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ABSTRACT: The rapid progress in quantum-optical experiments,
especially in the field of cavity quantum electrodynamics and
nanoplasmonics, allows one to substantially modify and control
chemical and physical properties of atoms, molecules, and solids by
strongly coupling to the quantized field. Alongside such
experimental advances has been the recent development of ab
initio approaches such as quantum electrodynamical density-
functional theory (QEDFT), which is capable of describing these
strongly coupled systems from first principles. To investigate
response properties of relatively large systems coupled to a wide
range of photon modes, ab initio methods that scale well with
system size become relevant. In light of this, we extend the linear-
response Sternheimer approach within the framework of QEDFT to efficiently compute excited-state properties of strongly coupled
light−matter systems. Using this method, we capture features of strong light−matter coupling both in the dispersion and absorption
properties of a molecular system strongly coupled to the modes of a cavity. We exemplify the efficiency of the Sternheimer approach
by coupling the matter system to the continuum of an electromagnetic field. We observe changes in the spectral features of the
coupled system as Lorentzian line shapes turn into Fano resonances when the molecule interacts strongly with the continuum of
modes. This work provides an alternative approach for computing efficiently excited-state properties of large molecular systems
interacting with the quantized electromagnetic field.

S trong interactions between light and matter within
enhanced photonic environments such as optical cavities

and plasmonic devices have attracted great attention in recent
years. The signature of such strong interactions is the formation
of new hybrid light−matter states (polaritons), which are
manifested by a Rabi splitting in the spectrum of the coupled
system. These new states of matter can be used to control, for
instance, chemical reactions,1−3 enhance charge and energy
transport,4−6 and selectively manipulate electronic excited
states,7 to name a few examples. Such coupled light−matter
systems have the tendency to exhibit significantly different
properties than the uncoupled subsystems even at ambient
conditions, which suggests various interesting applications in
chemistry and material science.8−11 These intriguing effects
caused by the emergence of polaritons manifest strongly in the
excited-state properties of the coupled systems, for example, in
the absorption or emission spectra.7−10

The occurrence of different effects due to the emergence of
polaritons shows the complexity that arises when light and
matter strongly mix. Because of this inherent complexity of the
coupled light-matter system, the theoretical description of these
effects are nontrivial. Quite often, the coupled system is studied
with quantum optical models that potentially oversimplify the
matter subsystem. One such simplification selects just a few
energy levels of an atomic or molecular system and couples it to

the photon modes of an optical cavity.12−14 Another common
simplification is on the photon side, where a realistic cavity that
is normally open is reduced to just a few modes that cannot
account for the finite lifetime of excitations. However, in many
cases these phenomenological models are not sufficient to
capture important details of the coupled system, for instance, the
emergence of bound states in the continuum,15 how collective
strong coupling leads to local modification of chemical
properties,16 and in cavity-modified chemistry where the
reaction-rate is reduced under cavity-induced resonant vibra-
tional strong coupling.2,17 This calls for ab initio methods, which
allow one to treat from first-principles complex matter systems
interacting with the quantized field18−20 within nonrelativistic
quantum electrodynamics (QED).21−23 Nonrelativistic QED is
the basis of all approaches to theoretically capture the emerging
physics of polaritonic chemistry.22 Yet so far it remains debated
which aspects of this highly complex theory are the ones mainly
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responsible for the observed changes in chemistry.24 Thus, first-
principles approaches provide a mostly unbiased approach to
this fundamental question of cavity-modified chemistry. Among
the existing first-principles methods for treating strongly
coupled light-matter systems, quantum electrodynamical
density-functional theory (QEDFT) has become a valuable
approach for describing ground- and excited-state properties of
complex matter systems coupled to a photonic environ-
ment.25,26 The Casida-like approach27 common to molecular
and quantum chemistry was recently extended to a matter-
photon description within the linear-response framework of
QEDFT.26 The feasibility of treating the excited-state properties
of a single molecule and an ensemble of molecules coupled to a
realistic description of a cavity has been demonstrated.16,26,28,29

A different approach within QEDFT is to solve the time-
dependent Kohn−Sham equations coupled to the Maxwell
equations in real time.3,30−32 On the one hand, one major
advantage the real-time approach has is that it scales favorably
with the system size, as it involves only occupied Kohn−Sham
orbitals, but to obtain a converged response spectrum requires a
long time-propagation, which is not favorable for larger systems.
On the other hand, the Casida approach requires both occupied
and unoccupied orbitals, and it also scales with the number of
photon modes considered.
In addition to these methods, there is another successful

scheme that can combine the strengths of the previously
mentioned methods known as the Sternheimer approach.33 The
Sternheimer approach has been used for a long time in the
context of density-functional perturbation theory, for instance,
for calculating phonon spectra.34 Recent applications of the
Sternheimer equation have also been used to compute the
frequency-dependent electronic response.35−38 The Stern-
heimer equation has been formulated within the framework of
time-dependent density-functional theory (TDDFT), which
allows one to study the dynamic response of much larger
complex systems, as it includes only occupied orbitals.38,39 One
of a few advantages the Sternheimer approach has over real-time
TDDFT is that it is formulated in the frequency space, and the
responses at different frequencies can be computed independ-
ently of each other allowing for the use of parallelization schemes
that speed up the computation. Another advantage is that, since
the responses at different frequencies can be treated
independently, we can compute any part of the spectrum
without necessarily starting from the zero frequency. In this
work, we extend the frequency-dependent Sternheimer
approach of TDDFT to the framework of QEDFT. An
advantage the electron-photon Sternheimer approach has over
the Casida approach is that it scales well with the system size,
since only occupied orbitals are treated explicitly, and the
arbitrarily many but finite photonmodes that can be included do
not add to this scaling. This approach becomes useful for
investigations in polaritonic chemistry or materials in nano-
plasmonic cavities that usually consider a large number of
particles interacting with the electromagnetic field. We start by
showing the applicability of themethod in capturing not only the
absorption properties of strongly coupled light-matter system
but also the modified dispersion properties of the coupled
system for the case of an azulene molecule. In addition, we show
the spectra of the photon field that capture similar features of
strong light-matter coupled systems indicating how the hybrid
characteristics can be viewed from either of the subsystems at
the same time highlighting the cross-talk between the
subsystems. To show the efficiency of the Sternheimer

