
Patients with cardiovascular conditions can have varia-
ble clinical presentations ranging from no symptoms to  
haemodynamic collapse, from hypertensive urgency  
to hypotension and from silent coronary ischaemia to 
acute coronary syndrome, as well as decompensated 
heart failure (HF), stroke or sudden death. This diversity 
in clinical presentation of cardiovascular disorders poses 
a major challenge for disease monitoring. Although cli-
nicians use a variety of implanted, ambulatory and con-
sumer wearable technologies for disease monitoring, the 
devices that are best suited to individual patients are dif-
ficult to establish. Indeed, optimal monitoring strategies 
have yet to be developed for some applications.

HF can worsen progressively over days or weeks, 
but current telemedicine systems might not be suf-
ficient to detect acute exacerbations in HF or to 
prevent rehospitalization1,2. Conversely, arrhyth-
mias can often occur suddenly or intermittently and 
might require immediate intervention3,4. Ambulatory 
rhythm-monitoring devices that allow only sporadic 
interpretation of data might be appropriate for benign 
events but not for life-threatening arrhythmias. This 

misalignment between clinical need and current moni-
toring technologies is also illustrated by the lack of robust 
strategies for the detection of impending coronary syn-
dromes, hypertensive emergencies, hypotensive events or 
stroke in high-risk patients with atrial fibrillation (AF).

Advances in cardiovascular monitoring technolo-
gies, such as the use of ubiquitous mobile devices and 
the development of novel portable sensors with seamless 
wireless connectivity and machine learning algorithms 
that can provide specialist-level diagnosis in near real 
time, have the potential for a more personalized care. 
Devices have been developed to assess haemodynam-
ics, which can detect potential signs of worsening HF2. 
Furthermore, continuous electrocardiogram (ECG) 
recordings have been used to redefine phenotypes for 
AF4 and ventricular arrhythmias3, and can predict suc-
cess of antiarrhythmic therapy5. Wearable activity track-
ers and smartwatches can measure physiological indices 
such as heart rate, breathing patterns and cardiometa-
bolic activity6, and can even detect AF7. Furthermore, 
smartphone applications have been successful in short-
ening the time to first response for sudden cardiac 
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arrest8. This confluence of novel technologies has also 
attracted much public interest and the promise to 
expand applications for cardiovascular monitoring.

In this Review, we describe the latest advances in 
cardiovascular monitoring technology, focusing first on 
biosignal acquisition and analytical techniques that ena-
ble accurate diagnosis, triage and management (Fig. 1). 
We discuss monitoring in the context of likely future 
directions in cardiovascular care and identify numer-
ous technical and clinical obstacles, issues regarding 
data security and privacy, and ethical dilemmas and 
regulatory challenges that must be overcome before 
integrated and scalable cardiovascular monitoring tools 
can be developed.

Biosignal acquisition
Biosignals, physiological signals that can be continu-
ously measured and monitored to provide information 
on electrical, chemical and mechanical activity, are the 
foundations of assessment of health and disease, and 
have been used to develop personalized physiologi-
cal ‘portraits’ of individuals. Numerous current and 
emerging wearable technologies can measure multiple 
physiological biosignals such as pulse, cardiac out-
put, blood-pressure levels, heart rhythm, respiratory 
rate, electrolyte levels, sympathetic nerve activity, gal-
vanic skin resistance and thoracic and lower-extremity 
oedema (Fig. 2). Some devices can acquire multiple 
biosignals simultaneously, which can provide inputs to 

powerful integrated monitors and diagnostic systems. 
In developing scalable monitoring technology, the 
short-term goal is to implement guideline-driven care, 
whereas a longer-term goal is to expand the scope of 
care by tracking physiological variables continuously in 
each individual.

Table 1 summarizes the use of wearable sensor tech-
nologies to detect biosignals. Some sensor technologies 
can now integrate multiple modalities, such as chest 
patches that monitor heart rate, heart rhythm, respi-
ration rate and skin temperature7,9. Sensors are being 
developed to measure myocardial contractility and car-
diac output (ballistocardiography), cardiac acoustic data 
(phonocardiography) and other indices10. We describe 
various biosensors in the following sections, with ref-
erence to their target biosignals and potential clinical 
applications.

Implanted intracardiac monitors
To date, more than three million people living in 
the USA have cardiac implantable electronic devices 
(CIEDs) such as pacemakers, defibrillators or left 
ventricular assist devices11. Many more patients have 
other non-CIEDs such as cochlear implants and nerve 
stimulators. CIEDs are the gold standard for cardiac 
rhythm detection, providing sensitive and specific 
measurements with little noise continuously over long 
time frames of several years. CIEDs are also highly 
effective prototypes for real-time automatic diagnosis 
and therapy. Indications for CIED use include pacing 
for bradyarrhythmias, and tachypacing and defibrilla-
tion for tachyarrhythmias. Additionally, most CIEDs 
also record intracardiac electrograms as a surrogate 
for ECGs. CIEDs that are prescribed for one indication 
might provide monitoring that confers clinical benefits 
for a separate indication, such as the monitoring of atrial 
arrhythmias by atrial leads in pacemakers or defibrilla-
tors, or the monitoring of atrial arrhythmias by far-field 
atrial electrograms from ventricular leads in some 
pacemakers or implantable cardioverter–defibrillators  
(ICDs)12.

CIEDs are well suited to monitor symptoms of HF.  
In patients with an ICD or a pacemaker, CIEDs can 
provide indices of heart rate variability and pulmonary 
impedance, which can track HF and prove an alert for 
possible decompensation13. Diminished heart rate vari-
ability (<100 ms) has been shown to indicate increased 
sympathetic and decreased vagal modulation, and is 
associated with increased risk of death, worsening HF 
and malignant ventricular arrhythmias14. A decline in 
electrical impedance of the thorax is indicative of pul-
monary congestion15. Another promising biosignal 
for the detection of HF is pulmonary artery pressure. 
COMPASS-HF16 was the first randomized trial to inves-
tigate the efficacy of intracardiac pressure monitoring 
for HF management with the use of a right ventricular 
sensor (Chronicle, Medtronic) that measures estimated 
pulmonary artery  diastolic pressure as a surrogate 
for pulmonary artery pressure. Notably, continuous hae-
modynamic monitoring did not significantly reduce the 
incidence of HF-related events compared with optimal 
medical management. The subsequent CHAMPION 

Key points

•	Advances in the use of cardiovascular monitoring technologies, such as the 
development of novel portable sensors and machine learning algorithms that can 
provide near-real-time diagnosis, have the potential to provide personalized care.

•	Wearable sensor technologies can detect numerous biosignals, such as cardiac output, 
blood-pressure levels and heart rhythm, and can integrate multiple modalities.

•	The use of novel biosignals for diagnosis raises concerns regarding accuracy and 
actionability within clinical guidelines, in addition to medical, legal and ethical issues.

•	Machine learning-based interpretation of biosensor data can facilitate rapid 
evaluation of the haemodynamic consequences of heart failure or arrhythmias, but is 
limited by the presence of noise and training data that might not be representative of 
the real-world clinical setting.

•	The use of data derived from cardiovascular monitoring devices is associated with 
numerous challenges, such as data security, accessibility and ownership, in addition 
to other ethical and regulatory concerns.
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study17 showed that monitoring pulmonary artery pres-
sure using the CardioMEMS system (Abbott) signif-
icantly lowered the rate of repeated HF hospitalization 
and was associated with reduced costs compared with 
standard care. A 2019 meta-analysis involving mostly 
patients with HF with reduced ejection fraction found 
that pressure monitoring, but not impedance monitor-
ing, was associated with a lower rate of hospital admission 
for HF18. Other forms of HF monitors in development 
integrate pulmonary artery pressure monitoring with 
vital sign monitoring (Cordella Heart Failure System, 
Endotronix), left atrial pressure monitoring and various 
wearable devices19.

