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The human brain is thought to be an extremely complex but efficient computing engine,

processing vast amounts of information from a changing world. The decline in the

synaptic density of neuronal networks is one of the most important characteristics of

brain development, which is closely related to synaptic pruning, synaptic growth, synaptic

plasticity, and energy metabolism. However, because of technical limitations in observing

large-scale neuronal networks dynamically connected through synapses, how neuronal

networks are organized and evolve as their synaptic density declines remains unclear.

Here, by establishing a biologically reasonable neuronal network model, we show that

despite a decline in the synaptic density, the connectivity, and efficiency of neuronal

networks can be improved. Importantly, by analyzing the degree distribution, we also

find that both the scale-free characteristic of neuronal networks and the emergence of

hub neurons rely on the spatial distance between neurons. These findings may promote

our understanding of neuronal networks in the brain and have guiding significance for

the design of neuronal network models.

Keywords: evolving networkmodel, synaptic density, network efficiency, network connectivity, scale-free network

INTRODUCTION

The human brain contains hundreds of millions of neurons, which form structurally complex
and computationally efficient networks through dynamic synapses (Laughlin and Sejnowski,
2003; Bassett and Sporns, 2017). To ultimately gain insight into the design principles of
neuronal networks, a necessary and fundamental step is to investigate the structure of neuronal
networks in the brain. Unfortunately, because the number of neurons and synapses is too large,
understanding how neuronal networks organize and evolve is still one of the enduring challenges
of modern neuroscience.

Over the past decades, much important progress has been made in studying neuronal networks
in the brain, and some organizing mechanisms in neuronal networks have been revealed at
the mesoscopic level. Spike timing-dependent plasticity (STDP), one of the most widely studied
synaptic characteristics, has been demonstrated in various neuronal systems over a wide spectrum
of species, from insects to humans (Caporale and Dan, 2008). Because of synaptic plasticity,
neuronal electrical activities can not only encode information but also contribute to the structural
refinement of neuronal networks. Further studies on the cellular mechanisms of synaptic plasticity
indicate that the formation, change, and elimination of synaptic connections may be mediated
by neuromodulators and glia (Picciotto et al., 2012; De Pitta et al., 2016). In particular, glia
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are involved in almost all aspects of the development of neuronal
networks in the brain (Cody and Freeman, 2013). In addition,
the structure of neuronal networks must evolve toward optimal
energy efficiency as a consequence of the limited total metabolic
energy in the brain. Metabolic energy, as a unifying principle
governing neuronal biophysics, has been demonstrated in many
experimental and theoretical studies (Niven and Laughlin, 2008;
Hasenstaub et al., 2010). Furthermore, studies show that the
neuronal network construction in the brain should go through
the following two stages: synapses proliferate far more than
normally required in the early stage, and then overproduced
synapses are selectively pruned until the synaptic density (i.e.,
the ratio of the number of synapses to that of neurons) is almost
stable (Paolicelli et al., 2011; Navlakha et al., 2015). Such neuronal
network construction in the brain can then greatly reduce the
large amounts of genetic information used to encode its structure
(Thompson et al., 2001; Glahn et al., 2010).

During the evolution, changes in the structure of neuronal
networks are affected by many factors. There is much evidence
that the absence of any one or some of these factors may
induce the structure of neuronal networks to evolve toward
undesirable, even disordered directions (Holmes et al., 2019),
such as autism (Amaral et al., 2008), Alzheimer’s disease (He
et al., 2008), and Parkinson’s disease (Helmich et al., 2010).
Although some biological mechanisms during evolution have
been revealed, limited by current techniques and methods in
neuroscience, it is difficult to observe and record neural activities
and their structural changes of large-scale neuronal networks
at the mesoscopic level. There are still many challenging issues
to be addressed, such as how to judge which synapses should
be pruned, how synapses are formed, how neuronal networks
evolve toward optimal energy efficiency, and how hub neurons
in neuronal networks appear. Nonetheless, there is a potential
way to study the structural changes of neuronal networks by
integrating these factors into a computational model.

Here, a neuronal network model is developed to simulate the
dynamic structural evolution process of neuronal networks. In
this model, the change in synaptic weights follows a synaptic
learning rule, and the formation and elimination of synaptic
connections can occur at the same time. In the following, we
use this model to (1) study the change of network connectivity
during the decline of the synaptic density, (2) reveal the
relationship between network efficiency and the decline of the
synaptic density, and (3) investigate the degree distribution of the
neuronal network model. Finally, we will discuss the simulation
results of this paper in combination with previous studies.

METHODS

Model Construction
Network structure generally serves as a critical driver for
complicated functions in a broad class of systems across many
research fields, such as gene regulatory networks (Hasty et al.,
2001), biological neuronal networks (Bullmore and Sporns,
2009), artificial neuronal networks (Xu et al., 2019), and social
networks (Borgatti et al., 2009). Consider a neuronal network of
N neurons, in which the leaky integrate and fire model is used

to simulate the dynamics of the neuron membrane potential as
follows (Dayan and Abbott, 2001; Izhikevich, 2004):

dxj(t)

dt
= −

1

τm
· xj(t)+

R

τm
·

N
∑

i=1,i6=j

wij · εi(t, ti) · eij

+
R

τm
·

M
∑

k=1

bkj · uk(t, tk) · ekj, (j = 1, 2, . . . ,N) (1)

if xj(t) > xth, then xj(t)← 0

εi(t, ti) = ρ ·
t − ti

τsys
· e
−

t−ti
τsys , t ≥ ti (2)

uk(t, tk) = ρ ·
t − tk

τsys
· e
−

t−tk
τsys , t ≥ tk (3)