approach, we study the absorption spectrum of a lithium
hydride (LiH) molecule coupled to a continuum of photon
modes. For the case of coupling the molecule weakly to half a
million photonmodes, we recover the spectrum of the free space
case. By effectively enhancing the light-matter coupling strength
of the bath modes to the molecule, we observe changes in the
spectrum as the Lorentzian line shape turns into Fano
resonances.
This article is structured as follows. First, we present the

physical setting of a many-electron system coupled to photons in
nonrelativistic QED and subsequently present the linear-
response setting of this framework. Second, we present in
Section Three a derivation of the frequency-dependent
Sternheimer approach for electron−photon coupled systems
in the linear-response regime formulated within the framework
of QEDFT and discuss numerical details of the Sternheimer
scheme. In the next section, we investigate the complex
polarizability of a molecular system coupled to a high-Q optical
cavity and highlight how the absorption and dispersion
properties get modified due to strong light−matter coupling.
Also, we show for the same molecular system the polaritonic
features that arise in the spectra of the photon field.
Furthermore, we demonstrate the efficiency and low computa-
tional cost of the Sternheimer approach by coupling a LiH
molecule to a (discretized) continuum of states of photon
modes and show the physical effects that arise. Finally we
present a conclusion and an outlook.

1. FROM MICROSCOPIC FIELDS TO THE QUANTUM
DESCRIPTION OF LIGHT−MATTER INTERACTION

We are interested in the dynamics of matter interacting with the
electromagnetic field within the setting of nonrelativistic QED
where both constituents of the coupled system are treated on an
equal quantized footing. While this setting of slowly moving
charged particles can be deduced from QED, concepts from
classical electrodynamics are equally instructive to arrive at this
description. In this regard, we lay emphasis on the full
description of the electromagnetic field that couples to a matter
system. Our starting point is the inhomogeneous microscopic
Maxwell equations for the transverse part of the electromagnetic
field40
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where E(r, t) and B(r, t) are the classical electric and magnetic
fields, respectively. The transverse charge current j(r, t)
represents both the free and bound current. If we consider j(r,
t) to represent only the bound current, then it is related to the

polarization P(r, t) of the matter as =tj r( , ) ∂
∂ tP r( , )

t
. The

Maxwell’s equations take into account the back-reaction of the
matter on the electromagnetic field. For a quantum mechanical
description, the field variables are promoted to field operators in
the Heisenberg picture. In this representation, the energy of the
transverse electromagnetic field can be expressed as41
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where we introduced the displacement field ̂ =D r( )
ϵ ̂ + ̂E r P r( ) ( )0 . Equation 3 will differ from other forms only in
the choice of canonical variables, and here we impose a

commutation relation between B̂ and D̂ to be [ ̂ ̂ ′ ]=B r D r( ), ( )i j

δ− ℏϵ ∂ − ′i r r( )ijk
k where ϵijk is the Levi-Civita symbol. For any

photonic environment of varying geometry, the fields in eq 3 can
be expanded in the modes41
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The expansion coefficients α̂d and α̂b are, respectively, the field
amplitudes of the electric displacement and the magnetic field,
Sα(r) are the mode functions, and ̂ = ∑ ̂eR ri i is the total
electronic dipole operator. In eq 6, we employed the dipole
approximation when the electromagnetic field interacts with the
matter system via the electronic dipole. We will later (see end of
Section 3) briefly discuss how to go beyond this common
simplification. Making a substitution of eqs 4−(6) into (3)
results in the following expression of the electromagnetic
energy.41

∑ λ
ω

ω
̂ = ̂ + ̂ − · ̂

α
α α α

α

α

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
H p q R

1
2EM

2 2
2

(7)

The displacement coordinate α̂q and momentum operator α̂p are

related to the amplitudes as ̂ =αd ωϵ ̂α αq0 and ̂ =αb ϵ α̂p1/ 0

where they satisfy the commutation relation [ ̂ ̂ ]=α α′q p, δℏ ′α αi , .
Equation 7 tells us that what would normally be the purely
photonic Hamiltonian is now a mixture of matter and photon
degrees. The term λα in eq 7 is the light−matter coupling
strength given as

λ =
ϵα αS r
1

( )
0

0
(8)

where the mode function is evaluated at the center of charge.42

In deriving eq 7 we assumed a finite photonic environment with
appropriate boundary conditions. For instance, we can assume a
planar cavity in the z-direction, while in the x- and y-directions
we have the usual free-space or periodic boundary conditions
(see also Figure 1). In the z-direction we would then have