Additional CIED-based biosensors for cardiovascular 
monitoring are likely to emerge in the next 2–3 years. 
An implanted device that provides neurostimulation 
of the phrenic nerve has been shown to be effective in 
reducing episodes of central sleep apnoea20. Such novel 
CIEDs could, in principle, detect physiological mark-
ers that correlate with symptoms of AF or HF that fre-
quently accompany sleep apnoea. Numerous leadless, 
extravascular devices currently under investigation can 
defibrillate21 or pace the heart22. Future innovations 
might eliminate the need to extract the device for bat-
tery replacement by using external recharging systems 
or designs that can transduce energy from respiratory or  
cardiac motion23.

ECG monitoring
The body surface ECG is a widely used biosignal in med-
ically prescribed monitors and consumer devices (Fig. 2). 
Ambulatory ECG monitors typically consist of three or 
more chest electrodes connected to an external recorder 
or a fully contained patch monitor, and can record con-
tinuously for 1–14 days. Some devices have fewer leads, 
such as the Spider Flash (Datacard Group), which con-
sist of two leads and can record for up to 6 min before 
and 3 min after detecting an event, and the CardioSTAT 
(Icentia), a single-lead ECG monitor that can provide 
continuous recordings. Data from such ECG monitors are 
uploaded to a central server either wirelessly or by direct 
device ‘interrogation’, interpreted using semiautomated 
algorithms and manually confirmed to generate reports 

and alerts. Some devices can provide near-real-time 
management options. The mobile cardiac outpatient 
telemetry (MCOT) system is an ambulatory ECG moni-
toring system that can transmit signals over a cellular net-
work without activation by the patient and might increase  
diagnostic yield compared with other systems24,25.

A major application for ECG sensors is to optimize 
the detection of AF26. AF is, in many ways, an ideal target 
for biosensors. Numerous ECG sensors focus on detect-
ing rapid and irregularly irregular QRS complexes in 
AF, but other metrics of rapid and irregular atrial rate 
and irregular beat-to-beat waveforms might increase 
diagnostic specificity27. AF can also cause beat-to-beat 
changes in perfusion and haemodynamics that might 
allow detection from non-electrical biosignals.

Another major indication for ECG monitors is the 
detection of ST-segment shifts indicative of coronary 
ischaemia, which requires relatively noise-free ECGs 
and sophisticated detection algorithms. Machine learn-
ing technologies have been incorporated into weara-
ble devices for the detection of ST-segment elevation 
with an accuracy of up to 97.4% (ref.28). In principle, 
coronary ischaemia monitoring could also use opti-
cal, electrochemical, mechanical or microRNA-based 
biosensors, but these applications have not yet been 
widely adopted. Limitations of ECG-based ambulatory 
monitoring include noise (particularly during physical 
activity), the typically limited monitoring duration of  
1–2 weeks (which might be insufficient to detect infre-
quent events) and delays in generating reports and  
instigating appropriate actions29.

Insertable or implantable loop recorders are minimally 
invasive devices that can provide long-term ECG moni-
toring for months or years and include the Reveal LINQ 
system (Medtronic), the Confirm Rx insertable cardiac 
monitor (Abbott) and the BioMonitor (Biotronik). The 
devices are inserted subcutaneously over the sternum 
or under the clavicle to mimic V leads and to optimize 
ECG recordings. Data are uploaded during device checks 
on a 3–6-monthly basis. The advantages of implantable 
loop recorders include the capacity for long-term mon-
itoring and consistent ECG wave morphologies owing 
to a fixed spatial orientation. Paradoxically, such devices 
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Fig. 1 | Emerging paradigms for ambulatory monitoring. Numerous innovations in biosignal acquisition, diagnosis and 
medical triage, and data access enable the curation of data as a dynamic resource that can ultimately be used to alter 
management guidelines and provide novel pathophysiological insights into cardiovascular diseases. However, the acquisition, 
processing and use of these innovative technologies is associated with various challenges. EBM, evidence-based medicine.
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are suboptimal for the diagnosis of arrhythmias of short 
durations (tens of seconds to minutes) and for classifying 
the type of atrial arrhythmia30. These limitations might 
be overcome with improvements in signal processing 
algorithms31. Furthermore, most implantable loop 
recorders cannot establish the haemodynamic signifi-
cance of detected arrhythmias, although the Reveal LINQ 
system does include an accelerometer that measures 
patient activity. A modified Reveal LINQ device was used 
to capture ECG data, temperature, heart rate and other 
parameters in American black bears and detected low 
activity and extreme bradycardia during hibernation32. 
Lastly, delays in the reporting of urgent events meas-
ured by implanted devices might be worsened by longer 
recording durations between device checks, although 
some platforms (Reveal LINQ and Confirm Rx) allow 
home monitoring with programmable alerts.

Finally, numerous wearable ECG devices are avail-
able to the public. The Apple Watch (Apple) and 
KardiaMobile (Alivecor) are approved by the FDA for 
rhythm monitoring and have clinical-level accuracy 
for the detection of arrhythmias such as AF33. None 
of these devices provides continuous monitoring, 
although daily and nightly use for months might ulti-
mately provide near-continuous recordings. However, 
at present, these devices require activation by the patient 

to record the ECG, and smartwatch pulse checks (via 
photoplethysmography (PPG)) occur only intermit-
tently. Therefore, these monitors can miss paroxysmal 
arrhythmia events that are too short in duration or too 
catastrophic in nature to be captured by the patient and 
cannot measure arrhythmia burden. As wearable devices 
become increasingly flexible, stretchable and weightless, 
they can be comfortably worn continuously to provide  
uninterrupted ECG data34.

At present, unclassifiable tracings are common 
among all ECG monitoring devices, which is likely to 
improve with technological advances35. Some systems 
have increased signal fidelity, such as the KardiaMobile 
six-lead device (Alivecor) or the CAM device (BardyDx), 
which might reduce noise and improve P-wave 
discernment27. Patients are increasingly opting for 
FDA-approved consumer devices, which increases the 
urgency to extend guidelines to adopt such technologies  
when appropriate36.

Photoplethysmography
PPG is an optical technique used to detect fluctuations in 
reflected light that can provide data on the cycle-by-cycle 
changes in cardiac haemodynamics37. PPG uses a light 
source, such as a light-emitting diode, to illuminate the 
face, fingertips or other accessible parts of the body. Early 
fitness trackers used this technology to estimate heart 
rate, but PPG-measured heart rate is associated with a 
low positive predictive value38, particularly if patients 
are ambulatory39 or exercising40. The WATCH-AF trial41 
was a prospective, case–control study that compared the 
diagnostic accuracy of a smartwatch-based algorithm 
using PPG signals with ECG data measured by cardiol-
ogists. The PPG algorithm had very high specificity and 
diagnostic accuracy, but was limited by a high dropout 
rate owing to insufficient signal quality. Although few 
comparison studies have been performed, PPG-based 
analysis of heart rate and rhythm might be less accurate 
than ECG-based assessment42.

An emerging area for PPG-based sensors is for 
the monitoring of blood-pressure levels. PPG-based 
blood-pressure assessment requires the mapping of 
pulsatile peripheral waveforms to aortic pressure and 
uses algorithms that incorporate machine learning 
technologies43,44. However, the sensitivity and specific-
ity of such a sensor in measuring blood-pressure levels 
in the general population have not yet been defined, and 
measurement variability might affect their accuracy45. 
PPG data can also be measured without body surface 
contact46. Video cameras can detect subtle fluctuations 
in facial perfusion with normal heartbeats to identify 
arrhythmias, including AF47. Once technical, workflow 
and regulatory challenges are overcome, this contact-
less approach could be used for health screening in a 
physician’s office, in a nursing home or in public spaces. 
However, this approach also highlights societal and 
ethical issues related to patient privacy and confiden-
tiality, and the physician’s responsibility to inform and 
treat patients48. The infrastructure needed to inform 
a passer-by of an abnormality detected by contactless 
sensing technology is not yet available, and whether this 
protocol is appropriate given that consent for testing was 
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Fig. 2 | Current and emerging wearable technologies. Examples of emerging wearable 
technologies include mobile phones, body sensors (TempTraq, Blue Spark Technologies, 
USA), glasses (OrCam MyEye, OrCam Technologies, Israel), necklaces (toSense, USA), 
earrings (Joule, Ear-O-Smart, BioSensive Technologies, USA), headbands (SmartSleep, 
Philips, USA, and EPOC, Emotiv, USA), rings (Motiv Ring, Motiv, USA), bracelets (Bangle 
Activity Tracker, Kate Spade New York, USA), skin patches (BioStampRC, MC10, USA, 
VitalPatch, VitalConnect, USA, and BodyGuardian Heart, Preventice Solutions, USA), 
clothing fabric (Nanowear, USA, Hexoskin Smart Shirt, Hexoskin, Canada, and 
SmartSleep Snoring Relief Band, Philips, USA), belts (Smart Belt Pro, WELT Corp., South 
Korea, and LumiDiet, Double H, South Korea), socks (Sensoria Socks 2.0, Sensoria, USA, 
and Siren Diabetic Socks, Siren, USA), shoes (Nike Adapt, Nike, USA) and shoe insoles 
(Energysole, MEGAComfort, USA).
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not obtained and which stakeholders would be respon-
sible for informing the individual and then ensuring 
adequate therapy and follow-up are unclear.

