Recently, we
demonstrated that MD-2 binds specifically to the disul-
fide isoform of HMGBI and not to the other isoforms
(Yang et al. 2015a).

Structure—function analyses demonstrated that ex-
ogenous B-box recapitulates the cytokine activity of full
length HMGB1 and stimulates TNF-  release from
macrophages. TNF-stimulating activity localizes to 20
amino acids within B-box (B1-B20, HMGB1 amino acids
89 to 108) (Li et al. 2003). In contrast, despite a 40% se-
quence identity with B-box, A-box not only possesses no
TNE-stimulating activity but also acts as an antagonist
of HMGBI, and can compete with HMGB1 for binding
sites on the surface of activated macrophages and sup-
presses HMGB1-induced pro-inflammatory cytokines re-
lease (Yang et al. 2004). Recombinant A-box was found
protective in established preclinical inflammatory disease
models (Andersson and Tracey 2011; Venereau et al.
2016), including mouse models of sepsis (Yang et al.
2004; Suda et al. 2006), lung injury induced by LPS,
hepatitis, severe acute pancreatitis, ischemia-reperfusion
injury in the heart, cerebral ischemia, and epilepsy
(Maroso et al. 2010; Andrassy et al. 2008; Muhammad et
al. 2008; Yuan et al. 2009). The specific mechanism of
how A-box antagonizes HMGB1 remains unknown.
Adding to this mystery is the fact that the A-box con-
tains the epitope of the anti-HMGB1 monoclonal
antibody, 2G7. How 2G7 inhibits HMGBI1 activity
through binding to the A-box remains unknown.

As it has long been known that A-box acts as a potent
HMGBI1 antagonist in many experimental models, we
sought to address the underlying molecular mechanism
using surface plasmon resonance (SPR). We found that
A-box binds to TLR4 with a comparable equilibrium
dissociation constant (Kp) to HMGBI, but with a
10-fold slower dissociation rate than that of HMGBI.
We propose that A-box antagonizes HMGB1 by block-
ing  HMGBI1-TLR4 binding sites, thus preventing
HMGB1/TLR4/MD-2 complex formation.

Methods

Reagents

Human TLR4/MD-2 complex, human MD-2, TLR4 were
obtained from R&D Systems.
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Fig. 1 HMGB1 is composed of two box domains that individually have unique biological functions
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Recombinant HMGB1 was expressed in E. coli and
purified to homogeneity as described previously (Wang
et al. 1999; Li et al. 2004). DTT reduced HMGB1 was
prepared as previously described (Yang et al. 2012). The
non-oxidizable HMGB1 3S mutant, where serines
replace cysteines, was provided by HMGBiotech (Milan,
Italy). Recombinant GST-A-box, GST-B-box and GST
protein were expressed in E. coli and purified to homo-
geneity as previously described (Li et al. 2003; Yang et al.
2004; Li et al. 2004). Recombinant A-box without GST
tag was also provided by HMGBiotech (Milan, Italy).
A-box with or without GST tag showed comparable
binding activity in our SPR assay (Additional file 1:
Figure S4), both types of A-box were utilized in this
study. Typically, LPS content in the protein preparations
was less than 1 pg LPS/pg protein.

Surface plasmon resonance analysis

Biacore T200 (GE Healthcare, USA) was used for real-
time binding interaction studies. Binding reactions were
done in HBS-EP buffer from BIAcore, containing
10 mM hepes, 150 mM NaCl, 3 mM EDTA and 0.05%
surfactant p20, pH 7.4. At least 3 independent experi-
ments were performed.