̂ · =B n 0 where n is a unit vector normal to the cavity surfaces.
For real systems we, however, have usually a continuum of
modes; that is, the cavity geometry is open to free infinite space.
We can approximate this situation by extending the quantization
volume of the electromagnetic field beyond the photonic
environment and thus work with a discretized continuum. By
making this discretization finer and finer, that is, by taking the

quantization volume to infinity, we can approximate the open-
cavity situation arbitrarily well. The discrete continuum
description of the photon field has the advantage that it
accounts for the emission or absorption of a photon in real
space43 and allows for modeling an open photonic environ-
ment.44 Together with the Hamiltonian representing the bound
charged particles, that is, the kinetic energy, binding, and
interaction potentials, eq 7 constitutes the so-called Pauli-Fierz
Hamiltonian in the length gauge.17,45 In the case where we
include time-dependent external perturbations, the length gauge
Hamiltonian is given by
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Here theN electrons are described by the electronic coordinates
̂ri and the momentum operator p̂i, which satisfy the
commutation relation δ[ ̂ ̂ ] = ℏir p,i j ij. The interaction due to

the longitudinal part of the photon field | ̂ − ̂ |w r r( )i j can be
written as a mode-expansion in Coulomb gauge, which for the
free-space case results in the standard Coulomb interaction
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where kn = 2πn/L are the allowed wave vectors of the photon
field for an arbitrarily large but finite box of length L.46 For the
transverse field, we consider an arbitrarily large but finite
number of photon modes M. It is important to note that, when
we sample a large number of modes to describe the photon
continuum, we might need to use the bare mass of the electrons
instead of the renormalized physical mass.21,47 In Section 4.2 of
this work, we make the common assumption that only the
sampled continuum due to a cavity or photonic nanostructure is
changed with respect to the free space case. The rest of the
continuum of modes not affected by the cavity is subsumed in

Figure 1. Schematic setup of an azulene molecule confined within a
high-Q optical cavity. The cavity field is polarized along the x-axis with
mode coupling λα, and the photon propagation vector is along the
cavity axis of length L in the z-direction. The frequency of the photon
mode is ωα.
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the already renormalized physical mass of the electrons. The
coupled light-matter system can be perturbed externally using
the time-dependent external potential and current in eq 9, which
can be split into

δ

δ

= +

= +α
α α

v t v v t

j t j j t

r r r( , ) ( ) ( , )

( ) ( )

ext

ext
( )

where v(r) describes the attractive potentials of the nuclei, and
δv(r, t) indicates a classical external probe field that couples to
the electronic subsystem. For the external perturbing charge
current, the static part jα merely polarizes the vacuum, and the
time-dependent part δjα(t) then generates photons in the mode
α. The physical implication of an external current that acts on
the photon field can be best understood from eqs 1 and (2). An
external current will generate photons, which constitute a
magnetic and electric field. In contrast to the classical external
scalar potential v(r, t), these induced fields are fully quantized.
Either of these perturbations can be used to probe the coupled
light−matter system.

2. LINEAR RESPONSE FORMULATION IN THE LENGTH
GAUGE

To characterize the properties of a system, one can investigate
the system’s response to an external perturbation. In the case of a
weak external perturbation, we have access to linear response
properties of the system such as its polarizability, which gives
access to its excitation energies and oscillator strengths. Usually
this requires knowledge of the linear density response, and in the
case of a coupled matter-photon system, we have access to the
displacement field.26 In the length gauge, the linear response of
the electron density n(r, t) to the external potential δv(r, t) and
charge current δjα(t) yields the response equation

26
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Because of the coupling between light and matter, we can
equally compute the linear response of the photon displacement
coordinate qα(t) due to the external potential δv(r, t) and
current δjα(t) that results in the response equation26
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The response functions χn
n, χ

αq
n , χ α

n
q , and χ

α
α
′q

q are intrinsic

properties of the electron−photon coupled system, which can be
computed to obtain excited-state properties of the system.
However, computing these response equations or the response
functions directly is usually very challenging even for the
electron-only system. One possible way to do this efficiently is to
reformulate the response equations using the Maxwell-Kohn−
Sham system of QEDFT that reproduces the same response of
the density and photon coordinate.18,19,26 In such a setting, the
response functions can be computed approximately giving
access to, for instance, excitation energies and oscillator
strengths. We recently extended the Casida equation27 within
the framework of QEDFT to treat electron-photon coupled

systems.26 This approach computes the excitation energies and
oscillator strengths of either of the coupled response functions
χ χ{ }α,n

n
n
q and χ χ{ }

α α
α
′

,q
n

q
q by diagonalizing a pseudoeigenvalue

equation.26 The Casida approach, which requires both occupied
and unoccupied Kohn−Sham orbitals in addition to the sampled
photonmodes, is efficient for small coupled systems.16 However,
for larger electronic systems coupled to many photon modes,
this leads to a rapid increase in computational effort in the
Casida approach, as the Casida matrix equation increases in size.
An alternative approach, which rather computes the response

equations instead of the response function, is the frequency-
dependent Sternheimer equation.33 Formulated within the
framework of TDDFT, this method computes the linear density
response due to an external weak perturbation38,39,48 as well as
nonlinear responses.38,49 This approach has several advantages,
the main one being that it relies only on the occupied Kohn−
Sham orbitals, thereby relieving the computation complexity for
very large systems. In the following we extend this approach to
treat an electron-photon coupled system within the framework
of QEDFT.