where xj(t) denotes the membrane potential of the j-th neuron
at time t. εi(t, ti) denotes the output signal of the i-th neuron at
time t, and wij (0 ≤ wij ≤ 1) denotes the weight of the synaptic
connection from the i-th to the j-th neuron. uk(t, tk) denotes the
output signal produced by the k-th external signal source at time
t, and bkj (0 ≤ bkj ≤ 1) is the weight of the synaptic connection
from the k-th external signal source to the j-th neuron. The value
of eij and ekj can only be 1 or 0, indicating the presence or absence
of the corresponding connection, respectively. M denotes the
number of external signal sources. Like neurons, the external
signal sources generate spikes at a given frequency, whose output
signals can be calculated fromEquation (3) according to the firing
time of their latest spikes. R denotes the resistance coefficient,
and τm is the rate of change of the membrane potential. xth is
the threshold of the membrane potential. ti and tk denote the
firing time of the latest spikes of the i-th neuron and the k-th
external signal source, respectively. τsys is a time constant, and
ρ is a gain coefficient. Obviously, one neuron can receive signals
from other neurons within this network simultaneously, as well
as from signals outside this network, and its membrane potential
can change over time. The default values of the above parameters
are R = 1.0 × 106 Ω , τm = 100ms, xth = 85.0mV, τsys = 20ms,
and ρ = 8.0× 10−7.

At the microcircuit level, numerous studies have shown that
neuronal networks in the brain are not organized randomly
(Song et al., 2005); instead, they follow a distance-dependent
connection pattern (Ercsey-Ravasz et al., 2013; Wang and
Kennedy, 2016; Wiles et al., 2017). To reflect this distance
dependence, neurons in the neuronal network are uniformly
placed on the surface of a unit sphere, as shown in Figure 1A

and are connected to each other based on a probability function
of distance-dependent connection defined later. According to
experimental findings (Markram et al., 2004), the neuronal
network is assumed to contain NE excitatory and NI inhibitory
neurons, i.e., N = NE + NI , and their ratio is set to 4:1.
For simplicity, inhibitory neurons are used to balance the
activity of the entire network (Hattori et al., 2017), and the
synaptic weights between excitatory neurons and inhibitory
neurons are assumed to remain fixed. In the neuronal network,
excitatory neurons can be connected to any other neurons,
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but inhibitory neurons can only be connected to excitatory
neurons (Salinas and Sejnowski, 2000). That is, there are three
types of synaptic connections in the neuronal network: those
from excitatory to excitatory neurons, those from excitatory
to inhibitory neurons, and those from inhibitory to excitatory
neurons, as shown in Figure 1B. Note that signal transmission
via synaptic connections is unidirectional, but the existence
of synaptic connections with opposite directions between two
neurons is also allowed in the neuronal network. Here, to accord
with the developmental characteristics of neuronal networks in
the brain, the neurons are randomly but densely connected to
each other, as shown in Figure 1C. During network evolution,
unimportant synapses can be selectively pruned to optimize the
network structure according to the evolution rule proposed later.

Synaptic Learning Rule
Neurons in the brain interact with each other through synaptic
connections, and brain functions such as the formation of
memories and the learning of actions, are closely related to the
changes of synaptic connections (Martin et al., 2000). Researchers
have proposed various theories to interpret these changes. The
most influential theory is Spike-Timing-Dependent Plasticity
(STDP), which studies changes of synaptic connections as a
function of presynaptic and postsynaptic neuronal activities
(Hebb, 1949; Caporale and Dan, 2008). Nowadays, increasing
studies indicate that in addition to neuronal activities, other
factors can also modulate the changes of synaptic connections,
such as neuromodulators and glia (Seol et al., 2007; Nadim and
Bucher, 2014; Fremaux and Gerstner, 2015). Inspired by these
findings, the concept of modulated STDP has gradually emerged
based on the classic STDP (Fremaux and Gerstner, 2015). In our
model, an energy-modulated STDP, which serves as a synaptic
learning rule, is introduced to simulate the changes of synaptic
weights (Yuan et al., 2018b), as follows:

1w = f (α) ·H
(

pre, post
)

(4)

where 1w denotes the changes in synaptic weights at every
time step, and pre and post denote the electrical activities
of presynaptic and postsynaptic neurons, respectively. α is a
dimensionless variable that measures the balance of energy
metabolism in individual neurons. The function f (·) defines
the regulation of the changes of synaptic weights by metabolic
energy, and the function H(·) defines how the electrical activities
of pre-synaptic and postsynaptic neurons determine the changes
of synaptic weights.

The variable α is calculated as follows (Yuan et al., 2018b):

α =

∫ t+1T
t Etransj dτ

∫ t+1T
t Etransj dτ +

∫ t+1T
t E

integ
j dτ

(5)

Etransj =

Ntrans
j
∑

k=1

(

Etranssingle · wij ·
(t − tk)

τ 2trans
· e
−

(t−tk)
τtrans

)

, (t ≥ tk ≥ 0)(6)

E
integ
j =

N
integ
j
∑

l=1

(

E
integ

single
·
(t − tl)

τ 2integ
· e
−

(t−tl)
τinteg

)

, (t ≥ tl ≥ 0) (7)

where Etransj and E
integ
j are the metabolic energies consumed

by synaptic transmission and dendritic integration of the j-th
neuron at time t, respectively. Etrans

single
is the metabolic energy

expended per action potential in synaptic transmission, and

E
integ

single
is the metabolic energy expended per action potential in

dendritic integration. Ntrans
j is the number of action potentials

propagating to the j-th neuron before time t, and N
integ
j is the

number of action potentials generated by the j-th neuron before
time t. τtrans and τinteg are the time constants of the changes in
the energy consumption of synaptic transmission and dendritic
integration, respectively. tk is the time at which the k-th action
potential reaches the j-th neuron, and tl is the time at which
the l-th action potential is generated by the j-th neuron. wij is
the synaptic weight from the i-th neuron to the j-th neuron. It
can be found from the above equations that α denotes the ratio
of the metabolic energy consumed in synaptic transmission to
the total metabolic energy consumed in synaptic transmission
and dendritic integration within 1T. The default values of the
parameters in Equations (5–7) are 1T = 12.5 s, τtrans = 20ms,

τinteg = 100ms, Etrans
single
= 4.1 × 104 ATPs, and E

integ

single
= 1.2 ×

108 ATPs.
The expressions of the functions f (·) and H(·) are as follows

(Caporale and Dan, 2008; Yuan et al., 2018b):

f (α) =
2

1+ e
λ·

1t
|1t| ·(α−c)

