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This paper presents amultitasking electrical impedance tomography (EIT) system designed to improve the flexibility and durability
of an existing EIT system.The ability of the present EIT system to detect, locate, and reshape objects was evaluated by four different
experiments. The results of the study show that the system can detect and locate an object with a diameter as small as 1.5mm in a
testing tank with a diameter of 134mm.Moreover, the results demonstrate the ability of the current system to reconstruct an image
of several dielectric object shapes. Based on the results of the experiments, the programmable EIT system can adapt the EIT system
for different applications without the need to implement a new EIT system, which may help to save time and cost. The setup for all
the experiments consisted of a testing tank with an attached 16-electrode array made of titanium alloy grade 2. The titanium alloy
electrode was used to enhance EIT system’s durability and lifespan.

1. Introduction

Electrical impedance tomography (EIT) is a relatively new
imaging technique [1, 2]. Developed to overcome some of
the disadvantages of existing imaging techniques, it provides
flexibility, radiation-free operation, and noninvasive imaging
ability and is relatively inexpensive [3–13]. The EIT system
operates using low-power signal injection andmeasurements
to reconstruct the estimated cross-section image [5]. It works
by detecting and tracking the electrical conductivity changes
hidden in a medium such as a pipeline, human body parts,
or chemical process [4, 14–19]. The changes in conductivity
aremeasured using several electrodes placed around the body
[5, 10, 13, 20–22]. Numerous EIT researchers have studied and
attempted to implement a system that can estimate the hidden
object structure (shape), which may help to identify the
hidden object [4, 13, 23, 24].Their systems have functioned by
controlling the injection andmeasurement signal parameters
such as injection frequency, voltage amplitude, and phase
[1, 8, 9, 11, 14, 16, 25–27]. To accomplish the required task of
identifying a hidden object, an EIT system that controls and

monitors I/O system signals was designed and implemented
to improve the image reconstruction capability. However, in
studies of EIT applications that have exposed the system
to harsh environmental testing conditions, the lifespan of
the traditional EIT electrode was reduced as the electrode
was damaged [12, 28]. This damage will increase the mea-
surement error [29]. Hence, a durable, flexible, corrosion-
resistant electrode is required, particularly for applications
that come in direct contact with human skin or tissue or
for industrial processes [25, 30]. Therefore, the present EIT
system, with 16 titanium alloy electrodes, was developed for
use in different applications. Titanium is strong, lightweight,
corrosion-resistant, nontoxic (biocompatible), long-lasting,
low-cost, and nonferromagnetic [31]. Pure titanium does not
have good electrical conductivity, but titanium alloy is a good
conductor.

In this project a new multitasking electrical impedance
tomography (EIT) system is designed and implemented to
improve the flexibility and durability of an existing EIT
system. Here, multitasking means the ability to monitor
and control different input/output (I/O) parameters and run
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Figure 1: The current structure of the UNMC EIT system.

LabVIEW and MATLAB software simultaneously building
an EIT system to be more flexible and to make it easy to
perform multiple computing tasks as presented in Figure 3.
The results demonstrate that the new EIT system can be used
for different applications without the need to build a new
EIT hardware. However, some applications require different
electrode sizes, shapes, andmaterials. Four experiments were
conducted. The first experiment examined the capability of
the system to detect and track electrically conductive materi-
als with different diameters.The second experiment aimed to
detect andmonitor air bubbles inwater.The third experiment
involved the imaging of nonconductive objects and shapes.
Finally, the last experiment consisted of detecting chicken fat
and skin placed in chickenmeat.These experiments show the
capability of the system to be used in different applications
and fields, such as industrial and medical ones. The results
reveal that the developed EIT system can detect an object as
small as 1.5mm in diameter, in a testing vessel 134mm in
diameter. In addition, the results show the capability of the
system to estimate various objects and shapes. As shown in
Figure 1, the system structure of the EIT system developed
at the University of Nottingham Malaysia Campus (UNMC)
consists of five main parts: host computer, data acquisition
box, BNC connector block, switching box, and a 16-electrode
array. Electrical Impedance and Diffuse Optical Tomography
Reconstruction Software (EIDORS) was used for all the
experiments. EIDORS is an EIT software tool box developed
by Andy Adler and is in open-source MATLAB code [32].
Furthermore, a LabVIEW program was implemented to
control and monitor the raw I/O signals. The programmable

EIT system can be adapted for many of the EIT applications,
which may help for different imaging purposes. For example,
in some emergency medical situations, a patient must go
through several imaginingmachines for a diagnosis.The time
required for these imaging tests will slow down the ability of
the doctors to diagnose the diseases; programmable EIT may
help to prevent this slowdown in the imaging process.