3. THE STERNHEIMER APPROACH FOR
ELECTRON−PHOTON COUPLED SYSTEMS

Practical ab initio methods for computing optical excitation
spectra are usually achieved by applying many-body methods
that solve the correlated problem exactly or in an approximate
way. A few of the most popular ab initio methods to determine
the electronic structure of atoms or molecules in quantum
chemistry are Hartree−Fock theory, configuration interaction
(CI), coupled cluster (CC), or (TD)DFT.50 In terms of
accuracy, CI and CC51 are both favorable over (TD)DFT.
Because of the improved accuracy of CC, this has led to its
extension to quantum electrodynamics coupled cluster theory
(QED-CC)20,52 to treat strongly coupled light-matter systems.
QED-CC is, however, limited to small matter systems and only a
few photon modes. To overcome this limitation in the matter
system size and photon modes, we need to employ other
electronic structure methods that scale favorably with system
size. One such many-body methods is TDDFT, which is
considered a very promising methodology, since it provides a
good balance between accuracy and computational cost. Within
the context of TDDFT there exist different formalisms for
computing optical excitation spectra.49 The Sternheimer
formalism is a standard method in electronic structure theory
for computing the spectra of many-body systems.34−39 The
frequency-dependent Sternheimer method formulated within
TDDFT is a perturbative approach on the Kohn−Sham orbitals
that computes the density response without relying explicitly on
unoccupied Kohn−Sham orbitals.38,39 On the basis of this
advantage, an extension of this approach to the setting of
QEDFT to treat complex atomic andmolecular systems coupled
to an arbitrary large but finite number of photon modes is an
important alternative method to existing QEDFT methods.26,30

The derivation presented here is solely in the frequency space
following that of ref 48. In an electron-only description, the
Sternheimer approach obtains only electronic observables such
as the electron density response. However, when this method is
formulated within the QEDFT framework we have, in addition
to the density response, the response of the photon displace-
ment coordinate (field). The mode-resolved response of the
field gives access to physical processes such as the absorption or
emission process. Starting with the reformulation of the density
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and photon displacement coordinate responses in the QEDFT
framework, the coupled responses due to a weak external
potential δv(r, ω) are26

∫δ ω χ ω δ ω= ′ ′ ′n vr r r r r( , ) d ( , , ) ( , )n s
n3
, KS (12)

δ ω χ ω δ ω=α αα
αq j( ) ( ) ( )q

q
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where the first-order Kohn−Sham potential and currents in eqs
12 and (13) are given in terms of the interacting density, photon
coordinate responses, and kernels.
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The mean-field plus exchange-correlation kernels
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M xc a n d =α αf f(i. e.q q

Mxc Mxc
+α αf f )q q

M xc are defined to be the variation of the mean-field
plus exchange-correlation potential (i.e., vMxc = vM + vxc) with
respect to the density and photon coordinate, respectively, while
the mean-field kernel αg n

M is the variation of the current with
respect to the electron density.26 These kernels account for the
correlations in the Kohn−Sham setting of QEDFT in linear
response. Given the exact Mxc kernels we recover the exact
response of the coupled light−matter system. In practice we will
need to approximate the xc part of the kernels. We note that, for

αg n
M , the exact xc conctribution is zero.26 The noninteracting
response functions of the decoupled electronic and photonic
subsystems of eqs 12 and (13) are given explicitly as26
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Here, ϵk and φk(r) are the ground-state energies and orbitals of
the Kohn−Sham system, andωα is the frequency of the αmode.
The parameters η and η′ shift the poles (excitation energies) of
eqs 16 and (17) to the lower half of the complex plane and are, in
general, not equal in both uncoupled systems.
Since the Sternheimer method is a perturbative approach to

the Kohn−Sham orbitals, we start by describing the unperturbed
equilibrium setting of the coupled electron-photon system, as
this corresponds to the zeroth-order of a perturbation expansion,
for example, of the density. For this case, we start by describing
the static Kohn−Sham system of ground-state QEDFT,53 where
we must solve the coupled Kohn−Sham equations
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∫ λω
ω

ω= − − ·α α
α

α α α( )q j nr r r
1

d ( )2 2 3

(19)

where ̂ = ̂ [ ]αh h v n q( , , ) is the ground-state Kohn−Sham
Hamiltonian. The ground-state density can be obtained from
the Kohn−Sham orbitals as n(r) = ∑k|φk(r)|

2 and the photon
coordinate from eq 19. The mean-field plus exchange-
correlation potential vMxc(r) represents the longitudinal
interactions between the electrons as well as all the transversal
interactions of the electrons with the photon field.
To solve for the linear density response and photon

displacement coordinate of eqs 12 and (13), we first start by
substituting eq 16 into the density response n(r,ω) of eq 12. The
density response can now be written in a form that includes a
sum over only occupied orbitals as
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k k k k
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where the first-order response of the Kohn−Sham orbitals

φ ω± r( , )k
( ) in eq 20 are given by
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Here, solving for the Kohn−Sham orbital responses is highly
involved, since we need to first determine infinitely many
Kohn−Sham orbitals and evaluate an infinite sum over all these
orbitals. However, this can be circumvented by acting with
ω η− ̂ + ϵ +h i( )k and ω η+ ̂ − ϵ +h i( )k on eqs 21 and (22),
which results in the following equations.
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Using the static Kohn−Sham eq 18 in the above two equations
simplifies the right-hand sides to

∫ ∑
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(23)
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In the next step, we take advantage of the completeness of the
infinite set of ground-state Kohn−Sham orbitals, that is,

φ φ δ∑ * ′ = − ′=
∞ r r r r( ) ( ) ( )l l l1 in eqs 23 and (24), which

simplifies to the frequency-dependent Sternheimer equations
of the following form

ω η φ ω δ ω φ− ̂ + ϵ + =+h i vr r r( ) ( , ) ( , ) ( )k k k
( )

KS (25)