Nevertheless, major advances in PPG sensor technol-
ogy could facilitate the acquisition of haemodynamic data 
and assessment of their clinical significance in multiple 
domains, including HF, coronary ischaemia and arrhyth-
mia monitoring. Importantly, these devices could also be 
used to augment traditional home sphygmomanometer 
devices for haemodynamic monitoring.

Innovative biosensors for HF detection
Numerous biosensors are being developed that can mon-
itor HF progression. Intrathoracic impedance can be  
used to detect pulmonary congestion in patients with 
HF. Daily self-measurement of lung impedance using 
non-invasive devices has been described. In patients 

with HF, use of the Edema Guard Monitor (CardioSet 
Medical) combined with a symptom diary was associ-
ated with increases in self-behaviour score for 30 days 
after hospital discharge49. In an analysis of more than 
500,000 individuals in the UK Biobank, a machine learn-
ing model revealed that leg bioimpedance was inversely 
associated with HF incidence50. Numerous innova-
tive and non-invasive tools can be used to detect leg 
impedance, such as sock-based sensors51. Furthermore, 
microphone-based devices have been used to trans-
form cardiac acoustic vibrations to biomedical signals 
in quantitative versions of the phonocardiogram52. Such 
devices can track respiratory rate, heart and lung sounds, 
and body motion or position, and might be superior to  
physical examination for predicting worsening HF53.

Biosensors for other cardiovascular indications are 
in development. An external device has been described 

Table 1 | Emerging sensor technologies for wearable cardiovascular devices

Disease or 
indication

Biological measurement Sensor type Wearable device

Cardiac 
haemodynamics

Heart rate and blood pressure Wireless sensors Wireless sensors

Blood pressure Potential difference Skin patch

Pressure sensor Wristband

Optical sensor Smartglasses

Myocardial contractility Ballisticardiography Patch, wristbands, watches

Cardiac output Ballisticardiography Chest patch, ear buds

Heart failure Heart rate, rhythm analyses, 
respiration rate, skin temperature

ECG and accelerometer Chest patch

Exercise tolerance, 6-min walking 
distance

Seismocardiography Chest patch

Peripheral oedema Two magnetic sensors and an 
electromagnet

Fabric socks

Pulmonary rales Acoustocardiography Chest sensor

Cardiac 
arrhythmia

Heart rate and rhythm analyses ECG Sensor patch

Electrical pulse Pulse glasses

Pulse oximeter Fingertip pulse oximeter 
and earrings

3D accelerometer Shirt

Gyroscope, accelerometer, 
camera

Smartglasses

PPG sensor Earpiece

Special fibres Chest strap

Acute coronary 
syndrome

Myocardial ischaemia ECG and microcontroller 
board

Smartphone-based system

Subclinical myocardial ischaemia ECG ECG patch

Cardiac tissue hypoxia Microfluidic chip Watches, skin patch

Blood chemistry (such as lactate levels) Galvanic skin resistance and 
sweat sensors

Skin patch

Metabolic 
monitoring

Activity levels Surface electromyography 
sensor

Smartsocks

Electrolytes Sweat sensor Smartglasses

Glucose and lactic acid Sweat sensor Skin patch

Tissue chemistry (for example, lactate, 
glucose and pH levels)

Sweat sensor Skin patch

ECG, electrocardiogram; PPG, photoplethysmogram.
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that can monitor impending thrombosis in intra-arterial 
mechanical pumps with the use of an accelerometer for 
real-time analysis of pump vibrations to detect throm-
bosis and possibly prevent thromboembolic events54. 
Ballistocardiography, a non-invasive measure of body 
motion generated by the ejection of blood in each car-
diac cycle10, has been incorporated into devices such as 
weighing scales to measure heart rate55, whereas a digi-
tal artificial intelligence (AI)-powered stethoscope that 
integrates both ECG and phonocardiogram data was 
approved in 2020 by the FDA to assess patients for the 
presence of AF and heart murmurs56. The most prom-
ising systems might combine multimodality biosignals 
rather than using a single biosignal.

Challenges of novel monitoring platforms
Several challenges must be overcome before novel 
monitoring strategies can be adopted for clinical use 
in the ambulatory setting, which introduces noise 
from motion, electromagnetic interference and vari-
ous patient activities, which are more controlled in the 
clinic. Biosensor design must match hardware speci-
fications to biosignal characteristics for each clinical 
indication. Furthermore, device design must take into 
account the trade-off between duration and quantity of 
collected data, required battery power and device size, 
and durability in real-world use. Importantly, devices 
tested under one set of clinical conditions are not appli-
cable for use for other clinical conditions, a particularly 
relevant point to remember given the growth of poorly 
regulated consumer medical devices.

Subtle changes in biosignals might also confound 
analysis, such that testing and validation might need 
to be repeated de novo for each device being investi-
gated. Of note, many widely used consumer devices have 
only modest accuracy even for the ‘simple’ biosignals of 
heart rate or energy expenditure40. Whether accuracy is 
reduced owing to differences in study cohorts between 
initial device validation and real-world users57, biolog-
ical differences in biosignals owing to varying activity 
levels or other factors is unknown39,58,59. Biosignals that 
are calibrated in healthy volunteers might differ in accu-
racy when detecting disease. For example, tachycardia or 
irregularly irregular AF might introduce noise or varia-
bilities in QRS morphology compared with sinus rhythm 
and can influence ECG algorithms59. Similarly, variabil-
ity in pulse waveforms might influence PPG algorithms. 
Accordingly, algorithms developed with machine learn-
ing technology are best applied when the training and 
test populations are analogous. When these populations 
differ, learned features might become inaccurate, com-
pounded in machine learning by limited methods to 
interpret its decisions (justifying why machine learning 
has sometimes been described as a ‘black box’)60. Testing 
and validation for each specific clinical application are, 
therefore, critical in device development.

Machine learning for biosignal analysis
The large quantity of data generated by ambulatory 
monitoring devices necessitates accurate and automated 
diagnosis and an infrastructure to enable quick clinical 
actions. The time-honoured method of human review 

and annotation of clinical data is also time-consuming, 
expensive and not scalable. Novel, scalable approaches 
to data interpretation and actionability might allow the 
potential of novel ambulatory monitoring to be realized. 
By reducing the time needed for data interpretation, 
ambulatory monitoring can detect acute events, such as 
worsening HF, incipient coronary syndrome or impend-
ing sudden cardiac arrest, and provide timely feedback 
for less urgent events.

Traditional analytical models for ambulatory moni-
toring rely on a limited number of biosignals and apply 
intuitive rules, such as those related to rate or regular-
ity of heart rhythm, to flag a normal or abnormal result 
(Fig. 3a). Such forms of AI systems are known as ‘expert 
systems’60. Although these traditional models might 
introduce inaccuracy in data interpretation, slight inac-
curacies might be acceptable in traditional health-care 
paradigms in which data flagged by the device are ver-
ified by clinicians. However, this approach might not 
be safe for wearable consumer devices with little or no 
clinician input.