, (λ > 0) (8)

H
(

pre, post
)

=







ξ(1− w)υ · e
−
|1t|
τ+ , if1t > 0

−ξσwυ · e
−
|1t|
τ− , if1t ≤ 0

(9)

where λ is a dimensionless constant that specifies the extent to
which metabolic energy affects neuronal electrical activities. ξ is
the learning rate, and σ is an asymmetry parameter. τ+ and τ−
are the time constants of long-term potentiation and depression,
respectively. 1t = tpost – tpre is equal to the latest spiking time of
the postsynaptic neurons minus that of the presynaptic neurons.
The parameter υ (0≤ υ ≤ 1) reflects the extent to which synaptic
plasticity is affected by the current synaptic weight. A choice of
υ = 0 leads to additive STDP, and a choice of υ = 1 leads to
multiplicative STDP. Here, we chose υ = 1 to ensure that the
network has better robustness. The value of the ratio α is equal
to or infinitely close to the constant c when the metabolic energy
consumed by synaptic transmission and dendritic integration are
both at normal levels. According to experimental findings, the
constant c is fixed at 0.75 (Howarth et al., 2012). When neurons
reach energy balance, the energy-modulated STDP rule can be
changed into the classical STDP learning rule. In this case, the
increment or decrement in synaptic weights depends only on the
electrical activities of the pre-synaptic and postsynaptic neurons.
When the ratio α deviates from the constant c, the changes in
synaptic weights can be regulated by metabolic energy, and the
greater the deviation, the stronger the regulation. The default
values of the parameters in Equations (8) and (9) are λ = 300,
ξ = 0.001, υ = 1, σ = 1, and τ+ = τ− = 10.0 ms.
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FIGURE 1 | Structural organization of the neuronal network. (A) Excitatory and inhibitory neurons are placed uniformly on the surface of a unit sphere. (B) In the

network, excitatory neurons can be connected to any neurons, but inhibitory neurons can only be connected to excitatory neurons. (C) Before the evolution of the

network, the neurons are randomly connected to each other to build a large number of connection paths, which can be selectively pruned during the subsequent

evolution. Obviously, the neuronal network is directed. For simplicity, only a portion of the neurons and synaptic connections are drawn in the figure.

Evolution Rule
The evolution of neuronal networks in the brain endows
humans a powerful ability to learn complex skills and adapt to
changing environments. During the evolution, the elimination
and formation of synaptic connections exist at the same time. The
elimination of synaptic connections does not occur randomly
but relies on neuronal electrical activity (Tessier and Broadie,
2009; Stoneham et al., 2010). Activity-dependent pruning
mechanisms ensure that appropriate synaptic connections are
conserved, while inappropriate ones are eliminated (Cody and
Freeman, 2013). However, since the cellular and molecular
mechanisms of activity-dependent synaptic pruning have not
been fully revealed, it is somewhat difficult to determine directly
which synaptic connections are appropriate or inappropriate.
Nowadays, it is well-known that frequently used connections
are generally conserved in general networks, while infrequently
used connections are deleted (Navlakha et al., 2018). Thus, it is
possible to indirectly determine whether synaptic connections
are appropriate according to their usage frequency. Because
of the synaptic learning rule mentioned above, the weights of
frequently used synaptic connections can increase, while those of
infrequently used synaptic connections can decrease. Therefore,
the elimination of synaptic connections can be achieved as
follows: during the evolution, synaptic weights throughout the
neuronal network are sorted in ascending order, and the first n
synaptic connections can then be eliminated at intervals.

Similar to the elimination of synaptic connections, their
formation is also not random but exhibits some sort of
preferential attachment and distance dependencies (Boccaletti
et al., 2006; Ercsey-Ravasz et al., 2013). In many continuously
growing real-world networks, a node’s probability of receiving
a new edge is proportional to the intensity of its activity, which
is called preferential attachment by Barabasi and Albert (1999).
This mechanism also exists in neuronal networks in the brain,

i.e., the more active a neuron is, the easier it receives synaptic
connections (Johnson et al., 2010). Preferential attachment may
result in the emergence of hub neurons, which makes neuronal
networks become scale-free (Johnson et al., 2009, 2010). It should
be noted, however, that preferential attachment is not the only
mechanism affecting the formation of synaptic connections.
Otherwise, the neuron with the most synaptic connections would
gradually connect to all other neurons in a neuronal network,
which is obviously not in accord with experimental findings
(Sporns and Betzel, 2016). Studies have further indicated that
the connection probability between two neurons is related not
only to the activity intensity of each neuron but also to the
distance between them and decays exponentially with increased
distance (Ercsey-Ravasz et al., 2013; Wang and Kennedy, 2016).
For neurons with a large number of synaptic connections, the
probability of forming synaptic connections between two faraway
neurons is still very low, even if preferential attachment exists.
Therefore, the distance-dependent connection probability Pij
from the i-th to j-th neurons in the neuronal network is first
defined as follows:

Pij =
µ(κ)2 · π(κi) · π(κj)

(dij/dmin )o
,

i 6= j, i = 1, 2, . . . ,N, j = 1, 2, . . . ,N (10)

where κ is the average number of synaptic connections in the
neuronal network, i.e., the actual synaptic density of the neuronal
network. κi and κj are the number of synaptic connections
incoming to the i-th and j-th neurons, respectively. dij is the arc
distance between the i-th and j-th neurons along the spherical
surface, as shown in Figure 1A. dmin is the minimum arc
distance between neurons in the network, i.e., dmin = min{dij}.
o characterizes the influence of distance on the formation
of synaptic connections between neurons. The function µ(·)
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defines the global probability that the average number of
synaptic connections increases across the network. The function
π(·) defines the local probability that the number of synaptic
connections of a single neuron increases. In fact, the probability
of the i-th neuron owning a new synaptic connection is defined as
the product of the global probabilityµ(κ) and its local probability
π(κi) (Johnson et al., 2009, 2010; Millán et al., 2018a). Here, for
simplicity, the formation of a new synaptic connection of neurons
is assumed as an independent and identically distributed event.
Therefore, the product of their respective probabilities owning
a new synaptic connection, i.e., [µ(κ)·π(κi)]·[µ(κ)·π(κj)], is
defined as the probability that the i-th and the j-th neurons are
connected to each other. This is why the numerator of Equation
(10) is µ(κ)2·π(κi)·π(κj). Based on previous studies on synaptic
density during the development of neuronal networks in the
brain (Johnson et al., 2009; Millán et al., 2018a), we have:

µ(κ) =
η

N
·

(

1−
κ

2κ∞

)

,

π(κi) =
2κi
N
∑

j=1
κj

−
1

N
, i = 1, 2, . . . ,N (11)

where η represents the total number of synaptic connections
to be added or removed. The coefficient η indeed controls the
descent rate of the synaptic density. κ∞ is the expected synaptic
density of the neuronal network as the evolution time tends to∞.
Different values of κ∞ can reflect different changes in the descent
magnitude of the synaptic density. According to the connection
probability defined above, the formation of synaptic connections
can be induced in the network in a biologically reasonable way. At
intervals, the connection probabilities between any two neurons
in the network are calculated, and then the firstm pair of neurons
in descending order of probability are connected to each other.

From the above evolution rule of the elimination and
formation of synaptic connections, it can be found that n synaptic
connections are eliminated and m synaptic connections are
formed at intervals. According to the global probability µ(·), the
values of n andm can be calculated as follows:

n = (1− µ(κ)) · N,

m = µ(κ) · N (12)

Here, the number of eliminated synaptic connections equals that
of newly formed synaptic connections when µ(κ) = 0.5. This
means that the synaptic density of the neuronal network becomes
stable, i.e., κ = κ∞.

The proposed model is implemented in MATLAB, in
which the GPU is adopted for parallel operations; the code
is available upon request. For the sake of simplicity, the
default values of some parameters in the model are listed
here: N = 1,250, M = 500, η = 1,000, κ∞ = 300, o =
0.8, time step = 0.25ms. The number of synaptic connections
in the network is ∼1.5 million. During the simulation, the
parameters are set according to the above values unless otherwise
specified. In addition, initial values of all connections (wij,

bkj) in the network are generated randomly according to a
uniform distribution.

In the numerical simulation of the above model, the change
of network structure, the calculation of energy metabolism,
and the updating of synaptic weights and neuron membrane
potentials are involved. It should be noted that the time scales
of these processes are different. In the numerical simulation, the
synaptic weights and neuron membrane potentials are updated
at each time step. Because the energies consumed by synaptic
transmission and dendrite integration of neurons are calculated
by counting the total number of spikes within a period of time. If
the time period is too short, the calculated result is not accurate
enough and changes sharply. Therefore, at each time step, the
average energy consumption of neurons is calculated according
to the total number of spikes in the past period time 1T =
12.5 s (50,000 time steps). As for the change of the network
structure, its time scale is related to the parameters of the
synaptic learning rule. After the network structure changes, the
synaptic weights will be adjusted automatically according to the
synaptic learning rule. When the synaptic weights tend to be
stable, the next change of the network structure begins. In our
numerical simulation, the formation and the elimination
of synaptic connections are performed every ∼50,000
time steps.

RESULTS

Network Connectivity
During the development of neuronal networks, synapses are
overproduced and then pruned back over time, whereas in
engineered networks, connections are initially sparse and are
then added over time (Navlakha et al., 2015, 2018). The
differences in the construction strategy make neuronal networks
exhibit some unique characteristics during the development.
Synaptic weights in the neuronal network, which directly reflect
the tightness of network connectivity, along with synaptic
density and energymetabolism, are investigated here.We assume
that continuously generated external signals obey a normal
distribution N(40, 10), and neurons in the network receive these
signals at random. It can be found from Figure 2A that before
network evolution, the average synaptic weight still changes due
to the synaptic learning rule (Yuan et al., 2018b). The average
synaptic weight is initially ∼0.5 and then quickly increases to
∼0.64 in a short time and eventually tends to stabilize. The
distributions of the synaptic weights at different moments are
also drawn in Figures 2B–E. Initial values of the synaptic weights
are assigned randomly according to a uniform distribution, as
shown in Figure 2B. As the average synaptic weight stabilizes, the
synaptic weights exhibit an approximately normal distribution,
as shown in Figure 2C. Comparing Figure 2B with Figure 2C, it
is obvious that the synaptic weights change dramatically in the
initial stage and quickly concentrate around ∼0.6 in a very short
time. After long-term stabilization of the average synaptic weight,
its distribution is shown in Figure 2D. Obviously, compared
with Figure 2C, the distribution of the synaptic weights further
deviates from a normal distribution. This suggests that there are
still some slight differences in their distribution. Even though the
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FIGURE 2 | Changes in several characteristics of the neuronal network during evolution. (A) Changes in the average synaptic weight, synaptic density, and average

energy metabolism. (B–E) The distributions and cumulative frequency curves of the initial synaptic weights at 0, 400, 2,400, and 6,000 s. (F) Changes in synaptic

density, average synaptic weight, and average energy metabolism when the parameter κ∞ is set to 50 and 100.

average synaptic weight stabilizes, the synaptic weights continue
to regulate themselves slightly.

In the synaptic learning rule mentioned above, the energy
metabolism of neurons is measured by a dimensionless variable
α in Equation (4). In our numerical simulation, the energy
metabolism of the entire network is characterized by the average
energy metabolism of all neurons. Initially, the average energy
metabolism has a similar trend as the average synaptic weight.
It can then be inferred that the dramatic change in the synaptic
weights makes the average energy metabolism quickly reach the
biologically reasonable energy level regulated by the synaptic
learning rule. When the average energy metabolism becomes
stable, the slight change in the synaptic weights should be derived
from the interactions between neurons in the network.