TLR4/MD-2 or TLR4 and redox forms of HMGB1 binding
analyses

A slow, high-level immobilization of TLR4/MD-2 or
rhTLR4 protein was obtained on a CM5 series chip (GE
Healthcare). The TLR4/MD-2 complex was diluted to a
concentration of 20 pg/mL in 10 mM Acetate buffer
(pH 4.5). A 1:1 mixture of N-hydroxysuccinimide and
N-ethyl-N-(dimethyaminopropyl)carbodiimide was used
to activate 2 flow-cells of the CM5 chip. One flow-cell
was used as a reference and thus immediately blocked
upon activation with 1 M ethanolamine (pH =8.5). The
sample flow-cell was injected with the diluted TLR4/
MD-2 at a flow rate of 10 pL/min. The TLR4/MD-2 in-
jection was stopped when the surface plasmon reson-
ance reached ~ 1200 RU. For TLR4/MD-2 and HMGB1
isoform kinetics assays, HMGBI isoforms were sequen-
tially injected at a flow rate of 30 pL/min for 60s at 25 °
C; the dissociation time was set for 1 min. The concen-
trations were 31.25, 62.5, 125, 250, 500, 1000 nM for di-
sulfide and reduced HMGB1; 310, 625, 1250, 2500,
5000 nM for 3S mutant HMGBI1. The rhTLR4 protein
was diluted to a concentration of 20 pg/mL in 10 mM
Acetate buffer (pH 5.0) and was immobilized on the
CM5 chip according to the same amine coupling
method described above. The TLR4 injection was
stopped when the surface plasmon resonance reached ~
800 RU. For TLR4 and HMGBI1 isoform kinetics assays,
HMGBI1 isoforms were sequentially injected at a flow
rate of 30 pL/min for 60s at 25 °C, the dissociation time
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was set for 1-2 min. The concentrations were 31.25, 62.
5, 125, 250, 500, 1000 nM for disulfide and reduced
HMGBI; 250, 500, 1000, 2000, 4000, 8000 nM for 3S
mutant HMGBI1. The equilibrium dissociation constant
(Kp) for individual analytes was obtained to evaluate the
binding affinity by using the BIAEvaluation 2.0 software
(GE Healthcare) supposing a 1:1 binding ratio.

TLR4/MD-2 and GST-A-box or GST-B-box binding analyses
TLR4/MD-2 protein was immobilized onto a CM5 series
chip (GE Healthcare) by amine coupling chemistry. GST
protein alone was used as negative control (Additional
file 1: Figures S2-S3). GST-A-box or GST-B-box were se-
quentially injected over immobilized TLR4/MD-2 (1100
RU) at a flow rate of 30 pL/min for 60s at 25 °C; the dis-
sociation time was set for 1 min. The concentrations
were 150, 310, 625, 1250, 2500, 5000 nM for GST-A-box
and GST-B-box. The association and dissociation phases
of GST-A-box were separately fitted to a 1:1 L binding
model provided in the BlIAevaluation 2.0 software.
Binding affinity of GST-B-box was determined by global
fitting of data to a steady-state affinity model in the
BIAEvaluation 2.0.

TLR4 and GST-A-box or GST-B-box binding analyses
TLR4 protein was immobilized onto a CM5 series chip
(GE Healthcare) by amine coupling chemistry. GST-A-
box was sequentially injected over the immobilized
TLR4 (800 RU) at a flow rate of 30 uL/min for 60s at
25 °C; the dissociation time was set for 2 min. The con-
centrations were 310, 625, 1250, 2500, 5000, 10,000 nM.
The equilibrium dissociation constant (Kp) was obtained
by using the BIAEvaluation 2.0 software (GE Healthcare)
supposing a 1:1 binding ratio. 1 uM and 5 pM GST-B-
box was injected over the immobilized TLR4 at a flow
rate of 30 pL/min for 60s at 25 °C, however there has no
observed binding activity. GST protein alone was used
as negative control; no binding was observed (Additional
file 1: Figures S2-S3).

MD-2 and GST-A-box or GST-B-box binding analyses

GST-A-box or B-box protein was immobilized onto a
CM5 series chip (GE Healthcare) by amine coupling
chemistry. MD-2 was sequentially injected over the immo-
bilized GST-A-box (750 RU) or GST-B-box (1000 RU) at
a flow rate of 30 pL/min for 60s at 25 °C; the dissociation
time was set for 1 min. The concentrations were 17, 31.25,
62.5, 125, 250, 500 nM. Apparent equilibrium dissociation
constants (Kp) were determined by global fitting of data
to a steady-state affinity model in the BIAEvaluation 2.0
software. Binding affinity and kinetics data of HMGBI iso-
forms and segments to TLR4/MD-2 receptors are listed in
Additional file 1: Tables S1-2S. Data shown in this report
are representative of three independent experiments.