ω η φ ω φ δ ω+ ̂ − ϵ + = − *−h i vr r r( ) ( , ) ( ) ( , )k k k
( )

KS (26)

where the first-order Kohn−Sham potential δvKS(r, ω) is given
by
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The response of the photon coordinate δqα(ω) in eq 12 to the
external potential δv(r, ω) can be expressed in the following
form

δ ω δ ω δ ω= +α α α
+ −q q q( ) ( ) ( )( ) ( )

(28)

where we substituted eq 17 into (12). The first-order responses

of the photon coordinates δ ωα
+q ( )( ) and δ ωα

−q ( )( ) are given
explicitly as
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To obtain the response of the density and photon coordinate
of eqs 20 and (28), we must solve eqs 25−(30) self-consistently.
The self-consistency in solving these equations becomes evident
by noting that the right-hand side of the Sternheimer eqs 25 and
(26) depends on the solution through δvKS(r, ω), which in turn
depends on δn(r, ω) and δqα(ω). These two quantities depend

on the first-order perturbed Kohn−Sham orbitals φ ω± r( , )k
( )

and photon responses δ ωα
±q ( )( ) . It is important to note that the

first-order response of the Kohn−Sham orbitals must satisfy the
orthogonality condition with the ground-state Kohn−Sham
orbitals.38,39

∫ φ φ ω =* ±r r rd ( ) ( , ) 0k k
3 ( ) ( )

(31)

From solving the self-consistent Sternheimer equations we
can compute the dynamic polarizability of the coupled system,
which is given in terms of the variation of the density

∫α ω δ ω=μν ν μnr r r( ) d ( , )3
(32)

and is related to the photoabsorption cross-section as σ ω =( )
πω αμ̅μc(4 /3 )Tr .48 Since the solutions φ ω± r( , )k of eqs 30 and

(29) are complex-valued, the density response of eq 20 becomes
complex as well. This gives rise to the polarizability αμν(ω)
having real and imaginary parts. The imaginary part of the
polarizability describes the absorption of radiation, and the real
part defines the refraction properties of the matter system due to
a perturbation from an external electromagnetic field.54

In the decoupling limit of light and matter when |λα|→ 0, the
Sternheimer eqs 25 and (26) still retain the same form; however,
the potential δvKS(r, ω) simplifies to that of an electron-only
interacting system as →f fn n

Mxc Hxc and →αf 0q
Mxc . Also, the

ground-state Kohn−Sham Hamiltonian in eqs 25 and (26)

reduces to ̂ = ̂ [ ]h h v n( , ) as vMxc([n, qα]; r)→ vHxc([n]; r), thus
decoupling the photon contribution of eq 19. The derivation of
the Sternheimer scheme for the electron density and photon
displacement coordinate responses in the QEDFT framework
due to a weak external charge current δjα(ω) follows the same
steps as above.31

Details about the numerical treatment of eqs 25 and (26) have
been discussed in the TDDFT framework of the frequency-
dependent Sternheimer method.38,39 Therefore, we only
summarize features in the numerical application of these
equations. First, the positive infinitesimal parameter η is
required for numerical stability for the solution of the
Sternheimer equations close to the resonance frequencies, as it
removes the divergences. It is also necessary to obtain the
imaginary part of the polarizability. In addition, this parameter
accounts for the artificial line width that represents the finite
lifetimes of the excitations. Our extension of the Sternheimer
method to treat electron-photon coupled systems introduced
the small positive infinitesimal parameter η′ that enters the self-
consistent Sternheimer equations as in eqs 29 and (30). This
parameter is necessary to ensure that the poles atωα are finite. In
our simulations we found thatℏη′ = 0.001 eV is the ideal value to
obtain converged results, and we used ℏη = 0.1 eV.
For the electron-photon Casida approach, the resulting

dimension of the coupled but truncated matrix is
* + ×N N M(( )v c * +N N M( ))v c where Nv and Nc denote the

number of occupied and unoccupied Kohn−Sham orbitals,
respectively,26 and M describes the number of photon modes.
The dimensionality of the matrix increases with Nc and M-
photon modes. We have been so far able to treat a finite matter
system coupled to 150 000 modes with an efficient massive
parallel implementation of the Casida equation.26,31 In terms of
scaling with system size, the electron-photon Sternheimer
approach is better when compared to the Casida approach, since
it still scales the same as the electron-only Sternheimer
case.35,38,39 This is evident since we can substitute eqs 28−
(30) into (27) such that the complexity rests in solving the
Sternheimer eqs 25 and (26). We implemented the linear-
response frequency-dependent Sternheimer eqs 20 and (25)−
(30) into the real-space code OCTOPUS.38,55 Let us finally
comment on the restriction to dipole light-matter coupling. The
full Pauli-Fierz Hamiltonian of nonrelativistic QED uses the full
minimal-coupling prescription and hence includes all multipole
interactions.17,21,45 And also for the full theory, QEDFT32,53 has
been formulated and applied.32 This shows that a linear-
response formulation of QEDFT with full minimal-coupling is
possible. A detailed derivation and implementation of linear-
response QEDFT for minimal coupling is, however, currently
still missing.
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4. APPLICATIONS OF THE FREQUENCY-DEPENDENT
STERNHEIMER APPROACH