2. Method and Materials

2.1. Data Collection. The data were recoded for all the
experiments using 16 electrodes, with two pipes of the
same diameter (14 cm) and different heights. The adjacent
(neighbouring)measurement strategy for all the experiments
was to match the reconstruction algorithm used by EIDORS,
even though this system can support different measurement
strategies [19, 32]. Figure 2 illustrates the stages of the process
in a flowchart to provide insight into the current EIT system
measurement strategy. The system setup was configured
based on the applications and the electrode specification.
For example, the amplitude was set based on the electrical
conductivity environments and the diameter of the region.
Therefore, low conductivity requires high signal injection and
high conductivity needs a low signal injection. However, the
injection amplitude and frequency are limited; the amplitude
range is 0.1–10Vpp, and the frequency range is 1Hz to 1MHz.
The lowest measurable measurement change, termed code
width, was determined by the data acquisition (DAQ) analog-
to-digital converter (ADC) resolution and the range of the
input signal (maximum value/minimum value). In addition,
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Figure 2: Flowchart of the stages of the process for the programmable EIT system.

the input signal resolution for the current DAQ system is
18 bits. Equation (1) shows the formula used to estimate the
voltage code width provided by National Instruments.

𝑉CW =
((Maximum value) − (Minimum value))

2 ∧ (resolution)
(1)

(see [35]).
To begin, signals were injected into Channel 1, and the

signal data measurements were taken simultaneously from
all 16 channels. Then, the signal injection was moved to the
next channel (Channel 2), and signal data measurements
were recorded from all the channels. This procedure was
repeated for each channel, in turn. Furthermore, the number
of independent data measurements obtained for a complete
dataset𝑀 is𝑁×𝑁, where𝑁 is the total number of channels
(16 in this case). Therefore, the total number of independent
measurements is 256. Fundamentally, a complete set of data
measurements must be performed for every image slide, and
the delay time can be controlled; the delay time to be set
depends on themeasurement sampling rate.Therefore, a high
measurement sampling rate requires a longer time to process
than a lower sampling rate. In EIT experiments, themeasured

voltage variances could be calculated, and the variance data
were uploaded to the EIDORS for image reconstruction. In
fact the reconstructed images are based on the difference in
the measurements of peak-to-peak voltages due to adding an
object into the background liquid, so the values would be real
numbers.

2.2. Software and Hardware. The UNMC EIT system
includes hardware and software components. The hardware
primarily consists of the host computer, DAQ system,
connector unit, switching unit, and electrode array. The
software can be divided into three parts: Windows operating
system, MATLAB, and LabVIEW. MATLAB was used
to reconstruct the image based on the processed data
received from the LabVIEW program using EIDORS.
The LabVIEW program was designed and implemented
to control and monitor the EIT system. Furthermore,
the LabVIEW program was developed to control the
switching unit to inject and record the signals, process the
raw data, and then stream the information to MATLAB
for further processing to reconstruct the cross-sectional
image. The switching unit connects the DAQ with the
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Figure 4: Electrode design layout using AutoCAD (a). The real electrode (b); square contact areas are 13 × 13 × 0.5mm3.

electrode array. The switching unit is designed to handle
the frequency range of 1Hz to 1MHz and that is due to the
use of electromechanical low signal relay. Figure 3 shows
the continuing sequence stages of cycle flow for the EIT
system.

2.3. Electrode. An electrode is an electrical conductor made
of metallic material (and could be nonmetallic) used to
contact the medium of an object, through which a current,
either alternating current (AC) or direct current (DC),
enters or leaves a nonmetallic substance medium [10, 19].
Moreover, an electrode array is used in the EIT to detect
and track electrical activity. Several material characteristics
should be considered to make a suitable electrode for the

EIT system; these include conductivity, durability, flexibility,
light weight, corrosion resistance, lack of toxicity, long life,
nonferromagnetic properties, and low cost. Hence, titanium
alloy grade 2 electrodes were designed and implemented as
shown in Figure 4.The active area of the titanium alloy grade
2 electrodes is in direct contact with the medium of diameter
13× 13× 0.5mm3.The electrode used to apply signals is called
the “injection electrode”; the electrode used for measuring
signals is called the “measurement electrode.” The same
electrodewas used for the injection andmeasurements. In the
present EIT system, a plurality of electrodes is arranged in a
ring shape with equal spacing as shown in Figure 5. The 16
electrodes were attached approximately 1493.5mm from the
bottom of the testing tank.
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Figure 5: (a) shows the top view dimensions of the testing tank. (b) is the top view of the actual testing tank.