He et al. Molecular Medicine (2018) 24:21

Biacore analysis of complex formation among TLR4/MD-2,
TLR4, A-box and HMGB1

The assay was performed using the HBS-EP buffer from
BIAcore as described above. HMGB1 (100 nM) was
injected on a TLR4/MD-2 complex sensor chip surface
followed by HBS buffer or HMGB1 (100 nM) or TLR4/
MD-2 (100 nM) or mixture of two proteins (1:1 M ratio)
using the dual injection command. In competition ex-
periments, A-box (10 uM) was injected on a TLR4 sen-
sor chip surface followed by 2-fold dilutions of HMGB1
(2.5-5 pg/ml) using the dual injection command. In sep-
arate experiments, HMGB1 (500 nM) was injected on a
TLR4 sensor chip surface, followed by A-box using the
dual injection command (Additional file 1: Figure S5).

Results

The TLR4/MD-2 complex is sensitive to the oxidative state
of HMGB1, while TLR4 is not

Recent studies emphasize that the redox states of the
three conserved cysteine residues within HMGB1 regu-
late its receptor-binding ability and subsequent bio-
logical outcome including its pro-inflammatory activity
(Yang et al. 2013a). In 2015, we demonstrated that MD-
2 binds specifically to the cytokine-inducing disulfide
isoform of HMGBI1, whereas fully reduced or sulfonyl
HMGBL1 had 1000-fold lower binding affinity for MD-2
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(Yang et al. 2015b). To further clarify the underlying
molecular mechanisms, we examined whether the
TLR4/MD-2 complex or TLR4 alone could discriminate
various HMGBL1 isoforms. We tested reduced HMGB1
and the non-oxidizable HMGB1 3S mutant, generated
by replacing all three cysteines with serines. To begin,
the TLR4/MD-2 complex was coated on the CM5 sensor
chip, and then probed with each of the three HMGB1
isoforms (Fig. 2a-c). Consistent with previous findings
(Yang et al. 2012), the disulfidle HMGB1 isoform binds
to TLR4/MD-2 in a concentration-dependent manner,
with relatively high affinity, an apparent equilibrium dis-
sociation constant (Kp) of 0.42 +0.01 uM (Fig. 2a). In
contrast, DTT-reduced HMGB1 and the non-oxidizable
3S mutant bind TLR4/MD-2 complex with ~ 10-fold
lower affinity (apparent Kp=3.93+0.01 and 3.02+0.
02 pM, respectively, Fig. 2b & c). These results are con-
sistent with the finding that reduced HMGB1 and 3S do
not induce cytokine expression in macrophages (Yang et
al. 2013a; Venereau et al. 2012). The sensorgrams also
demonstrate that the disulfidle HMGB1 has a 10-fold fas-
ter association rate (ka=2.86+0.03x10° M~ ! s}
Additional file 1: Table S2) relative to the other
isoforms.

Previously, we reported that HMGB1 was incapable of
directly binding to TLR4 in the absence of MD-2 (Yang
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Fig. 2 SPR analyses of redox forms of HMGB1 binding to TLR4/MD-2 complex or TLR4. a-¢ TLR4/MD-2 complex was coated on the CM5 chip;
disulfide HMGB1 binds to complex with a Kp of 042+ 0.01 uM; reduced HMGB1 binds with a Kp of 3.93 +0.01 uM; HMGB1 3S mutant binds with
a Kp of 3.02+0.02 uM. d-f TLR4 was coated on the chip; HMGB1 binds to TLR4 with a Kp of 0.64 +0.01 uM; reduced HMGB1 binds with a Ky of
0.65+0.01 uM; HMGB1 3S mutant binds with a Kp of 4.20 + 0.09 uM. Data are representative of three repeats
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et al. 2015a). In this study, we revisited this observation
and refined the experimental conditions (immobilization
levels and/or switching ligand and analyte) for this bind-
ing assay. Using these optimized conditions we found
that disulfide HMGBI1 does bind to TLR4 (coated on the
sensor chip) in a concentration-dependent manner with
an apparent Kp of 0.64+0.01 uM (Fig. 2d). Next, the
other isoforms of HMGB1 were injected onto the TLR4
sensor chip to investigate which redox state of HMGB1
was most conducive to binding (Fig. 2e-f). Reduced
HMGBI1 bound to TLR4 with a comparable equilibrium
dissociation constant Kp = 0.65 + 0.01 uM (Fig. 2e), indi-
cating that a disulfide bond between C23 and C45 has a
negligible influence on the binding to TLR4. However,
the sensorgrams demonstrated a 2-fold slower
dissociation rate (kd =0.128 +0.002 s~ ', Additional file
1: Table S2) for disulfide HMGB1 compared with reduced
HMGB]I, indicating that the complex with TLR4 is more
stable once formed. We also found that 3S, where C23,
C45 and C106 are mutated to serines, binds to TLR4 with
a weaker affinity (apparent Kp =4.20 £ 0.09 pM) (Fig. 2f),
suggesting that three cysteine residues within HMGB1 are
essential for binding to TLR4.