Machine learning is a rapidly developing branch of AI 
that has shown early promise for use in cardiovascular 
medicine61 through the extraction of clinically relevant 
patterns from complex data, such as detecting myo-
cardial ischaemia from cardiac CT images62 and inter-
preting arrhythmias from wearable ECG monitors33. 
Machine learning can also facilitate novel strategies for 
communication between patients and the health-care 
team (Fig. 3b). Machine learning-based classification 
of biosensor data from multiple sensors can automati-
cally evaluate the haemodynamic consequences of HF, 
arrhythmias or coronary syndromes, and can enable 
rapid triage without the need to develop, test and sep-
arately implement complex rules. Conversely, machine 
learning algorithms are not perfect and are limited by 
the presence of noise and training data that might not 
adequately represent the real-world clinical setting. 
In a study to detect AF, a third of ECGs could not be 
interpreted by a consumer device but could be classified 
by experts35. Furthermore, in a proof-of-concept study 
involving the use of smartwatch-based PPG sensor data 
analysed by a deep neural network, AF was diagnosed 
accurately in recumbent patients (C statistic 0.97) but 
not in ambulatory patients (C statistic 0.72)39.

Integration of multiple data streams
Advanced monitoring systems that integrate data from 
multiple streams can better mimic the diagnostic perfor-
mance of a clinician than current devices that monitor a 
single data stream. A system that identifies an impending 
event is likely to be more accurate if an event detected 
from the ECG is combined with evaluation of poten-
tial haemodynamic compromise (such as from a PPG 
signal) than use of either signal alone. The integration 
of multiple physiological data streams is a complex task 
for which simple rules might not readily exist. Machine 
learning might provide such decision-making potential 
because of its proven capacity to classify complex data.

Figure 3b illustrates a typical machine learning archi-
tecture comprising an artificial neural network with 
multiple inputs. This type of architecture can capture 

www.nature.com/nrcardio

R e v i e w s

80 | February 2021 | volume 18	



multimodal biosignals such as ECG, pulse oximetry 
and electronic medical record (EMR) data (denoted Xn 
in Fig. 3b) and classify them by adjudicated outcome 
(denoted y0 or y1), which might represent response or 
non-response to therapy, or the presence or absence of a 
haemodynamically significant event. Layers in the model 
(denoted h0–hn) distil input biosignals into archetypes 
of data that are relevant to the outcomes, constructed 

iteratively in the hidden ‘deeper’ layers during algorithm 
training. These hidden layers are integrated at lower 
levels to reduce the extent (or dimensionality) of data 
and identify patterns that best match with the critical 
event60,61. Although decisions made by such machine 
learning models are not always readily interpretable, 
studies have shown that these models make mistakes 
similar to those made by humans33 and can learn ‘expert’ 
decision-making processes even if not trained in these 
processes, raising confidence that machine learning 
decisions are medically intuitive63.

Machine learning algorithms for diagnosis
Several machine learning-based monitoring systems 
have been assessed for their efficacy in guiding clin-
ical management. The LINK-HF multicentre study2 
investigated the accuracy of a smartphone-based and 
cloud-based machine learning algorithm that analysed 
data from a wearable patch for predicting the risk of 
rehospitalization (via measurement of physiological 
parameters such as ECG, heart rate, respiratory rate, 
body temperature, activity level and body position) in 
100 patients with HF. This system predicted the risk of 
imminent HF hospitalization with up to 88% sensitivity 
and 85% specificity, which is similar to that of implanted 
devices. A follow-up study to determine whether this 
approach can prospectively prevent rehospitalizations 
for HF is ongoing. The 2012 MUSIC study64 was a mul-
ticentre, non-randomized trial to validate a multiparam-
eter algorithm in an external multisensor monitoring 
system to predict impending acute HF decompensation 
in 543 patients with HF with reduced ejection fraction. 
Algorithm performance met the prespecified end point 
with 63% sensitivity and 92% specificity for the detection 
of HF events.

Numerous monitoring devices that use machine 
learning technology have been developed to detect 
ventricular arrhythmias and impending sudden car-
diac arrest. The design of the 100Plus Emergency watch 
(formerly the iBeat Heart Watch) involves a closed-loop 
system that uses machine learning algorithms to moni-
tor signals detected from a dedicated watch, which then 
automatically contacts emergency services if the wearer 
does not respond to a notification within 10 s (ref.65). 
Machine learning technology (‘deep learning’)60 has also 
been shown to improve the performance of shock advice 
algorithms in an automated external defibrillator66 to 
predict the onset of ventricular arrhythmias with the  
use of an artificial neural network67 and to predict  
the onset of sudden cardiac arrest within 72 h by incor-
porating heart rate variability parameters with vital sign 
data68. A system that can warn patients of an impending 
life-threatening cardiac event, even if only by several 
minutes, will greatly increase the availability and efficacy 
of a bystander or emergency medical response67.

Pathophysiological insights
The application of machine learning to continuous 
biosensor data is beginning to provide insights into the 
pathophysiological mechanisms underlying numer-
ous cardiovascular conditions, such as the identifica-
tion of novel disease phenotypes that might respond 
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Fig. 3 | Traditional analytical models for ambulatory monitoring versus future 
models incorporating machine learning technology. a | Traditional systems for the 
analysis of ambulatory monitoring data rely on a limited number of biosignals and apply 
signal processing algorithms related to the rate or regularity of heart rhythm to flag a 
normal or abnormal result. The provider is then alerted to the result for management 
purposes. In a parallel pathway involving cardiac implanted electronic devices (CIEDs; 
dashed line), data analysed by the CIED can be used to deliver therapy by altering pacing 
or delivering implantable cardioverter–defibrillator therapy. b | A potential future  
model for monitoring might incorporate multiple inputs including biosignals (such as 
electrograms, haemodynamics and activity levels), patient input and clinical data,  
which are analysed by a machine learning algorithm. Deep neural networks, a type of 
machine learning technology, facilitate the classification of multiple diverse inputs even 
if traditional rules would be difficult to devise. In this scenario, deep neural networks 
receive inputs (denoted X0, X1, X2, X3 and Xn) and use hidden nodes (denoted h0, h1, h2  
and hn) to classify them into actionable outputs (denoted y0 and y1). This model can be 
tailored to the patient and the type of sensor available. Given that many ambulatory 
devices are likely to be patient-driven, data will be directly sent to the patient. Additional 
infrastructure is needed to inform health-care providers of actionable diagnoses138.  
AF, atrial fibrillation; EMR, electronic medical record.
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differentially to therapy. Novel immune phenotypes 
for pulmonary arterial hypertension were identified by 
unsupervised machine learning analysis of a proteomic 
panel including 48 cytokines and chemokines from 
whole-blood samples69. The investigators identified 
four clusters independent of WHO-defined pulmonary 
arterial hypertension subtypes, which showed distinct 
immune profiles and predicted a 5-year transplant-free 
survival of 47.6% in the highest-risk cluster and 82.4% 
in the lowest-risk cluster. A machine learning-based 
cluster analysis of echocardiogram data from patients 
in the TOPCAT trial revealed three novel phenotypes 
of HF and preserved ejection fraction with distinct 
clinical characteristics and long-term outcomes70. In a 
study involving 44,886 patients with HF with reduced 
ejection fraction from the Swedish HF Registry, the use 
of machine learning to analyse demographic, clinical 
and laboratory data resulted in a random forest-based 
model that predicted 1-year survival with a C statistic of  
0.83 (ref.71). Cluster analysis led to the identification  
of four distinct phenotypes of HF with reduced ejection 
fraction that differed in terms of outcomes and response 
to therapeutics, highlighting the role of such novel ana-
lytical strategies in increasing the effectiveness of current 
therapies.