3. Results and Discussion

The UNMC EIT system was evaluated, including its ability
to be used in different applications by tracking and detecting
conductive changes of targeted objects. Therefore, several
EIT system experiments were conducted, and some of the
data results are presented here. Basically, four experiments
were conducted to show the aptitude of the EIT system
to be adapted for numerous applications. The results of all
the experiments (parts) were obtained using an adjacent
injection measurement strategy with injection frequency
range of 1–1000 kHz. Moreover, the signal measurements
used were controlled and monitored using LabVIEW in all
the experiments to reconstruct the cross-sectional image.The
variance data were calculated from the recodedmeasurement
signals for all the experiments. For the first three experiments
(parts), an electrode with contact active area dimension of
13 × 13 × 0.5mm3 was employed; for the fourth experiment,
the electrode active area dimension was 14 × 14 × 0.5mm3.
All the experiments were conducted using two testing tanks
(cylindrical shape), both of 140mm diameter; one tank was
280mm high and the other was 50mm high. The 280mm
high tank was used for the first three experiments, and
the 50mm high tank was used for the fourth experiment.
A titanium alloy electrode with an active contact area of
13 × 13 × 0.5mm3 was employed for the 280mm high
vessel, and a 14 × 14 × 0.5mm3 electrode was used for the
50mm high tank. The first experiment showed the ability
of the system to detect and track electrically conductive and
nonconductive objects of different diameters when they were
placed in a range of positions in the testing vessel filled
with 3200ml of tap water, one after another. For the third
experiment, which was conducted to detect and track an air
bubble, the air hoses were located in various positions in
the testing vessel. The conductivity of the tap water, which
was measured using an electrical conductivity meter, was
approximately 97 𝜇S/cm at 27∘C. The last experiment was

performed to detect chicken fat and skin in a tank filled
with chicken meat chunks. For all the experiments, the
first measurements were obtained when only tap water or
chicken meat was in the tank. For the second measurements,
the electrically conductive and nonconductive objects were
placed in different locations inside the testing vessels. Then,
the two measurements were compared and processed and
saved using LabVIEW; then, they were streamed toMATLAB
(EIDORS) for further processing for image reconstruction.
Furthermore, a voltage input signal range of ±2V was used
for all the experiments. The results obtained with the UNMC
EIT system are presented in Tables 1–6 and Figure 7. The
conductive objects were a stainless-steel rod and steel wire
rope with diameters 26, 12, 4, 3, 2, and 1.5mm. The non-
conductive objects were a plastic rod, Styrofoam, and plastic
wire rope with diameters 25, 12, 7, 4, and 2mm. Some of
the targeted objects, whether conductive or nonconductive,
were placed in a few different locations inside the testing
vessel and exposed to various injection signal frequencies:
300, 400, 500, 900, and 1000 kHz. Every table includes the
actual object location and the reconstructed image of the
object. The five primary targeted object placement locations
for all the experiments are listed below:

(1) Near electrodes 15, 16, 1, and 2
(2) Near electrodes 3, 4, 5, and 6
(3) Near electrodes 6, 7, 8, and 9
(4) Near electrodes 11, 12, 13, and 14
(5) In the centre.

Figure 6 shows the typical analog I/O signal configuration
setupwindow for all the experiments. However, these settings
can be modified based on the application requirements.

Table 1 shows the 2D reconstruction images of three
electrically conductive objects with three different diameters
placed in several locations. The input signal range was max
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Table 3: Nonconductive objects at different positions; reconstructed images for three different nonconductive object diameters (25mm,
14mm, and 7mm).