A-box binds to TLR4/MD-2 complex and major binding
sites are located on TLR4

As mentioned above, A-box has been widely used as an
HMGBI1 antagonist in many inflammatory disease
models. Exogenous A-box has been reported to
antagonize full-length HMGB1 by competitively binding
to RAGE (Zhang et al. 2008); it was also described to
interact with CXCL12 and thus competes with the
HMGBI for signaling via CXCR4 (Schiraldi et al. 2012).
In the present study, we investigated the A-box-Toll-
like receptor 4 (TLR4) interaction using SPR. TLR4/
MD-2, TLR4 or MD-2 were individually immobilized on
the CM5 sensor chip; recombinant GST-A-box was
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passed through the chips to analyze the binding activity.
We observed that GST-A-box had a high affinity to
TLR4 with apparent Ky of 0.59 +0.01 pM, compared to
the TLR4/MD-2 (Kp=1.21+0.02 pM) (Fig. 3a-b). In
addition, the sensorgrams showed that GST-A-box inter-
acted with TLR4/MD-2 and TLR4 in comparable associ-
ation, but different dissociation rate constants
(Additional file 1: Tables S1-S2). For example, GST-A-
box associated to TLR4/MD-2 at a rate of 3.08 + 0.85 x
10* M~! s7! and dissociated at 0.037 +0.01 s~ '; while
associated to TLR4 at 2.20+0.02x 10* M~* s°! and
dissociated at a 3-fold slower rate of 0.013 +0.01 s .
On the contrary, only weak binding activity was
observed on the MD-2 immobilized chip (Additional file
1: Figure S1). Therefore, we asked whether GST-A-box
binds to MD-2 in the reverse orientation. We immobi-
lized GST-A-box on the CM5 chip; MD-2 was injected
as analyte. The sensorgram showed that MD-2 had a
weak association rate with GST-A-box and the affinity
of GST-A-box binding to MD-2 (Kp=3.25+0.17 pM)
was much lower than binding to TLR4 or TLR4/MD-2
(Fig. 3c, Additional file 1: Tables S1-S2). Taken together,
these results confirmed that A-box alone binds to the
TLR4/MD-2 complex and major binding site(s) are likely
located on TLR4.

B-box binds to MD-2 but not TLR4

To evaluate the binding of B-box to the TLR4/MD-2
complex in detail, SPR analyses were performed. Akin to
previous reports (Yang et al. 2010), the GST-B-box binds
to TLR4/MD-2 in a concentration-dependent manner,
with an apparent equilibrium dissociation constant Kp
of 5.78 £0.22 uM (Fig. 4a), 6-fold weaker than GST-A-
box (Fig. 3a). The sensorgram showed that GST-B-box
has a fast association to TLR4/MD-2 complex and is
quickly dissociated by washing, suggesting that the
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Fig. 3 SPR analyses of GST-A-box binding to TLR4/MD-2, TLR4 and MD-2. a TLR4/MD-2 complex was coated on the CMS5 chip, GST-A-box binds
to complex with a Kp of 1.21+£0.02 uM. b TLR4 was coated on the chip, GST-A-box binds to TLR4 with a Ky of 0.59 £0.01 uM. ¢ GST-A-box was
coated on the CM5 chips, MD-2 was used as analyte, MD-2 binds to GST-A-box with a Kp of 3.25+0.17 uM. GST tag was used as negative control.
Data are representative of three repeats
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Fig. 4 SPR analyses of GST-B-box binding to TLR4/MD-2, TLR4 and MD-2. a TLR4/MD-2 complex was coated on the CM5 chip, GST-B-box binds to
TLR4/MD-2 complex with a Kp of 5.78 £ 0.22 uM. b TLR4 was coated on the chip, GST-B-box has no significant binding to TLR4. ¢ GST-B-box was
coated on the CM5 chips, MD-2 was used as analyte, MD-2 showed better binding affinity to GST-B-box (Kp of 1.41 +0.03 uM) relative to GST-A-
box (Kp=3.25+0.17 uM). GST tag was used as negative control. Data are representative of three repeats