Machine learning data have also provided mechanistic 
insights into the pathophysiology of AF. Patients with per-
sistent or paroxysmal AF show rates of response to antiar-
rhythmic medications of 40–60% and to cardiac ablation 
of 50–70%72. Data from continuous ECGs show that cur-
rent clinical classifications poorly reflect the true temporal 
persistence of AF4. Additional studies could identify AF 
patterns or other physiological phenotypes in patients 
with ‘less advanced’ persistent AF in whom pulmonary 
vein isolation alone might be effective, or conversely those 
with ‘more advanced’ paroxysmal AF in whom pulmo-
nary vein isolation might be less effective. Patients could 
thus be stratified for treatment according to newly rec-
ognized patterns of AF (that is, staccato versus legato)73 
or by incorporating haemodynamic or clinical data.  
A 2019 proof-of-concept study showed that machine learn-
ing trained on daily AF burden from continuous CIED 
tracings revealed signatures with incremental prognostic 
value for the risk of stroke beyond the CHA2DS2–VASc 
score74. Patients with HF and arrhythmias could thus show 
differing prognosis depending on arrhythmia burden75. 
Therefore, although in the near future digital health plat-
forms are unlikely to provide ‘precision medicine’ at the 
granular level of individualizing therapy according to 
genotype, such platforms might still provide the oppor-
tunity for personalized care on the basis of deep patient  
phenotyping to provide novel disease insights.

Regulatory framework and data ownership
The FDA published a discussion paper in April 2019 
describing the development, testing and regulatory over-
sight for machine learning approaches between the stages 
of premarketing and postmarketing performance76. In 
general, a desirable system should accurately identify and 
separate data indicative of urgent or non-urgent clini-
cal states. In the absence of such a system, all biosensor 
data that meet prescribed cut-off points, such as extreme 

bradycardia or tachycardia, are flagged and the health-care 
provider is alerted. This FDA guidance allows device 
manufacturers to invest in the development of models 
with a lower-risk pathway to implementation and is  
intended to increase clinician–patient interactions and 
promote wellness. However, a drawback of applying tra-
ditional regulatory processes to rapidly evolving devices 
is that machine learning algorithms are typically ‘frozen’, 
with no further changes permitted, when a ‘software as a 
medical device’ (SaMD) application is submitted (defined 
as software that is intended to be used for medical pur-
poses that performs these tasks without being part of 
a hardware medical device)76. This process limits the 
opportunity to approve self-learning algorithms, which 
would ultimately differ from the submitted version, 
and this limitation is amplified by the inevitable time 
between receiving trial data and approving the data for 
use in patients. One potential solution could be to submit 
several versions of a device for approval, including a base 
case for the most validated primary labelling indication, 
plus alternatives with preliminary data for secondary 
labelling indications. Another approach is to approve a 
‘snapshot’ of the SaMD self-learning algorithms asso-
ciated with a registry, which is similar to postmarket-
ing studies for devices and drugs that require repeated  
evaluation at predetermined intervals.

Databases for monitoring systems
Development and training of algorithms requires 
gold-standard data (often termed a ‘ground truth’), 
yet such data can be difficult to obtain in patients, 
which complicates the regulatory and clinical path-
way. Biosignals are typically complex, non-linear, 
high-dimensional (comprising many variables) and 
dynamic. High-quality labelled datasets are scarce both 
for novel biosignals such as ballistocardiograms and for 
well-established biosignals such as thoracic impedance, 
energy expenditure or ECGs measured from atypical 
locations. Although new datasets can be created for 
such signals, the accuracy of the sets must be validated 
de novo. Bias is introduced whenever humans interact 
with data, which should be considered when scalable 
systems are being designed. One ideal solution would 
be the development of curated databases with specific 
biosignal data streams that are labelled by adjudicated 
outcomes and tailored to each use77. Although stand-
ardized databases such as Physionet have been useful 
for testing algorithms for research78, these databases 
are small and might not include data from novel bio-
sensors. The plethora of commercially available health 
monitoring devices has facilitated the generation of large 
proprietary datasets, yet these databases are not always 
transparent or available for validation33. Therefore, the 
regulatory pathway might require several clinical tests 
with prototypes in each class of device or algorithm, 
and multiple well-curated datasets. Device manufac-
turers should demonstrate that emerging devices can be 
operated by untrained users to acquire recordings that 
will perform well with their systems, including analysis 
of human factors that can bias the results and analyses 
specific to their algorithms. Therefore, although stand-
ardization of novel biosensors across manufacturers is 
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ultimately desirable, this goal might need to be deferred 
until technologies become more mature.

Patient-centred data access
Regulatory agencies in the USA, including the FDA, 
and patient advocacy groups have unanimously taken 
the position that patients must be empowered in their 
relationship with health-care providers and have access 
to their data79. Meaningful use criteria for EMRs require 
data sharing through patient access portals, yet such data  
might be difficult for patients to interpret (Table 2). 
Historically, medical device data have been kept in data-
bases owned and maintained by industry and accessible 
by health-care providers, yet with more limited accessibil-
ity for patients. Consumer devices have shifted this land-
scape, empowering individuals to access their data from 
device companies, who then directly provide automated 
reports without having to notify a caregiver (Fig. 1).

This model introduced several potential challenges. 
Whether meaningful use criteria for EMRs apply to con-
sumer device-based data is unclear. Moreover, whether 
a health-care organization can have timely and unfet-
tered access to data ‘ordered’ then paid for by a consumer  
and then stored in devices that are also paid for by the 
consumer is unclear (Table 3).

One important additional point is that these devices 
have already been developed with use of data that argu-
ably belong to the consumer. In 2016, the Alphabet- 
owned AI company DeepMind Technologies part-
nered with health-care authorities in the UK to access 
health data without the need for patients’ permission80.  
This model introduces potential risks of a ‘services for 
data’ social media business model in which personal 

data are commoditized for sale to or by third-party 
companies. Alternatively, if medical devices and data are 
owned and paid for by consumers, an opportunity exists 
for market forces or legislation to return control to data 
owners. Device manufacturers or third parties could 
conceivably compete in providing patient-friendly data 
visualization tools, to which medical providers could 
also pay for access. This scenario has its own challenges 
and is likely to be a point of contention in coming years.

Data security
A complicated responsibility exists for data that are 
shared between users (patients, health-care providers 
and algorithm developers), data owners (health-care 
organizations, individuals and industry) and industry. 
Health-care organizations are liable for unauthorized 
access to EMRs, yet numerous privacy concerns exist 
for non-health-related mobile data. Consumer devices 
are also likely to encounter cybersecurity risks, which 
must be addressed proactively.

Data breaches, both unintentional and malicious in 
nature, have been reported by many companies that are 
now entering the health-care market, as well as diagnos-
tic companies81 and CIED manufacturers82. The techni-
cal shift to consumer-driven technology might provide 
a catalyst to standardize biosensor and data formats, and 
in turn increase security. Blockchain technology, which 
has been successfully used in financial markets and other 
industries, might have a role in patient-centred moni-
toring by tagging data ownership, providing traceability 
and enabling incentive programmes for sharing data83.

Geopolitical regulations are also in development. 
The General Data Protection Regulation was enacted in  

Table 2 | Current challenges in cardiovascular monitoring

Topic Challenges for health-care 
providers

Challenges for 
technology providers

Challenges for patients

Biosensors Limited sensors in mainstream 
practice

Need to determine 
which biosignals are the 
most promising

Enthusiastic about new technology 
but unsure which devices will 
ultimately prove to be useful

Data 
interpretation

Scepticism regarding automated 
diagnoses and a limited 
understanding of novel analytical 
algorithms. Data from large trials 
are needed

Limited knowledge of 
disease pathophysiology, 
available treatments and 
how to integrate data 
into treatment pathways

Often confused by medical jargon and 
rely on health-care providers to clarify 
results. At present, limited guidance is 
available on how to deal with results

Data privacy Less familiar with emerging 
patient-centric models than 
traditional provider-centric 
health-care models, and poor 
access to data from consumer 
devices

Poor access to curated 
patient-health databases 
and limited data 
interoperability between 
health-care silos

Poor control over protected health 
information in older provider-centric 
models, as well as limited tools to 
manage protected health information 
in new patient-centric health models. 
More guidance and options for data 
sharing and storage are needed

Clinical 
practice

Need to consider the value of 
cardiovascular monitoring, as well 
as complex medical and ethical 
issues associated with monitoring 
interventions

Clinical significance of 
findings is unknown, 
as well as a lack of new 
treatment pathways 
devised

Diagnoses might cause anxiety 
or depression, or might lead to 
unnecessary treatment. Additional 
guidance is needed to clarify findings 
from monitoring data, and treatment 
options need to be thoroughly 
explained

Literature Limited familiarity with 
engineering and computer 
science data

Limited familiarity with 
medical journals and 
latest clinical trial data

Over-reliance on media and 
internet sources of variable quality 
for latest medical news. Credible, 
patient-friendly information outlets 
and tools are needed
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Table 3 | Selected clinical studies in cardiovascular monitoring with wearable technologies

Study 
(year)

Type of study Device n Age 
(years)

Follow-up 
duration

Aim of study Major findings Ref.