Targeted object, real
location, and injected
frequency with input
signal range max 3–min
−3

The object is a cylindrical plastic
rod (25mm diameter)

The object is a cylindrical plastic
rod (14mm diameter)

The object is a cylindrical rod
(7mm diameter)

15, 16, 1, 2 (0.4MHz)
E1

2

3

4

5

6

7
89

10

11

12

13

14

15
16

Very low

Very high

High

Normal

Low

Conductivity

Very low

Very high

High

Normal

Low

Conductivity

Very low

Very high

High

Normal

Low

Conductivity

7, 8, 9, 10 (0.4MHz)
E1

2

3

4

5

6

7
89

10

11

12

13

14

15
16

Very low

Very high

High

Normal

Low

Conductivity

Very low

Very high

High

Normal

Low

Conductivity

Very low

Very high

High

Normal

Low

Conductivity

11, 12, 13, 14 (0.4MHz)
E1

2

3

4

5

6

7
89

10

11

12

13

14

15
16

Very low

Very high

High

Normal

Low

Conductivity

Very low

Very high

High

Normal

Low

Conductivity

Very low

Very high

High

Normal

Low

Conductivity

Centre (0.4MHz)
E1

2

3

4

5

6

7
89

10

11

12

13

14

15
16

Very low

Very high

High

Normal

Low

Conductivity

Very low

Very high

High

Normal

Low

Conductivity

Very low

Very high

High

Normal

Low

Conductivity

3–min −3, and the injected frequency, as shown in this table,
was 400 kHz and 500 kHz. The colour scale illustrates the
states of the electrical conductivity changes. The red colour
means that the electrical conductivity increased in that area,
and the blue colour signifies that the electrical conductivity
in that area dropped. As observed, the steel rod diameter of
26mm was placed in the four stated locations and tracked
and imaged. Similarly, the electrically conductive object with
a diameter of 12mm was placed in the locations shown
and tracked and imaged. However, image background noise
was present and at an inconsistent level; this noise did not
affect the reconstructed image of the object, as shown in
the table. In contrast, the steel wire rope with a diameter of
4mm was placed in four locations and detected and imaged;
the reconstructed image when the object was located in the
centre of the testing vessel had a high amount of distortion,

as shown. Therefore, the injected excitation frequency was
increased from 400 kHz to 500 kHz, which improved the
reconstruction image of the object when it was in the centre.

Table 2 also shows the 2D reconstruction images of three
electrically conductive objects of three different diameters
placed in several locations, but with the objects smaller
in diameter than the objects in Table 1. As observed, the
steel wire rope with a diameter of 4mm was placed in
four stated locations and tracked and imaged using 400 kHz
as the excitation frequency. However, when the object was
positioned in the central location, the reconstructed image
of the object shifted. This object-shifting problem was solved
by increasing the injected excitation frequency from 400 kHz
to 500 kHz; the reconstructed image is displayed in the table.
Moreover, the steel wire rope with a diameter of 3mm,
which was placed in the four stated locations, was tracked
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Table 6: Nonconductive objects (Styrofoam) with different shapes; reconstructed images for different nonconductive object shapes.

Targeted object
shape, made of
Styrofoam

The 2D reconstructed image The analog I/O signal main
configuration setup

Very low

Very high

High

Normal

Low

Conductivity

Amplitude: 2 V
Frequency: 300 kHz

Offset: 0
Number of samples: 2000

Rate: 40000
Maximum value: 3
Minimum value: −3

Very low

Very high

High

Normal

Low

Conductivity

Amplitude: 2 V
Frequency: 1MHz

Offset: 0
Number of samples: 2000

Rate: 40000
Maximum value: 1
Minimum value: −1

Very low

Very high

High

Normal

Low

Conductivity

Amplitude: 2 V
Frequency: 1MHz

Offset: 0
Number of samples: 2000

Rate: 40000
Maximum value: 1
Minimum value: −1

Very low

Very high

High

Normal

Low

Conductivity

Amplitude: 2 V
Frequency: 1MHz

Offset: 0
Number of samples: 2000

Rate: 40000
Maximum value: 0.5
Minimum value: −0.5

Very low

Very high

High

Normal

Low

Conductivity

Amplitude: 2 V
Frequency: 1MHz

Offset: 0
Number of samples: 30000

Rate: 40000
Maximum value: 0.5
Minimum value: −0.5
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Table 6: Continued.