In this section, we now apply the introduced electron−photon
frequency-dependent Sternheimer approach for studying
excited-state properties of molecular systems coupled to a
photon mode or a continuum of modes. This approach has been
validated by comparing the optical absorption spectrum of a
single benzene ring coupled to photons to that obtained using
the electron-photon Casida and time-propagation methods of
QEDFT.30,31 This makes the frequency-dependent Sternheimer
method of QEDFT a valid alternative for studying excited-state
properties of strongly coupled light-matter systems.
In the following, we first investigate a cavity QED setup in

which a single molecule is strongly coupled to a photon mode of
a high-Q cavity where we expect to capture the hallmark of
strong light−matter coupling (Rabi splitting). In the next setup,
we include a large but finite number of photon modes that
simulates the electromagnetic vacuum and investigate situations
where a molecular system couples weakly and strongly to the
continuum.
4.1. Single-Molecule Strong Coupling. The first example

studies intrinsic properties of a strongly coupled light-matter
system that is commonly not considered, for instance, the real
part of the polarizability (in Figure 2) and the photon
displacement field (in eq 4). These quantities are particularly
interesting, as they give insight into the dispersive properties of
the coupled system (for the real part of the polarizability) and

how energy is exchanged between the electron-photon system
(for the photon displacement field).
The molecular system considered here is an azulene (C10H8)

molecule, which is a bicyclic, nonbenzenoid aromatic hydro-
carbon studied in ref 25. We describe in detail how we compute
the electronic structure of azulene in the Supporting
Information. Before looking at how these observables get
modified due to strong light-matter coupling, we will first
present the absorption spectra (obtained from the imaginary
part of the polarizability) of the molecular system strongly
coupled to photons that captures the Rabi splitting between
polaritonic peaks.8,26

To study the spectral properties of the coupled systemwe now
confine the azulene molecule inside an optical high-Q cavity that
couples to a photon mode with increased strength. The cavity
field is polarized along the x-direction with a coupling strength
λα as shown in Figure 1. The optical absorption spectra of the
azulene molecule has been computed with TDDFT, which
captures the π−π* transition occurring at 4.825 eV.56,57 In
Figure 2a, we show the x-component of the polarizability of the
uncoupled azulene molecule. The imaginary part of the
polarizability captures a sharp peak occurring at 4.825 eV due
to the π−π* excitation. On the basis of the Kramers−Kronig
relations, an absorption usually occurs simultaneously with an
anomalous dispersion.54 The anomalous dispersion describes a
sudden change in the material’s dispersion spectrum in the
vicinity of a resonant absorption. We also find in the real part of
the polarizability an anomalous dispersion around the π−π*
excitation, which shows how its dispersive properties decrease
when the excitation energy increases. This is characterized by
the asymmetric line shape about this resonance, while the
imaginary part is symmetric as usually observed.58 We now place
the molecule at the center of the high-Q optical cavity and make
the common assumption to describe the cavity by one effective
mode. The coupling defined in eq 8 in this particular case of a
planar cavity is λ= λ| |= ϵ LA2/ 0 where L is the length of the
cavity, and A is the surface corresponding to the mode volume.
The values for λ that are normally used are for cavity volumes on
the order of 103 μm3.59 With this mode volume, the strong
coupling regime is achieved by collectively coupling an ensemble
of emitters to the photon mode.1 In the single-molecule limit,
recent experiments in picocavity setups have demonstrated
effective volumes less than 1 nm3 for achieving strong light-
matter coupling.60,61 On the theory side, investigations into the
effective volumes for enhancement of optical fields have been
explored62 with suggestions for nanoplasmonic structures with
volumes as small as 0.15 nm3.63 To explore the strong light-
matter coupling regime in this setup, we choose values of λ =
0.01, 0.03, 0.05 au, which correspond to effective volumes LA =
17.5, 2.1, 0.74 nm3, respectively. For the Im α ω{ }( )xx , an
increasing coupling strength results in an increased Rabi splitting
of the π−π* peak into lower and upper polaritonic branches,
where the lower branch has more intensity, compared to the
upper polaritonic peak as measured in experiments8 and not
captured by common phenomenological models such as the
Jaynes-Cummings model.29 This splitting, which is a character-
istic of strong light-matter coupling, shows how excited-state
properties of matter get modified when strongly coupled to a
cavity mode. For the Re α ω{ }( )xx , we find for each of the lower
and upper polariton peaks for different λ, asymmetric line shapes
about their respective excitation energies indicating anomalous
dispersion usually occurs simultaneously with absorption even

Figure 2. Spectrum of an azulene molecule in free space (i.e., λ = 0) and
coupled to a high-Q optical cavity (i.e., λ > 0) showing the line shapes
characteristic of the real and imaginary parts of the polarizability near
the π−π* resonance at 4.825 eV. (a) Region near the resonance where
the Re α ω{ }( )xx is asymmetric about the resonance while the Im
α ω{ }( )xx is symmetric about the resonance. Coupling the cavity mode
resonantly to the π−π* transition and increasing the coupling strength
continuously as in (b−d) results in a Rabi splitting into lower and upper
polariton branches, each of which has an asymmetric line shape for the
different Re α ω{ }( )xx .
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for strongly coupled systems. In addition, the anomalous
dispersion can be controlled for strongly coupled systems by
varying the coupling strength. This is clearly shown in Figure 3

where the anomalous dispersion (in particular, for the lower
polariton) is smaller for the coupled case when compared to the
uncoupled result. The emergence of polaritonic features in the
Re α ω{ }( )xx highlights that the dispersion properties of the
matter system become modified due to strong light-matter
coupling. The modification of dispersion properties for strongly
coupled light-matter systems has potential in controlling optical
dipole traps. This can be made clear by considering the
interaction potential of the induced dipole moment normally
expressed as α ω= − { }ϵU IRe ( )