LINK-HF 
multicentre 
study (2020)

Phase II, 
multicentre, 
prospective 
study

Multisensor 
chest patch 
(HealthPatch, Vital 
Connect, USA)

100 68 ± 10 3 months Use of machine 
learning algorithm 
to predict HF 
rehospitalization

Predictive accuracy of 
HealthPatch for impending 
HF rehospitalization was 
similar to that of implanted 
devices

2

Vetrovsky 
et al. 
(ongoing)

Randomized, 
controlled trial

ActiGraph watch 
(ActiGraph, USA)

200 NR 6 and 12 
months

Primary outcome 
is change in 6-min 
walking distance at 
6 months in patients 
with HFrEF or HFpEF

Ongoing 114

NEAT- 
HFpEF trial 
(2015)

Randomized, 
crossover trial

Belt with two 
kinetic activity 
monitors 
containing 
accelerometers 
(Kionix, USA)

110 69 ± 9 6 weeks Efficacy of 
isosorbide 
mononitrate in 
improving activity 
levels or exercise 
capacity

Patients with HFpEF 
who received isosorbide 
mononitrate were less 
active and did not have 
better exercise capacity 
than placebo-treated 
patients

115

Apple Heart 
study (2019)

Multicentre, 
prospective, 
single-group 
study in 50 US 
states

Apple smartphone- 
based application 
(Apple, USA) and 
ECG patch (ePatch, 
BioTelemetry Inc., 
USA)

419 
and 
297

41 ± 13 8 months AF detection Approximately 
0.52% of participants 
received irregular pulse 
notifications

7

DETECT AF 
PRO study 
(2018)

Two-centre, 
prospective 
study

Smartphone-based 
application and 
iECG (AliveCor, 
USA)

592 78 ± 13 1 year AF detection On the basis of 5 min of 
PPG heart rhythm analysis, 
the algorithm detected  
AF with sensitivity of 
91.5% and specificity  
of 99.6%

116

MATLAB 
Mobile 
platform 
study (2018)

Retrospective 
study

MATLAB Mobile 
platform (The 
MathWorks, USA)

48 NR NR Validation of the 
efficacy of an ECG 
R peak-detector 
algorithm in 
diagnosing AF on a 
mobile device

Algorithm detected 
the ECG R peak with a 
sensitivity of 99.7% and 
positive predictive rate of 
99.4%

117

MODE-AF 
study (2018)

Case–control 
study

Mechano
cardiography 
recording using 
Sony Xperia 
smartphone

150 75 ± 1 NR AF detection Smartphone-based 
mechanocardiography 
accurately discriminated 
AF from sinus rhythm 
without additional 
hardware

118

mSToPS trial 
(2018)

Randomized and 
observational 
cohort studies

Self-applied 
wearable ECG 
patch (ZioXT, 
iRhythm, USA)

2,659 72 ± 7 1 year AF detection In individuals at high risk of 
AF, immediate monitoring 
with the wearable ECG 
patch led to a higher rate 
of AF diagnosis after 
4 months than with 
delayed monitoring

119

SAFETY 
study (2018)

Multicentre, 
case–control 
study

AF detection 
devices (AliveCor, 
USA, and WatchBP, 
Microlife, 
Switzerland) and 
consumer ECG 
sensing devices 
(Polar-H7 , Polar, 
Finland, and 
Bodyguard 2, 
Firstbeat, Finland)

418 73.9 ± 6.1 NR AF detection Overall accuracy for 
detecting AF of 96.7% 
for AliveCor, 94.0% for 
WatchBP, 97.9% for 
Polar-H7 and 98.1%  
for Bodyguard 2

120

iHEART trial 
(2017)

Single-centre, 
randomized trial

KardiaMobile ECG 
monitor (AliveCor, 
USA)

262 61 ± 12 6 months AF and atrial flutter 
detection

AliveCor home monitoring 
device is beneficial for 
prompt detection of AF or 
atrial flutter recurrence 
after cardiac ablation or 
cardioversion

121
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Study 
(year)

Type of study Device n Age 
(years)

Follow-up 
duration

Aim of study Major findings Ref.

mAF App 
trial (2017)

Prospective, 
randomized trial

mAF mobile 
application

113 67 ± 11 1 year Validation of 
the use of the 
mAF application 
in improving 
patient-related 
parameters in 
patients with AF

The mAF application 
improved disease 
knowledge, quality of 
life, treatment adherence 
and anticoagulation 
satisfaction in patients 
with AF

122

Ghanbari 
et al. (2017)

Pilot study miAfib mobile 
application

10 >21 4 weeks Validation of the 
use of the miAfib 
application to  
assess daily 
symptoms in 
patients with AF

Patients regularly used the 
application to report daily 
symptoms and found the 
application easy to use

123

MOBILE- 
AF trial 
(ongoing)

Multicentre, 
randomized trial

KardiaMobile ECG 
monitor (AliveCor, 
USA)

200 NR 1 year Detection of AF 
in patients after 
cryptogenic 
stroke or transient 
ischaemic attack

Ongoing 124

REHEARSE- 
AF trial 
(2017)

Randomized, 
controlled trial

iECG (AliveCor, 
USA)

1,001 73 ± 5 1 year AF detection Regular twice-weekly 
iECG screening results 
in an almost fourfold 
increase in AF diagnosis 
compared with routine 
care

125

SMART-India 
study (2018)

Population-based 
study

iECG (AliveCor, 
USA)

2,100 >50 5 days AF screening among 
individuals in rural 
India by village 
health workers

Prevalence of AF (1.6%) is 
at least threefold higher 
than previously reported 
in India and is similar 
to rates found in North 
American and European 
studies

126

Chan et al. 
(2017)

Prospective 
study

AF detection 
devices (AliveCor, 
USA, and WatchBP, 
Microlife, 
Switzerland)

2,052 68 ± 11 5 months Comparison 
of diagnostic 
performance of two 
AF detection devices

The sensitivity for 
detecting AF was 66.7% 
for the AliveCor device 
and 83.3% for the 
Microlife device, but 
both devices had high 
specificity (>98%)

127

WEARIT-IN 
trial (2016)

Prospective, 
observational 
study

Fitbit Charge HR 
wireless activity 
wristband (Fitbit, 
USA)

50 64 24 h Evaluation of the 
accuracy of heart 
rate monitoring 
using a personal 
fitness tracker 
among hospital 
inpatients

Personal fitness tracker- 
derived heart rates were 
slightly lower than those 
derived from continuous 
ECG monitoring in a 
real-world setting

128

SEARCH-AF 
(2014)

Cross-sectional 
study

iECG (AliveCor, 
USA)

1,000 76 ± 7 NR Determination 
of efficacy and 
cost-effectiveness of 
a pharmacy- 
based community 
screening 
programme for AF 
detection using  
an iPhone ECG 
device

The automated iECG 
algorithm showed 
98.5% sensitivity and 
91.4% specificity for AF 
detection and was both 
feasible and cost-effective

129

de Asmundis 
et al. (2014)

Prospective 
study

HeartScan 
portable ECG 
monitor (Omron 
Healthcare Co., 
Japan)

625 37 ± 11 20 months Comparison of the 
diagnostic value 
of Holter ECG 
monitoring with a 
patient-activated 
event recorder 
in detecting 
arrhythmias among 
patients with 
palpitations or 
dizziness

Symptom-related 
arrhythmia was detected 
in more individuals using 
the HeartScan devices 
than the Holter monitor 
(558 versus 11 individuals)

130
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the EU in 2016 with the primary goal of giving indi-
viduals control over their personal data, and aims to  
unify the regulations within the region and provide safe-
guards to protect data, requiring all stakeholders to dis-
close data collection practices and breaches that occur. 
This regulation has become a model for privacy laws 
elsewhere and is similar in structure to the California 
Consumer Privacy Act. However, it is unclear how 
general consumer regulations will apply to or poten-
tially influence the US Health Insurance Portability 
and Accountability Act, which could also be modified 
given that it covers only a fraction of an individual’s 
health-related data84.