Targeted object
shape, made of
Styrofoam

The 2D reconstructed image The analog I/O signal main
configuration setup

Very low

Very high

High

Normal

Low

Conductivity

Amplitude: 2 V
Frequency: 900 kHz

Offset: 0
Number of samples: 2000

Rate: 40000
Maximum value: 1
Minimum value: −1

Very low

Very high

High

Normal

Low

Conductivity

Amplitude: 2 V
Frequency: 1MHz

Offset: 0
Number of samples: 2000

Rate: 40000
Maximum value: 0.2
Minimum value: −0.1

Very low

Very high

High

Normal

Low

Conductivity

Amplitude: 2 V
Frequency: 1MHz

Offset: 0
Number of samples: 2500

Rate: 40000
Maximum value: 0.2
Minimum value: −0.1

and imaged using 500 kHz as the excitation frequency. In
addition, when the 2D reconstructed image object was placed
in the centre, a high distortion occurred, even when using
500 kHz for the injection excitation frequency. However, the
image distortion was solved by decreasing the input signal
range frommax 3–min −3 to max 1–min −1, which increased
the measurement sensitivity of the signal. The last column
of the table shows the results of the smallest electrically
conductive object in this experiment, with a diameter of
1.5mm. As shown, the current EIT system can image and
track the object, even though backgroundnoise is present and
not consistent, but it does not affect the detection of the aimed
object, as shown. Therefore, this EIT system potentially can
detect electrical conductivity changes from objects as small as
1.5mm in a testing tank with a diameter of 140mm as shown
in the last column of Table 2.

Table 3 shows the 2D reconstruction images of three
electrically nonconductive objects with three different diam-
eters placed in several locations. Plastic rods with diameters

of 25mm, 14mm, and 7mm were placed in four locations
and tracked and imaged using 0.4MHz as the stimulation
frequency, with an input signal range of max 3–min −3.
Although the volume of the reconstructed image background
noise is observed and not invariable, it does not affect the
reconstructed image of the aimed object, as demonstrated.

Table 4 displays the 2D reconstruction images of two
electrically conductive plastic ropes with two different diam-
eters placed in four different regions. The plastic rope with
diameters of 4mmand 2mmwas identified and imaged using
0.4MHz as the excitation frequency with a range of input
signals of max 3–min −3. The effects of the changes in object
diameter on the reconstructed images were noticed and
changed slightly depending on the object width. In contrast,
the artefact of the reconstructed images was noticeable and
did not affect the reconstructed images of the targeted objects,
as demonstrated.

The results in Tables 1–4 show the capability of the first
UNMCEIT system to track and image electrically conductive
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Injection 
peak-to-peak voltage

Injection switching 
speed setup

signals range

Signal injection 
frequency

Differential (DIFF)

Referenced single-ended- 
(RSE-) grounded

Nonreferenced single-ended 
(NRSE)

Sampling rate in samples per 
channel and per second

Number of samples to 
acquire for each channel

Measurement 
signal type:
voltage, current, 
and resistance

Signal injection 
offset and phase setup

The input

Figure 6: Channel configuration and signal generator configuration controls.

Added chicken 
skin and fat

Chicken breast 
chunks

(a)

Conductivity Very high

High

Normal

Low

Very low

(b)

Figure 7: (a) Chicken skin and fat location in the vessel filled with raw chicken breast chunks. (b) 2D reconstructed image of the chicken
skin and fat.

and nonconductive objects with stated diameters which were
placed in a testing tank filled with tap water. As seen, the
electrically conductive materials required more calibration
and configuration setup than the nonconductive objects,
particularly when the targeted object was smaller. It also was
observed in some cases that the reconstructed images of the
electrically conductive object were good in most targeted
object locations and became weak in the centre of the testing
tank. This may be because the electrical conductivity at high
frequency becomes low; hence, the current easily passes
through the targeted objectwhen the targeted object diameter
becomes smaller and farther from the electrodes. However,
this issue was solved in two ways. The first solution was
to increase the injected excitation frequency from 0.4MHz
to 0.5MHz. The second was to decrease the input signal

range from max 3–min −3 to max 1–min −1 to increase the
measurement signal sensitivity.