complex between GST-B-box and TLR4/MD-2 is not re-
markably stable. Surprisingly, when GST-B-box was ap-
plied to immobilized TLR4, no significant binding was
observed (Fig. 4b), and this lack of interaction was
confirmed in the reverse orientation experiment (not
shown). When GST-B-box was injected over immobilized
MD-2, no binding activity was found (Additional file 1:
Figure S1); in contrast, MD-2 showed a concentration-
dependent binding to immobilized GST-B-box with a Kp
of 1.41 £ 0.03 uM (Fig. 4c). The extremely slow off-rate in-
dicated that the complex between GST-B-box and MD-2,
once formed, was much more stable than the complex
formed by GST-A-box. These data indicate that B-box
alone binds to MD-2, but not to TLR4, suggesting that the
binding of B-box to the TLR4/MD-2 complex occurs via
the MD-2 subunit.

Plausible mechanism of HMGB1-TLR4 signaling and the
role of A-box as antagonist

Binding of HMGBI to TLR4 has been shown to activate
the MyD88 signaling pathway, thus resulting in the re-
lease of pro-inflammatory cytokines (Ugrinova and
Pasheva 2017). It is unknown whether HMGB1 recogni-
tion by the TLR4/MD-2 complex shares similarities with
other prototypical activators of TLR4 signaling, such as
lipopolysaccharide (LPS). In the last decade, the crystal
structures of the LPS receptors and accessory proteins
have been characterized. Recently, Kim and coworkers
reconstituted the entire cascade of LPS transfer to
TLR4/MD-2 in a total internal reflection fluorescence
(TIRF) microscope in a single-molecule analysis, reveling
that a single LPS molecule bound to CD14 is transferred
to TLR4/MD-2 in a TLR4-dependent manner (Kim and
Kim 2017). Upon binding of LPS to a hydrophobic
pocket in MD-2, two LPS-bound TLR4/MD-2 com-
plexes form an M-shaped dimer, followed by activation
of the signaling pathway (Kim and Kim 2017).

We hypothesized that HMGB1 may act in a manner
similar to LPS, binding to TLR4/MD-2 complex and
then inducing the dimerization of HMGB1/TLR4/MD-2
complexes, which brings together the cytosolic toll/
interleukin-1 receptor (TIR) domains of TLR4 to recruit
downstream adaptor molecules. To examine the details
of the binding of HMGB1 to the TLR4/MD-2 complex,
we immobilized one ligand on a Biacore CM5 sensor
chip and used a sequential dual-injection method where
the second analyte is injected after the first analyte with
zero dissociation time. If a two-step increase in the
bound mass is observed, we infer that the second analyte
can bind to the complex of the ligand and first analyte;
conversely, a decrease or unchanged signal after the sec-
ond injection suggests that the first and second analytes
compete for binding to the ligand, and then a ternary
complex is not formed.

HMGB1 (100 nM) was applied to the TLR4/MD-2
sensor chip surface and reached a steady state signal
of ~30 RU (Fig. 5a). When blank control (HBS buffer)
was injected as second analyte, the binding signal was
decreased due to the dissociation of bound HMGBI.
When a second injection of TLR4/MD-2 (100 nM)
was made, no additional binding was observed. When
HMGBI (100 nM) was injected as second analyte, the
binding signal was unchanged. Instead, when a mix-
ture of HMGB1 and TLR4/MD-2 (1:1 M ratio) was
injected, we observed a significant increase of the
binding signal immediately after injection. These data
suggest that HMGBI1 induces dimerization between
TLR4/MD-2 complexes, which could be the key step
in the HMGBI1-TLR4 signaling pathway. We next
considered whether, as an HMGBI1 antagonist, A-box
exerts its role through interference with the formation
of the HMGB1/TLR4/MD-2 complex. We immobi-
lized TLR4 on the CM5 sensor chip and injected
10 uM A-box to reach a steady state binding of ~ 150
RU; after adding HMGB1 as second analyte, no
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complex with HMGB1 was seen (Fig. 5b). Similarly, we
observed a decrease of the binding signal when we
injected HMGBL1 followed by A-box (data not shown,
Additional file 1: Figure S5). These data demonstrated
that A-box directly competes with HMGBL1 for binding
to TLR4.