Real-time cardiovascular care delivery
Devices that integrate high-fidelity biosignal detec-
tion with broadband wireless connectivity and cloud 
processing could, in principle, facilitate real-time care.  

A similar landscape is rapidly developing in the automo-
tive industry with regard to the design of autonomous 
driving vehicles that apply multimodal, ultrafast fusion 
algorithms to multiple data streams that can provide an 
immediate response. To apply this technology to weara-
ble devices, collected data must interact within a rapidly 
changing clinical context, which has already occurred  
for ICD therapy for tachyarrhythmia or pacing technol-
ogy for bradycardia85. However, this technology is less 
developed for other domains such as AF management 
and HF or blood-pressure monitoring and devices that 
require multimodal data. Several clinical studies of 
mobile and wearable device platforms are summarized 
in Table 3.

One early model is the currently available MCOT 
system for arrhythmia monitoring. The MCOT system 
includes ECG sensors and a device that automatically 
transmits data to a central analysis hub for annotation 

Study 
(year)

Type of study Device n Age 
(years)

Follow-up 
duration

Aim of study Major findings Ref.

Kearley 
et al. (2014)

Prospective 
study

HeartScan 
portable ECG 
monitor (Omron 
Healthcare 
Co., Japan) 
and WatchBP 
(Microlife, 
Switzerland)

1,000 79.7 
(75.1–99.8)

17 months Assessment of 
performance of 
a blood-pressure 
monitor and two 
single-lead ECG 
devices for the 
detection of AF

The WatchBP device 
was more specific for 
identifying AF, and thus a 
better triage test than the 
single-lead ECG monitors 
(89.7% versus 78.3%)

131

Weisel et al. 
(2014)

Observational 
study

Blood pressure 
monitor (Omron 
Healthcare 
Co., Japan) 
and WatchBP 
(Microlife, 
Switzerland)

199 74 
(50–100)

NR Comparison of two 
blood-pressure 
monitors in 
detecting AF among 
general cardiology 
patients

The specificity of both 
devices was acceptable, 
but only the WatchBP had 
a sensitivity that was high 
enough to be used for 
AF screening in clinical 
practice

132

Lau et al. 
(2013)

Cross-sectional 
study

iECG (AliveCor, 
USA)

109 ≥65 NR AF detection Overall accuracy of 97% in 
both the learning set and 
the validation set

133

Kaleschke 
et al. (2019)

Single-blind, 
prospective 
study

HeartScan 
portable ECG 
monitor (Omron 
Healthcare Co., 
Japan)

508 61 ± 15 8 months Evaluation of the 
diagnostic accuracy 
of a leadless, 
patient-operated 
ECG device versus 
a standard 12-lead 
ECG

Patient-operated 
ECG device detected 
arrhythmias with higher 
accuracy than standard 
ECG

134

Doliwa et al. 
(2009)

Prospective 
study

Zenicor-ECG 
(Zenicor Medical 
Systems, Sweden)

606 64 (43–87) 1 month Evaluation of the 
sensitivity and 
specificity of a 
thumb ECG device 
in diagnosing AF

The thumb ECG device 
correctly diagnosed AF 
in 96% of cases and sinus 
rhythm in 92% of cases

135

Wiesel et al. 
(2009)

Observational 
study

WatchBP 
(Microlife, 
Switzerland)

405 32.3 NR Assessment of  
the sensitivity 
and specificity 
of an automatic 
oscillometric 
sphygmomanometer 
designed to detect 
AF

The device diagnosed AF 
with high sensitivity (95%) 
and specificity (86%)

136

TARGET- 
HFDM trial 
(ongoing)

Randomized, 
controlled trial

Withings Go 
smartwatch (Nokia 
Health, Finland)

200 NR 6 months Mobile health 
intervention to 
improve health 
behaviours

Ongoing 137

AF, atrial fibrillation; ECG, electrocardiogram; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection 
fraction; NR, not reported; PPG, photoplethysmography.

Table 3 (cont.) | Selected clinical studies in cardiovascular monitoring with wearable technologies

www.nature.com/nrcardio

R e v i e w s

86 | February 2021 | volume 18	



and alerts the health-care provider25. The cycle time 
for this process ranges from minutes to hours. This 
approach can increase the diagnostic yield over that 
of other ambulatory ECG systems25 and has been used 
during the coronavirus disease 2019 (COVID-19) pan-
demic to monitor the QT interval in patients receiving 
hydroxychloroquine or azithromycin while simultane-
ously minimizing clinician exposure and preserving 
personal protective equipment resources86. During the 
COVID-19 pandemic, the Heart Rhythm Society (HRS) 
recommended the use of digital wearable devices to 
obtain vital signs and ECG tracings, as well as the use 
of MCOT after hospital discharge87. Furthermore, the 
HRS recommended the replacement of in-person clinic 
visits and CIED checks with telehealth consultations 
whenever feasible. These approaches are not yet recom-
mended as an ‘emergency response’ system for scenarios 
such as impending sudden cardiac arrest.

New real-time systems might lay the foundation for 
real-time data transmission and response that are coordi-
nated with emergency medical services and bystanders88. 
Early proof-of-concept systems have shown success in 
rapidly alerting bystanders and emergency medical pro-
viders to expedite first response89. In Europe, community 
volunteers can rapidly deliver automated external defi-
brillator to people experiencing sudden cardiac arrest90. 
Possible future directions include the development of a 
wireless internet of things (in which multiple devices are 
connected in their own dedicated network) for real-time 
cardiovascular care delivery. An important consideration 
is that medical care systems are not required to be fully 
automatic, unlike self-driving cars. Optimal medical sys-
tems might require only conditional autonomy, in that 
input from medical professionals and patients should be 
considered, rather than complete autonomy61. Although 
this need for conditional autonomy reduces some tech-
nical challenges, conditional autonomy also introduces 
limitations such as the need for integration with con-
temporaneous medical systems and to allow practitioner 
oversight while retaining speed of response and accuracy.

Cardiovascular monitoring guidelines
A growing number of publications support the use of 
monitoring devices in cardiovascular diagnostics and 
decision-making, including those that integrate machine 
learning technology. This rapid expansion of the evi-
dence base has coincided with increased FDA guid-
ance supporting the use of wearable devices for health 
care. Table 3 summarizes clinical studies of mobile and  
wearable device platforms.

Current monitoring strategies
Detection of subclinical AF in patients with cryptogenic 
stroke. The 2019 AHA/ACC/HRS guidelines for the 
management of AF recommend ambulatory monitoring 
to screen patients for AF and, if this is inconclusive, a car-
diac monitor should be implanted91. The CRYSTAL-AF 
trial92 showed that ECG monitoring with an insertable 
cardiac monitor was superior to conventional follow-up 
for detecting AF in patients after cryptogenic stroke. The 
EMBRACE trial93 extended these observations by show-
ing that a high burden of premature atrial beats predicted 

AF in patients with cryptogenic stroke. The long record-
ing duration of wearable ECG devices makes them desir-
able for detecting subclinical AF, although whether such 
information can influence therapeutic decisions to pre-
vent stroke is yet to be shown. Future studies should thus 
compare the accuracy and cost-effectiveness of wearable 
devices with those of traditional monitors in patients at 
risk of stroke and after stroke.