Once the distribution of the synaptic weights becomes
substantially stable, the network starts evolving according to the
given evolution rule. From Figure 2A, it can also be found that
although the formation and elimination of synaptic connections
can occur simultaneously during evolution, the synaptic density
of the network still decreases, which is similar to neuronal
networks in the brain (Goyal and Raichle, 2013; Navlakha
et al., 2018). Furthermore, the average synaptic weight increases
gradually with the decrease of the synaptic density. As the average
synaptic weight tends to stability, the distribution of the synaptic

weights is shown as Figure 2E. Compared with the distribution
of the synaptic weights before evolution, the synaptic weights
increase significantly after evolution, showing an irregular
distribution. Although the average synaptic weight and synaptic
density change dramatically during evolution, the average energy
metabolism remains unchanged. Therefore, it is necessary to
further study whether the average energy metabolism remains
unchanged during the decline of synaptic density. Figure 2F
shows that the average synaptic weight increases as the synaptic
density decreases, but the average energy metabolism is not
always stable.When the synaptic density drops to a very low level,
the average energy metabolism begins to decline. The lower the
synaptic density, the lower the average energy metabolism, and
the average synaptic weight tends to the upper limit set by the
network model.

It is well-known that synaptic transmission and dendritic
integration are two main metabolically expensive processes in
information processing in neuronal networks (Howarth et al.,
2012; Yuan et al., 2018a). During development, the connectivity
of neuronal networks must ensure that the energy metabolism
of each neuron is at a normal level. In our proposed network,
the synaptic weights and the synaptic density, which describe the
connectivity from different perspectives, determine the amount
of information received by neurons, thus affecting the synaptic
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transmission and dendritic integration. It can be concluded from
the above simulation results that although neuronal network
construction is determined by the genes of the organism
(Thompson et al., 2001; Glahn et al., 2010), it is also affected
by energy metabolism in reality. The synaptic weights and the
synaptic density counterbalance each other so that the energy
metabolism of each neuron is at a normal level. In addition,
the synaptic weights increase during evolution as the synaptic
density decreases, suggesting that the efficiency of frequently used
synaptic connections in the network has been improved. Note
that the range of changes for the synaptic weights is limited. If the
synaptic density of the neuronal network is very sparse, failure of
the energy metabolism can also occur in some neurons even if all
the synaptic weights become very large.

Network Efficiency
As the structural basis of human cognitive function, neuronal
networks in the brain continuously receive a variety of sensory
information and use it to make decisions (Avena-Koenigsberger
et al., 2018). This means that neuronal networks during
development should be optimized enough to adapt to such heavy
information processing (Laughlin and Sejnowski, 2003; Bullmore
and Sporns, 2012). At this stage, the synaptic density of neuronal
networks can suffer from significant decline. This naturally raises
the questions of whether network efficiency is related to synaptic
density andwhat the relationship between them is. In this section,
we propose a criterion for evaluating network efficiency and then
study their relationship.

For neuronal networks in the brain, in addition to the energy
consumed by signaling activities such as synaptic transmission
and dendritic integration, metabolic energy is also required to
maintain the basic housekeeping tasks within synapses (Howarth
et al., 2012). Under the conditions that the normal functions
of neuronal networks are maintained well and that their total
energy supply is constant, lower synaptic density means that
more energy can be used for signaling activities. Then, reducing
the synaptic density contributes to improving the network
efficiency. However, their average shortest path length increases
as the synaptic density of neuronal networks decreases, thereby
resulting in longer signal transmission times. Therefore, the
network efficiency worsens if the synaptic density is reduced
excessively. To improve the network efficiency, there should be
a trade-off between the average shortest path length and the
synaptic density of neuronal networks. Based on the discussions
above, for simplicity, the reciprocal of the product of the
average shortest path length and the synaptic density of neuronal
networks is used to evaluate the network efficiency. The larger the
value of the reciprocal, the higher the network efficiency.

Some studies have discussed the relationship between network
efficiency and synaptic density (Navlakha et al., 2015, 2018),
but they do not specify how the rate and magnitude of the
decrease in synaptic density affects network efficiency. Therefore,
the influence of the rate of decrease of the synaptic density on
network efficiency during evolution is first investigated. From
Figure 3A, it can be found that for neuronal networks with
different coefficients η, their synaptic density decreases from
the same initial value to the expected value at different descent

rates. The larger the coefficient η, the faster the synaptic density
decreases to the expected value. Similarly, their average shortest
path length gradually increases from the same initial value
to different values in fluctuation, as shown in Figure 3B. The
larger the coefficient η is, the more the average shortest path
length increases, and the more drastic its fluctuation will be.
The network efficiency corresponding to different coefficients
η is shown in Figure 3C. Obviously, in the first stage, the
neuronal networks have a similar efficiency. As the network
evolves, the network efficiency exhibits different trends with
different coefficients η. The larger the coefficient η, the faster
the network efficiency reaches the maximum. The maximum
network efficiency is almost identical regardless of how fast the
synaptic density decreases. It is worth noting, however, that
after the network efficiency reaches its maximum, it may not be
stable. In particular, for a neuronal network with a very large
coefficient η, after its efficiency reaches the maximum, it falls to a
lower level than before the evolution. According to the definition,
the larger the coefficient η, the more synaptic connections are
eliminated and formed at intervals. For these neuronal networks,
it is difficult to maintain stability when the network efficiency
reaches its maximum because too many synaptic connections are
eliminated or formed at intervals, resulting in drastic changes in
the structure of the neuronal network.

Subsequently, we also investigated the influence of the
amplitude of the decrease in synaptic density on network
efficiency. Figure 3D shows that the synaptic densities of the
neuronal networks decrease from the same initial value to
different expected values κ∞. Although the coefficient η retains
the same in these simulations, the descent rates are still different
due to different descent magnitudes. Clearly, the larger the
descent magnitude, the shorter the time it takes for the synaptic
density to fall to the expected level. Similarly, for neuronal
networks with different expected synaptic densities κ∞, their
average shortest path length gradually increases from the same
initial value to different values in fluctuation, as shown in
Figure 3E. The larger the expected synaptic density κ∞, the
more the average shortest path length increases, and the more
intense its fluctuation. The network efficiencies corresponding
to these expected synaptic densities are shown in Figure 3F. It
can be found that the network efficiency gradually increases and
stabilizes at a higher level only when the descent magnitude is
small. Otherwise, the network efficiency fluctuates dramatically
and eventually falls to a lower level. For example, when the
synaptic density decreases to 300 (i.e., a 20% drop), the network
efficiency eventually increases to 2.0 × 10−3; however, when the
synaptic density decreases to 100 (i.e., an 80% drop), the network
efficiency eventually decreases to 1.25× 10−4.