c xx
1

2 0
, where I is the field

intensity.64 The standard approach for realizing optical dipole
traps is by laser detuning from a specific resonance of the bare
matter system, for instance, laser detuning from an atomic
resonance such that the dipole potential minima occur at regions
with maximum intensity for red-detuned traps.64 For polaritonic
resonances that emerge in strongly coupled light-matter
systems, the optical dipole traps that can be realized by detuning
the external field from these polaritonic resonances can be
controlled by strongly coupling to the photon field. This is
evident in Figure 2 where the Re α ω{ }( )xx is modified under
strong coupling and highlights a new perspective with potential
applications in engineering optical dipole traps for neutral atoms
or molecules.
Next, we study the spectral properties of the photon field

when we probe the matter subsystem. This observable δqα(ω) is
now accessible, since we treat the photon field as a dynamical
part of the coupled light-matter system. We note that the

displacement field in this case represents a mixed (matter and
photon) spectroscopic observable, since its response function
χ α

n
q is a commutator between photonic and electronic

quantities.26 The observable δqα(ω) indicates how the photon
field reacts in a standard absorption or emission measurement
when the system is probed by an external field represented by
the potential δv(r, ω). In Figure 4, we show the spectrum of the

photon displacement coordinate in free space (when λ = 0) and
coupled to a cavity mode (when λ > 0). As expected the free
space case has no response, since light and matter decouple, and
we have access only to the observables in Figure 2. However,
coupling to the photon mode and increasing the coupling
strength λ > 0 we observe in the imaginary part of δqα(ω) a Rabi
splitting into lower and upper polaritons peaks. The polaritonic
peaks are asymmetric about the π−π* excitation energy to which
the mode was initially coupled to, and the lower polariton peaks
are negative with more intensity compared to the upper
polarition. Physically, this result highlights that excitations due
to an external perturbation from δv(r, ω) can be exchanged
between the coupled subsystems and that the hybrid light-
matter features occur not only in the matter subsystem but also
in the photon subsystem due to the self-consistent interaction.
For the Re ω{ }αq ( ) , we also find for each of the lower and upper
polariton branches an asymmetric line shape about the energies
of the respective polariton peaks with varying strengths for
different λ. In analogy to the Re α ω{ }( )xx where the anomalous
dispersion gets modified due to strong light-matter coupling, the
same holds true for the anomalous region in the spectrum of Re

Figure 3. (a) The real part of the polarizability of azulene showing the
change in the anomalous dispersion in free space (λα = 0) and when
coupled to a cavity mode (λα > 0). (b) The analogous anomalous
dispersion in the photon spectrum occurs only when both subsystems
are coupled. (a, b) This feature can be controlled by coupling to a cavity
mode. Figure 4. Spectrum of the photon displacement coordinate of an

azulene molecule in free space (i.e., λ = 0) and coupled to a high-Q
optical cavity (i.e., λ > 0). (a) No response, as the photons are
decoupled. Coupling the cavity mode resonantly to the π−π* transition
and increasing the coupling strength lead to a splitting into lower and
upper polaritonic branches in the photonic spectrum as shown in (b−
d) for Im ω{ }αq ( ) . The Re ω{ }αq ( ) for these cases show an

antisymmetric line shape opposite to Re α ω{ }( )xx in Figure 2.
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ω{ }αq ( ) as shown in Figure 3. Because of the self-consistent
back-reaction between subsystems, we expect that the Re

ω{ }αq ( ) can be made to influence the optical dipole potential
thereby controlling how the matter subsystem is trapped in the
field. It is important to note that, for the responses of the
subsystems, the excitation energies of the strongly coupled
system are the same but with differing oscillator strengths (see
the Supporting Information). The results presented here
demonstrate that the electron-photon Sternheimer formalism
is able to describe excited-state properties of strong light-matter
coupled system.
4.2. Changes in the Matter Spectral Features. In this

section, we consider the case where a molecular system is
coupled explicitly to a wide range of photon modes and show
how spectral features of the system change when we effectively
increase its coupling to the continuum of the electromagnetic
field. This computation will at the same time show the
advantages the Sternheimer approach has over the Casida
approach in terms of scaling with the number of photon modes.
We now consider as matter system a lithium hydride (LiH)

molecule coupled to a wide range of photon modes that densely
sample the electromagnetic vacuum. Since the Sternheimer
approach for an electron-only system is known to scale favorably
with the system size,38,39 the focus here will be to demonstrate
that the photon modes do not add to this scaling. Here we
sample modes of a quasi one-dimensional mode space by

employing the coupling λ =α ϵ L L L
2

x y z0
× ωα cx esin( / ) x0 , where x0

= Lx/2 is the position of the molecule in the x-direction, and ωα

= αcπ/Lx are the frequencies of the modes.26 The volume V =
LxLyLz with Lx = 3250 μm, Ly = 10.58 Å, and Lz = 2.65 Å are
chosen such that the sampled modes couple weakly to the
molecular system, and we assume a constant mode function in
the y- and z-directions.
In this first example, we couple the molecule to 500 000

photon modes of a one-dimensional mode space with an energy
cutoff of 190.74 eV and a spacing between modes of 0.38 meV.
Sampling the continuum of modes serves to constitute the line
width of the excitations and also represents dissipation channels
in the coupled system.26,44 The one-dimensional sampling of
mode frequencies that couple weakly to the matter subsystem
will not capture the actual three-dimensional lifetimes. In the
matter-only (uncoupled) case, we use a broadening ℏη = 0.1 eV
(as in Section 4.1) to account for the finite lifetime of the excited
states. When the molecule is coupled weakly to the photon
continuum, we obtain the same spectral broadening as the
uncoupled case. The results of this calculation is shown in Figure
5, where we compare the photoabsorption cross-section of the
uncoupled LiH molecule and the case when it is weakly coupled
to 500 000 photon modes. We find that the two results are
qualitatively the same, which is evident for the lowest electronic
transition X1Σ+ → A1Σ+ around 3.2 eV that corresponds to an
electronic transition from the bonding to the antibonding σ-
orbital.65,66 This result shows that the weak coupling of the
molecule to the continuum of modes reproduces the results of
the matter-only case. We note that obtaining this result using the
electron-photon Casida approach will increase the computa-
tional cost drastically even for the case of coupling to 100 000
photon modes. Computationally, this result demonstrates that
the electron-photon Sternheimer method scales favorably not
only with system size but also with the number of photonmodes.