Discussion

We propose the mechanism of HMGBI1-induced TLR4
signaling outlined in Scheme 1. Real-time SPR studies
showed that: 1) the binding of HMGBI1 to TLR4/MD-2
complex is mostly contributed by the A-box domain
whose major binding site(s) are located on TLR4; 2) B-

A. HMGB1/TLR4/MD-2 complex formation

{B<box
A-box  Step 1: A-box blndlng

Low affinity /

Forming more
stable complex
with TLR4

TLR4 binding sites
are blocked

( L&lm
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slow off rate rate MD-2 HMGB1/TLR4/MD-2 TLB4/'*ID'2
> dimerization > signafing
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HMGB1 to TLR4 TLR4 to MD-2 TLR4
B. How A-box antagonizes HMGB1?
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via epitope
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Scheme 1 Proposed mechanism of HMGB1-TLR4 interaction and role of anti-HMGB1 antibody (2G7)
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box binds to MD-2; and 3) the HMGB1/TLR4/MD-2
complex can dimerize with another HMGB1/TLR4/MD-
2 complex. Our results suggest that HMGB1/TLR4/MD-
2 interaction is initiated by HMGB1-TLR4 binding via
the A-box domain (high affinity and slow off-rate,
Scheme 1la) and, once in close proximity, the HMGB1
B-box domain binds to MD-2 (low affinity but extremely
slow off-rate, Scheme 1a). In addition, SPR studies also
suggest that A-box functions as an HMGB1 antagonist
by blocking the first step of HMGB1 binding to TLR4
(Scheme 1b). A-box and HMGBI1 bind to TLR4 with
comparable equilibrium dissociation constants (Kp), but
with quite different dissociation rates (Additional file 1:
Table S2), indicating that the complex formed between
A-box and TLR4 is more stable than that formed by
HMGBI1. As hypothesized in the Scheme 1b, when
A-box and HMGBI1 are present, A-box occupies and
blocks HMGB1/TLR4 binding sites, preventing down-
stream full-length HMGB1/TLR4/MD-2 interactions,
thus inhibiting TLR4/MD-2 signal activation.

Previously, SPR studies reported by Yang et al. (Yang et
al. 2010) showed that anti-HMGB1 monoclonal antibody
(mAb) 2G7 also inhibited the binding of HMGBI1 to
TLR4/MD-2. This antibody has been extensively used by
researchers to block HMGBI activity both in vitro and in
vivo (Venereau et al. 2016; Ugrinova and Pasheva 2017).
The epitope in HMGBLI that binds to 2G7 has been identi-
fied within amino acids 53-63 of the A-box subunit (Qin
et al. 2006). However, the molecular mechanisms whereby
binding of 2G7 to A-box has anti-inflammatory activity
remained elusive. Based upon the finding of A-box as an
HMGBI1 antagonist, we speculate that mAb 2G7 would
share similar mechanism to inhibit HMGBI1 activity
(Scheme 1c) by blocking HMGB1-TLR4 interactions.

Conclusions

In summary, SPR studies showed that HMGBI1 and its
fragments (A-box and B-box) individually interact with
the TLR4/MD-2 receptor with different binding and kin-
etic parameters. Our study also reveals that HMGB1
likely activates TLR4 signaling through inducing TLR4/
MD-2 dimerization. The HMGB1 recognition cascade
can be disrupted by the antagonistic A-box fragment
due to its higher binding affinity to TLR4 or by blocking
A-box with anti-HMGB1 mAb 2G7. Ongoing studies
further detailing HMGB1/TLR4/MD-2 interactions will
facilitate the design and development of therapeutics to
inhibit HMGB1-mediated inflammation.
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Additional file 1: Table S1. Binding affinity of HMIGB1 isoforms and
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Figure S1. SPR analyses of GST-A-box and GST-B box binding to MD-2.
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Figure S2. SPR analyses of GST-A-box binding to TLR4/MD-2, TLR4.
Figure S3. SPR analyses of GST-B-box binding to TLR4/MD-2, TLR4.
Figure S4. SPR analyses of GST-A-box and A-box binding to TLR4/MD-2,
TLR4. Figure S5. Ternary complex formation among TLR4, A-box and
HMGBI1. (DOCX 241 kb)
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