The relationship between network efficiency and synaptic
density has been discussed based on the criterion for evaluating
network efficiency above. The simulation experiments here
validate our analyses again. Although reducing the synaptic
density is beneficial to improving the network efficiency,
excessively reducing it leads to a sharp increase in the average
shortest path length, as shown in Figure 3E, thereby offsetting
the increase in the network efficiency caused by decreasing the
synaptic density. This is why the curves in Figure 3F show very
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FIGURE 3 | Changes in the network efficiency under different evolutionary conditions. (A–C) Changes in synaptic density, average shortest path length, and network

efficiency of the neuronal network with different coefficients η. The network evolution is simulated four times. In each simulation, all parameters remain unchanged

except for the coefficient η. Inset in (C) shows a partial enlargement of the data from the dashed box. (D–F) Changes in synaptic density, average shortest path

length, and network efficiency of the neuronal network with different expected synaptic densities κ∞. The network evolution is simulated six times. In each simulation,

all parameters remain unchanged except for the expected synaptic density κ∞. The inset in (F) shows a partial enlargement of the data from the dashed box. Note

that the data in (C,F) are sampled every 30 s. Since the network efficiency changes rapidly in the first 1,000 s, for the sake of observation, the data sampled every

second in the initial 1,000 s are drawn in the insets in the upper right corner.

different trends. This also suggests that the synaptic density
must only be reduced within a certain range to improve the
network efficiency.

The above experiments study the relationship between
synaptic density and network efficiency by changing the rate and
amplitude of the decrease in synaptic density. Two conclusions
can be drawn from Figure 3. First, when the descent rate of
the synaptic density changes but its descent amplitude remains
unchanged, network efficiency can always increase to almost
the same maximum level. The difference lies in whether the
maximum network efficiency is stable. The larger the descent rate
of the synaptic density, the more difficult it is for the network
efficiency to be stable at the maximum level. Thus, the descent
rate of the synaptic density mainly determines whether the
network efficiency remains stable at this maximum level. Second,
when the descent amplitude of the synaptic density changes
but its descent rate remains unchanged, conversely, the network
efficiency can show very different trends and eventually stabilize

at different levels. Reducing the synaptic density appropriately
can improve network efficiency, while excessively reducing the
synaptic density can degrade network efficiency. Therefore, the
descent amplitude of the synaptic density mainly determines the
maximum level of the network efficiency.

Network Degree Distribution
During the development of neuronal networks in the brain,
some synaptic connections are still formed, although the synaptic
density decreases as a whole. In our network model, both
preferential attachment, a ubiquitous mechanism for network
construction (Barabasi and Albert, 1999; Johnson et al., 2010),
and the distance between neurons play critical roles in the
formation of synaptic connections during evolution. In this
section, we study the roles of these two factors in evolution by
analyzing the degree distribution of the neuronal network. Here,
the degree can be subdivided into the indegree and outdegree.
The former denotes the number of synaptic connections
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incoming to a neuron, while the latter denotes the number of
synaptic connections outgoing from a neuron.

According to the proposed evolution rule above, the
coefficient o in Equation (10) characterizes the influence of
the distance between neurons on the formation of synaptic
connections. Since synaptic connections in the neuronal network
are formed randomly before evolution, the initial indegree and
outdegree distributions are very similar, both of which obey a
normal distribution with an average value of 500, as shown in
Figures 4A,D. This suggests that before evolution, neurons in the
neuronal network receive signals from, on average, 500 neurons
while also sending signals to, on average, 500 neurons. Then, we
set the coefficient o to 1.4 to allow the neuronal network to evolve.
As the average synaptic weight, the average energy metabolism
and the synaptic density of the neuronal network stabilize,
its indegree and outdegree distributions change as shown in
Figures 4B,E, respectively. After evolution, the indegree and
outdegree of the neuronal network exhibit obviously different
distributions. Compared with the initial indegree distribution,
the indegree distribution of the evolved neuronal network still
obeys a normal distribution, and the biggest change is that the
average of this distribution decreases from 500 to 300. The
outdegree distribution of the neuronal network after evolution,
however, changes dramatically, from a normal distribution to
a bimodal distribution. This means that, after evolution, the
average number of synaptic connections incoming to a single
neuron in the neuronal network has only decreased from 500 to
300, while the number of synaptic connections outgoing from
a single neuron shows significant polarization. On the whole,
some neurons in the evolved neuronal network transmit signals
to fewer than 100 neurons, while others transmit signals to
at least 500 neurons. Subsequently, we set the coefficient o to
0.8 and repeat the evolution. Similarly, as the average synaptic
weight, the average energy metabolism and the synaptic density
stabilize, the indegree and outdegree distributions change as
shown in Figures 4C,F, respectively. The indegree and outdegree
distributions of the evolved neuronal network are still very
obviously different. The outdegree distribution again changes
from a normal distribution to a bimodal distribution. However,
the indegree distribution does not obey a normal distribution,
as with the greater value of the coefficient o mentioned above,
but instead follows a typical power law distribution. Figure 4C
shows that most neurons in the evolved neuronal network
receive signals from 250 to 350 synaptic connections, but a small
number of neurons receive signals from more than 400 synaptic
connections. This means that such a small number of neurons
may gradually evolve into hub neurons when the coefficient o
is set to 0.8, as shown in Figure S1. In fact, previous studies
have shown that neuronal networks in certain brain regions are
scale-free and have hub neurons, which may coordinate network
activities (Bonifazi et al., 2009; van denHeuvel and Sporns, 2013).