Screening for sudden cardiac arrest. Individuals at risk of 
sudden cardiac death have a diverse spectrum of pheno-
types. The 2017 AHA/ACC/HRS guidelines provided a 
class I indication for ambulatory monitoring in patients 
with palpitations, presyncope or syncope to undergo 
monitoring to detect potential ventricular arrhythmias85.  
A class IIA recommendation was indicated for patients 
with suspected long QT syndrome and to determine 
whether symptoms, including palpitations, presyn-
cope or syncope, are caused by ventricular arrhythmias. 
Ambulatory ECG monitoring was also recommended 
for patients starting certain antiarrhythmic medica-
tions (including disopyramide, dofetilide, ibutilide, pro-
cainamide or sotalol) with or without risk factors for 
torsades de pointes85. The 2014 ESC guidelines on the 
diagnosis and management of hypertrophic cardiomyop
athy recommended ambulatory ECG monitoring every 
6–12 months in patients with hypertrophic cardiomyop
athy with left atrial dilation of ≥45 mm or after septal 
reduction therapies94. The diversity of patient phenotypes 
in this group introduces challenges and might require 
non-uniform monitoring intensity between patient pop-
ulations. The current lack of infrastructure to facilitate 
actions in response to data from wearable devices might 
limit their use in detecting life-threatening arrhythmias. 
However, professional society guidelines have provided 
recommendations on the use of wearable cardioverter–
defibrillators to prevent sudden cardiac death95 and have 
called for increased transparency in monitoring data from 
CIEDs and consumer arrhythmia-monitoring devices96.

Arrhythmia screening in patients with syncope. The 
2018 ESC guidelines for the diagnosis and management 
of syncope recommend ambulatory ECG monitoring 
in patients with recurrent and unexplained syncope97. 
Depending on the frequency of events and the clini-
cal context, patients can be monitored with the use of 
implanted devices or external devices that send alerts to 
health-care providers. Devices that encompass multiple 
sensor streams, such as activity, pulse oximetry and hae-
modynamics, to track the temporal relationship between 
episodes of hypotension, posture and cardiac rhythm 
might provide pathophysiological insights in different 
populations and are currently under investigation6.

Monitoring for patients with non-arrhythmic conditions. 
The 2017 AHA guidelines and the 2017 ESC guide-
lines recommend ambulatory arrhythmia monitoring 
for various subgroups of patients with acute coronary 
syndromes, including those with left ventricular ejec-
tion fraction <40%, failed reperfusion and high risk of 
ventricular arrhythmia, and patients requiring β-blocker 
therapy adequacy assessment85,98. Similarly, a 2017 expert 
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consensus statement from the International Society for 
Holter and Noninvasive Electrocardiology and the HRS 
provided a class I recommendation for ambulatory mon-
itoring in patients with arrhythmic and non-arrhythmic 
conditions, including non-ischaemic cardiomyopathy99. 
Although these recommendations were largely instituted 
for arrhythmia detection, signals for recurrent ischaemia 
might also be derived from these data.

Fitness and health-tracking devices. In July 2016, the 
FDA issued guidance for general wellness devices such 
as activity trackers, smartwatches and other products 
intended to improve physical fitness, nutrition or other 
wellness goals99. Subsequently, in September 2019, the 
FDA issued new draft guidance for clinical support 
applications that provides diagnostic and treatment 
recommendations for physicians but not for patients76.

Emerging monitoring strategies
Screening of the general population for AF. In 2018, the 
US Preventive Services Task Force concluded that insuf-
ficient evidence is available to determine whether the 
benefits of AF screening outweigh the associated risks100. 
This conclusion was formed on the basis of the potential 
physical and psychological risks of unnecessary treat-
ment (false positives) in asymptomatic individuals aged 
≥65 years. Conversely, the 2016 ESC guidelines recom-
mend screening for AF in individuals older than 65 years 
in order to consider anticoagulation101 on the basis of 
findings from the SAFE102 and STROKESTOP103 studies, 
in which AF screening of asymptomatic individuals aged 
≥65 years and ≥75 years, respectively, was shown to be 
cost-effective. Investigators in the ongoing SCREEN-AF 
trial104 will randomly assign individuals aged ≥75 years 
to 2 weeks of ambulatory ECG monitoring with a home 
blood-pressure monitor that can automatically detect 
AF or to the standard of care, to assess the primary end 
point of AF detection.

The Apple Heart study7 enroled 419,297 partici-
pants in the USA over 8 months to ascertain whether 
a PPG-enabled device could detect AF in individuals 
without a known history of the disease. Inclusion crite-
ria included absence of self-reported AF, atrial flutter or 
oral anticoagulation use in individuals with a compati-
ble Apple smartphone and smartwatch. Overall, 2,161 
participants (0.52%) were notified of irregular rhythms 
with this technology7. In a subset of 450 enrollees who 
wore and returned clinical gold-standard ECG patches 
containing data that could be analysed, AF (≥30 s) was 
present in 34% of all participants and in 35% of par-
ticipants aged ≥65 years. The positive predictive value 
for simultaneous AF on ambulatory ECG patch mon-
itoring was 84% (95% CI 76–92%). The HUAWEI 
Heart study105, conducted by the MAFA II investigators, 
assessed the use of a wristband or wristwatch with PPG 
technology to monitor pulse rhythm in 246,541 individ-
uals. Of these individuals, 262 were notified as having 
suspected AF, including 227 who had AF confirmed by a 
gold-standard clinical device. Therefore, this wristwatch 
provided a positive predictive value of 91.6% (95% CI 
91.5–91.8%) in the subset of individuals who also had 
clinical monitoring105. The proportion of individuals 

with positive test results in both studies reflects the 
expected pretest probability of AF in a wide and rela-
tively healthy population, and can inform on the design 
of future screening trials and the best target populations 
for such a strategy.

Personalization of oral anticoagulation therapy. The 2019 
AHA/ACC/HRS guidelines for the management of AF 
emphasize that anticoagulation should not be tailored by 
the detection of AF episodes, the precise onset of AF or the 
temporal patterns of AF91. Indeed, the IMPACT-AF trial106 
showed that pill-in-the-pocket use of non-vitamin K  
oral anticoagulants on the basis of detected AF did not 
reduce bleeding or thromboembolic event rates compared 
with standard therapy in patients with an indication for 
oral anticoagulation. Furthermore, the REACT.COM 
study107 showed the feasibility of a targeted strategy of 
implantable cardiac monitor-guided intermittent admin-
istration of non-vitamin K oral anticoagulants on the 
basis of remote monitoring in low-risk AF populations. 
However, this strategy might be less effective in other 
patient populations, and the investigators did not assess 
treatment adherence among participants108.

In standard clinical practice, oral anticoagulation is 
indicated as soon as AF is detected in patients with a 
single CHA2DS2–VASc risk factor91. Emerging monitor-
ing devices might facilitate the definition of a specific 
device-detected AF threshold that warrants the initiation 
of anticoagulation therapy. In the TRENDS study109, this 
AF threshold might be an AF duration as short as 5.5 h. 
By contrast, a substudy of the ASSERT trial suggested 
a threshold duration of subclinical AF of ≥24 h (ref.110). 
Ongoing clinical trials are testing the use of oral anti-
coagulants for several proposed thresholds of AF dura-
tion. The ARTESiA trial111 is currently enrolling patients 
with AF of ≥6 min, and the NOAH trial112 is enrolling 
patients with an atrial high rate (≥170 bpm) of dura-
tion of ≥6 min. Both trials are enrolling patients with a 
CIED with an atrial lead and exclude individuals with  
a single AF episode longer than 24 h. Finally, the LOOP 
study113 is using the Reveal LINQ system to detect AF of 
≥6 min, confirmed by at least two senior cardiologists. 
The results of these and other trials will help to define the 
device-detected AF threshold that warrants the initiation 
of anticoagulation therapy.

Conclusions
Cardiovascular monitoring is poised for dramatic tech-
nological advances through developments in novel 
biosignal definition and biosensor acquisition, auto-
mated diagnosis and expert-level triage, secure data 
transmission and patient-centric disease management. 
Numerous challenges remain in ensuring that data are 
owned and fully accessible by patients, but at the same 
time allowing relevant stakeholders to access data and 
enable timely disease management. Once data security 
and the other ethical and regulatory concerns associated 
with wearable technologies are addressed, this expanded 
monitoring paradigm has the potential to revolutionize 
the cardiovascular care of ambulatory patients.
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