Table 5 shows the results of the second experiment.
The first measurements were obtained when only tap water
was used, and the air hose was placed in a fixed location.
The second measurements were taken when the air was
pumped through the air hose, which was fixed in different
locations inside the testing tank. Then, the first and second
measurements were compared to reconstruct 2D images
showing the air bubble flow location. As it is known that air
bubbles’ flow is not steady, the three reconstructed images
were unsteady for the samples presented for each location as
displayed. As observed, the air bubble flow area was located
and imaged using 0.5MHz as the excitation frequency, with
input signals ranging within max 3–min −3. However, as



18 International Journal of Biomedical Imaging

seen when the air was pumped into the central location,
the reconstructed image of the air bubble area changed and
varied (being not stable). This may be because of the air
bubble flow behaviour, which appeared to migrate into the
testing tank wall regions.

Table 6 shows the results of the third experiment, and it
illustrates the ability of the system to detect and reconstruct
the images of non-electrically conductive object shapes that
were placed in the testing vessel filled with 2250ml of tap
water. The first column shows the Styrofoam real shapes,
and the centre column demonstrates the reconstructed cross-
section images for each aimed target shape. The last column
shows the analog I/O signal main configuration setup param-
eters for each targeted object shape. The first object, which
was made of Styrofoam, was carved into a circle shape, and it
was placed near electrodes 15, 16, 1, and 2. The reconstructed
image shows the ability of the system to estimate the targeted
object shape; however, it is not very accurate because the
background noise was high, particularly on the left side of
the imaged area, as seen in the dark red spot. The second
object was carved into a square shape, and it was placed
near electrodes 14, 15, 16, 1, 2, and 3. The target was detected
and imaged as a square shape with low defects, even though
background noise was present.The third object was carved as
a square shape as well, but with a smaller diameter size than
the previous object, and was placed near electrodes 15, 16, 1,
and 2. In addition, the small square object was detected and
imaged, but with a low defect.The fourth object was carved as
a triangle shape and placed near electrodes 16 and 1. As seen
in the table, the triangle shape was reconstructed with a low
amount of background noise. Furthermore, a smaller triangle
object was carved and imaged as shown; it was placed near
electrodes 16 and 1. The L-shaped object, which was placed
near electrodes 15, 16, 1, 2, 3, and 4, was imaged. As observed,
the structural details of the reconstructed object are poor,
particularly the object side towards the centre of the testing
tank.The C-shaped object, which was located near electrodes
14, 15, 16, 1, 2, and 3, was identified with few defects. Finally,
the E-shaped object, which has a complex shape structure,
was comparedwith the previous object shapes andwas placed
near electrodes 14, 15, 16, 1, 2, and 3; it was recognised but had
a high number of defects.

Figure 7 shows the results of the fourth experiment,
which employed a testing tank with a height of 50mm
and electrodes and contact active area dimension of 14 ×
14 × 0.5mm3. The first measurements were taken using a
testing tank filled with chicken breast chunks and with an
electrical conductivity level of 1184.04 𝜇S/cm. The second
measurements were taken from the tank when chicken
fat and skin (soaked in brackish water) with an electrical
conductivity of 2870.4 𝜇S/cm were located near electrodes
11, 12, 13, and 14. Then, the measurement data changes were
processed to identify the location of the chicken skin and fat.
As seen, the UNMC EIT prototype system was able to find
and image the electrical conductivity changes in the tank.

The experimental results show four different use cases of
our UNMCEIT system.Moreover, the results demonstrate in
Tables 1–6 and Figure 7 that theUNMCEIT prototype system
has the flexibility and capability to be used in different EIT

applications.The system potentially can detect electrical con-
ductivity changes from objects as small as 1.5mm in a testing
tank with a diameter of 140mm. Table 7 shows the developed
EIT system in comparison to some of the latest EIT systems.

4. Conclusion

A multitasking EIT system implemented using 16 titanium
alloy electrodes overcomes some of the drawbacks of the con-
ventional EIT system, including flexibility and durability.The
experiments were conducted using two different testing tanks
with two different electrode array dimensions. Furthermore,
the results show that the system can detect an object with a
diameter as small as 1.5mm that is placed in the testing tank
with a diameter of 134mm. The results show that the system
can be adapted for different EIT applications; the results
are validated by conducting four experiments. Moreover,
the flexibility of the UNMC EIT system can be adapted
for different applications by controlling and monitoring
the configuration of I/O signals such as frequency, voltage
amplitude, signal type, offset, sample rate, and code width.
The system shows good accuracy to locate and image cross-
section objects with simple shapes such as circle, square, and
triangle. However, most of the reconstructed images have
background noise, although this does not affect the object
detection and tracking.
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