To comprehensively investigate the roles of the distance
between neurons in network evolution, more simulations are
carried out with various values of the coefficient o, as shown in
Figures S2, S3. Some conclusions can be drawn from Figure 4

and Figures S2, S3. First, regardless of the value of the coefficient
o, the outdegree distribution of the evolved neuronal network

changes from a normal distribution to a bimodal distribution.
Second, when the value of the coefficient o is large, the indegree
distribution of the evolved neuronal network still obeys a normal
distribution; however, when the value of the coefficient o is
small, its indegree distribution gradually changes from a normal
distribution to a power law distribution. Third, when the value
of the coefficient o is sufficiently small, some hub neurons
can be connected to almost all the neurons in the network
during evolution. According to the evolution rule, the larger the
coefficient o, the greater the influence of the distance between
neurons on the formation of synaptic connections; otherwise, the
influence will be smaller. Combining the simulation results with
the meaning of the coefficient o, it can be further concluded that
the formation of hub neurons is closely related to the distance
between neurons. If distance plays a weaker role in the evolution
of the neuronal network, then neurons are connected not only to
nearby neurons but also to distant neurons; otherwise, neurons
are only connected to nearby neurons. In other words, the
distance between neurons determines whether hub neurons exist
and whether the indegree distribution of the evolved neuronal
network is normally distributed or power-law distributed.

Another question that needs to be addressed is why the
indegree and outdegree of the evolved neuronal network show
very different distributions. According to the evolution rule,
preferential attachment is used to induce synaptic connections
during evolution. The essence of this strategy is that the more
active a neuron is, the more synaptic connections it has. There is
no doubt that the more signals a neuron receives, the more active
it becomes. The total number of signals received by neurons
depends mainly on the number of afferent synaptic connections
they have made. In this paper, the activity of neurons is only
evaluated by the number of afferent synaptic connections, i.e., the
indegree of the neurons. Obviously, the outdegree of the neurons
does not directly affect their ability to form synaptic connections.
Therefore, the indegree and outdegree of the evolved neuronal
network show very different distributions.

In addition, it is worth noting that the synaptic density of the
neuronal network decreases from 500 to 300 during evolution,
indicating that the number of synaptic connections in the
neuronal network decreases. According to graph theory, in this
case, the average indegree and outdegree of the neuronal network
should decrease simultaneously with the same magnitude. From
Figure 4 and Figures S1, S2, during evolution, the indegree of
neurons in the neuronal network decreases as expected, but the
outdegree of some neurons in the network does not obviously
change and remains at∼500. To ensure that the average indegree
and outdegree of the neuronal network are equal, the outdegree
of some neurons in the neuronal network should be greatly
decreased. This is why the outdegree of the neuronal network
shows a bimodal distribution. According to the interpretation
above, if the expected synaptic density of the neuronal network is
set to a lower value, it can be inferred that the number of neurons
with a smaller outdegree is obviously greater than the number
of neurons with a larger outdegree after evolution. In contrast,
a higher expected synaptic density means that the number of
neurons with a smaller outdegree is apparently less than the
number of neurons with a larger outdegree after evolution.
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FIGURE 4 | Changes in the degree distributions of the neuronal network before and after evolution. To study the roles of the distance between neurons, the evolution

of the neuronal network with the coefficient o set to different values is simulated. In each simulation, all parameters remain unchanged except for the coefficient o. (A)

The initial indegree distribution of the neuronal network before evolution. (B,C) The indegree distributions of the evolved neuronal network when the coefficient o is set

to 1.4 and 0.8, respectively. (D) The initial outdegree distribution of the neuronal network before evolution. (E,F) The outdegree distributions of the evolved neuronal

network when the coefficient o is set to 1.4 and 0.8, respectively.

To verify the rationality of this inference, we set the expected
synaptic density of the neuronal network to different values and
repeat the simulation, as shown in Figure 5. It is obvious that
the results are consistent with our inference. If the expected
synaptic density is set to 200, the number of neurons with
a larger outdegree accounts for 37% of the total number of
neurons in the evolved network. If the expected synaptic density
is set to 400, the number of neurons with a larger outdegree
accounts for 63.5% of the total number of neurons in the
evolved network.

DISCUSSION AND CONCLUSION

During the development of the brain, the synaptic density
of neuronal networks increases rapidly and then gradually
decreases to a stable level (Navlakha et al., 2018). The study
described in this paper aims to investigate changes in the
structure of neuronal networks during brain development. Our
proposed model imitates the gradual decrease of the synaptic
density to a stable level. Although the synaptic density decreases
gradually at this stage, the formation of synaptic connections
still coexists with the elimination of synaptic connections.
In this model, a mechanism called preferential attachment is

used to induce the formation of synaptic connections, while
synaptic connections are eliminated according to synaptic
weights obeying the synaptic learning rule (Caporale and Dan,
2008) and the reward regulation mechanism (Fremaux and
Gerstner, 2015; Yuan et al., 2018b). Using this model, our
research focuses mainly on three aspects: connectivity, efficiency,
and degree distribution.

Through the simulation results above, we find that the
synaptic weight and the synaptic density, two aspects of
the connectivity of the neuronal network, determine the
energy consumption of the neuronal network in information
processing. When the energy metabolism level in the neuronal
network is fixed, the synaptic weight, and the synaptic density
counterbalance to each other; that is, one side increases, and the
other side inevitably decreases. It can be further inferred that the
connectivity of the neuronal network can be regulated by energy
metabolism to some extent during evolution. Although genes
determine the strategy of neuronal network construction, energy
metabolism also plays an important role in the implementation
of this strategy (French and Pavlidis, 2011). There are several
points worth discussing about this conclusion. For example,
energy metabolism is affected by many factors, such as body
temperature, food intake, mental state, and sleep (Dworak
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FIGURE 5 | Changes in the outdegree distribution of the network after the evolution. (A) The outdegree distribution of the evolved neuronal network when the

expected synaptic density is set to 200. The number of neurons with a larger outdegree is obviously less than the number with a smaller outdegree. (B) The outdegree

distribution of the evolved network when the expected synaptic density is set to 400. The number of neurons with a larger outdegree is obviously greater than the

number with a smaller outdegree.

et al., 2010; Yu et al., 2012), which means that these factors
also indirectly affect neuronal network construction during
development. Many studies have shown that changes in body
temperature can affect metabolic rate and indirectly affect the
development of neuronal networks in the brain (White et al.,
2006). Warm temperatures can promote various biochemical
processes and facilitate energy-efficient cortical action potentials
(Yu et al., 2012). Therefore, it can be inferred that the
connectivity of neuronal networks may be indirectly regulated
by body temperature via energy metabolism in the brain.
Furthermore, energy metabolism in the brain is also closely
related to food intake, mental state and sleep (Dworak et al.,
2010). The structure of neuronal networks is disrupted if food
is scarce, one’s mental state is poor, and/or sleep is inadequate
during brain development.