Now, we effectively enhance the coupling strength |λα| by
reducing the cavity volume along the y- and z-directions. For this
purpose, we choose four different areas LyLz = 28, 0.35, 0.23, and
0.12 Å2, and the length Lx is fixed as given above with the same
number of modes. We chose very small areas to be able to obtain
the desired transition between spectral line shapes for the single-
molecule case studied here. This will not be the case in collective
coupling, since the coupling strength scales as the square-root of
the number of identical particles. The results are shown in Figure
6, where the blue line is the result shown in Figure 5 that has a
Lorentzian profile. We find that, when we reduce the area LyLz,
this effectively enhances the coupling to the photon continuum
such that the symmetric Lorentz line shapes turn into
asymmetric Fano line shapes. Fano resonances occur due to
the interference of discrete quantum states with a continuum of
states.67,68 The asymmetry is characterized as a ratio of the
transition amplitude to a given discrete state and that of a
transition to a continuum state.69 As this ratio becomes finite
due to strong coupling to the continuum, this indicates the onset
of a competition between constructive and destructive
interference that gives rise to the asymmetric line shape.70

Also, the broadening of the spectra (see Figure 5) and decrease
in amplitude are consequences of the interference.70 These
results show the changes in the spectral features of excited states
of a matter system strongly coupled to the electromagnetic
continuum. Thus, the electron−photon Sternheimer approach
is a valid alternative method for studying excited-state properties
of real systems strongly interacting with the quantized
electromagnetic field.

Figure 5. (a) Photoabsorption cross-section of a LiHmolecule coupled
to 500 000 photon modes (blue dashed) in a quasi one-dimensional
cavity and its comparison to the uncoupled case (red solid). (b)
Enlarged view of the X1Σ+ → A1Σ+ transition around 3.2 eV where we
observe a slight deviation in the peak amplitude between the uncoupled
and the case coupled to the continuum.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00076
J. Chem. Theory Comput. 2022, 18, 4354−4365

4362

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00076/suppl_file/ct2c00076_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00076?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00076?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00076?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00076?fig=fig5&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00076?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


5. CONCLUSION AND OUTLOOK
In this work we presented a linear-response method that solves
the response equations of nonrelativistic QED in the length
gauge setting. The approach is based on the Sternheimer
equation formulated within the framework of QEDFT that is
capable of computing excited-state properties of strongly
coupled light-matter systems. This approach serves as an
alternative linear-response method for studying response
properties of large systems coupled to the quantized electro-
magnetic field, since it scales favorably with the system size, as it
utilizes only the occupied Kohn−Sham orbitals, and it also scales
favorably with the number of photon modes. Using the
Sternheimer approach we computed different observables of
strongly coupled systems. These observables showed how both
the dispersion and absorption properties of the matter system
changes with potential applications in modifying and controlling
optical dipole traps. Also, we showed examples where we lift the
restriction to one cavity mode in the dipole approximation and
sampled densely the electromagnetic continuum. In one case we
showed that, when a LiH molecule is weakly coupled to the
photon continuum, we reproduce the free space absorption
spectrum of the molecule. When the coupling strength between
the light and matter is effectively enhanced, we find changes in
the absorption spectrum as symmetric Lorentzian line shapes
turn into asymmetric Fano line shapes.
Our investigations in this work employed the adiabatic local-

density approximation (ALDA) to treat the Hartree exchange-
correlation kernel f n

Hxc that accounts for the correlation between

electrons. The reason for this choice was to show that, even with
the simplest functional (ALDA), the extended electron-photon
Sternheimer approach still captures the hallmark of strong light-
matter coupling (Rabi splitting) and other features as shown in
Figure 6. It is, however, important to investigate how ALDA
performs in comparison to hybrid functionals such as B3LYP or
PBE0 in describing the peak position of excitation energies,
oscillator strengths, and lifetimes of the polaritonic resonances.
This is particularly important, as it will, on the one hand, provide
information on how electron correlation affects properties of the
Rabi splitting and, on the other hand, scrutinize the reliability of
ALDA in describing correlations in strongly coupled electron-
photon systems. The electron-photon Sternheimer method
presented here is a suitable approach for studying excited-state
properties of large systems coupled to a single mode or to the
electromagnetic continuum. In the fast-growing field of
polaritonic chemistry, where there is an ongoing debate about
the mesoscopic scale of quantum-collectively of coupled
molecules,16,24 ab initio methods such as the electron-photon
Sternheimer method become desirable to capture intricate
details of the complex interactions between the coupled
subsystems. Another important property of the Sternheimer
approach is that it can be generalized to higher orders to obtain
higher-order polarizabilities by solving a hierarchy of Stern-
heimer equations.38 For the coupled electron-photon system,
this will give access to higher-order polarizabilities with
signatures of strong light−matter coupling.
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