Our second task is to study the relationship between synaptic
density and network efficiency by varying the descent rate and
amplitude of the synaptic density. We find that the descent
rate of the synaptic density mainly determines whether the
neuronal network can remain stable at maximum efficiency,
while the descent magnitude of the synaptic density mainly
determines the maximum efficiency of the neuronal network.
Our simulation results show that the larger the descent rate,
the more difficult it is for the network efficiency to remain
stable at the maximum level. In addition, a too small or
too large decrease in synaptic density can lead to a decrease
in maximum network efficiency. In our simulation results, a
reduction of ∼50% in the synaptic density can maintain the
efficiency of the neuronal network at a high level, as shown
in Figure 3D. Many previous experiments have shown that
human synaptic density peaks around age 2 and then decreases
by 50 ∼ 60% in adulthood (Navlakha et al., 2015, 2018).
Obviously, our simulation results are consistent with the results
of biological experiments, which can partly explain why the
synaptic density of neuronal networks is reduced by nearly half
during brain development.

Our third task is to study the influence of the distance between
neurons on the formation of synaptic connections during
evolution by analyzing the degree distribution of the neuronal
network. We find that during evolution, the distance between
neurons has a very significant influence on the formation
of synaptic connections, thereby leading to obvious changes
in the indegree and outdegree distributions of the neuronal
network. If the influence of the distance is large, the indegree
distribution of the evolved neuronal network always obeys a
normal distribution. If the influence of the distance decreases, the
indegree distribution gradually shifts from a normal distribution
to a power law distribution after the evolution. For the outdegree,
regardless of whether the influence of the distance is strong or
weak, its distribution is always bimodal. In fact, a power law
distribution is the most basic characteristic of scale-free networks
(Barabasi and Albert, 1999). Our simulation results show that
the evolved neuronal network has the characteristics of a scale-
free network to a certain extent, which has also been confirmed
by previous studies (Johnson et al., 2009, 2010; Pritchard et al.,
2014). In addition, our simulation results further show that the
scale-free characteristic of the neuronal network is affected by
its spatial distribution. The sparser the spatial distribution of the
neuronal network is, the larger the distance between neurons
is, and the greater the influence they have on the formation of
synaptic connections. In this case, the indegree distribution of the
neuronal network is more biased toward a normal distribution.
Conversely, a denser spatial distribution of the neuronal network
indicates that the indegree distribution of the neuronal network
will tends toward a power law distribution. In fact, previous
studies have already discussed the influence of the distance
between nodes on general scale-free networks (Mukherjee and
Manna, 2006). Only in networks where the average distance
between nodes is relatively close can nodes be connected not
only to nearby nodes but also to distant nodes, thus showing the
scale-free characteristic. Clearly, our conclusions are consistent
with previous studies.
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Recently, a brain developing model, which combines an
auto-associative neuronal network with an evolving mechanism
for the birth and death of synapses, is proposed to study the
relationship between structural and functional properties of
neuronal networks (Millán et al., 2018a,b, 2019). Millán’s model
is similar to ours and also involves network dynamics and
generation rules. In addition to similar neuronal dynamics and
synaptic learning rules, preferential attachment is also employed
to achieve the formation of new synaptic connections between
neurons. Nevertheless, there are some significant differences
between Millán’s model and ours. In Millán’s model, synaptic
connections are eliminated based on probabilities, which are
calculated by the synaptic current and the synaptic density. In
our model, synaptic connections are eliminated according to
synaptic weights. Furthermore, the network generation rules
in our model contain some factors that reflect the spatial
distance between neurons, which is not considered in Millán’s
model. The numerical simulation results of Millán’s model
demonstrate that the appearance of hubs and heterogeneity can
greatly improve the stability of the memory patterns (Millán
et al., 2019), and the existence of synaptic pruning is critical
in providing ordered stationary states and stable memories
(Millán et al., 2018a,b). Whereas, our numerical simulation
exhibits how the network connectivity and the network efficiency
changes during the decline of the synaptic density, and how
the spatial distance between neurons affects the appearance of
hubs and heterogeneity. Note that, because our model uses a
different biologically reasonable strategy to eliminate synaptic
connections, the degree of neurons does not show a subcritical
distribution similar to that of Millán’s model.

There is another point worth discussing about the strategy
of synaptic growth and pruning in our model. As we known,
advances in technology have led to a growing understanding for
the microscopic mechanisms of synaptic growth and pruning
(Navlakha et al., 2018). However, there are too many factors
affecting synaptic growth and pruning, so it is difficult to
quantify and integrate all factors into a neuronal network
model. The interaction of these factors makes synaptic growth
and pruning show some mesoscale characteristics, such as

distance dependence and power law distribution. It is a
potential way to introduce the mesoscale characteristics into
neuronal network models without caring about the microscopic
mechanisms. Nowadays, a variety of neuronal network models
are proposed, such as Convolution Neural Network, Spike

Neural Network, and Recurrent Neural Network (Shen et al.,
2017; Xu et al., 2018). Although these models make remarkable
achievements in specific tasks, the design of their structures
does not exhibit the characteristics of distance dependence,
power law distribution. Therefore, the distance-dependent
synaptic growth and weight-based synaptic pruning in our
model may provide new ideas for the design of neuronal
network models.
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