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Fourier transform mass spectrometry has recently been introduced into the field of metabolomics as a technique that enables the

mass separation of complex mixtures at very high resolution and with ultra high mass accuracy. Here we show that this enhanced

mass accuracy can be exploited to predict large metabolic networks ab initio, based only on the observed metabolites without

recourse to predictions based on the literature. The resulting networks are highly information-rich and clearly non-random. They

can be used to infer the chemical identity of metabolites and to obtain a global picture of the structure of cellular metabolic

networks. This represents the first reconstruction of metabolic networks based on unbiased metabolomic data and offers

a breakthrough in the systems-wide analysis of cellular metabolism.
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1. Introduction

The biological interpretation of post-genomic data-
sets depends on the ability to identify reliably the mol-
ecules that have been measured. For example,
microarray analysis depends upon the hybridization
behavior of complementary nucleotide sequences to
enable detection of individual mRNA transcripts. For
metabolomic analysis comparable means of simple
identification have not yet been described; the chemical
characterization of single molecular species being labo-
rious and not currently amenable to automation. This
has, to date, restricted the application of metabolomics
largely to fingerprinting studies that detect diagnostic
differences between samples but provide restricted bio-
logical insight (Allen et al., 2003; Goodacre et al., 2004;
Kell, 2004; Nicholson et al., 2004).

Fourier transform ion cyclotron resonance mass spec-
trometry (FT-ICR MS or simply FTMS) (Brown et al.,
2005; Zhang et al., 2005) has so far been used only in a
handful of published studies into metabolomics (Aharoni
et al., 2002; Hirai et al., 2004; Murch et al., 2004; Tohge
et al., 2005).However, the techniquehasgreatpotential as
a technology to unravel metabolomes. The extreme mass
accuracyof the technique, coupled toultrahigh resolution
of mass species means that thousands of metabolites can
be identified simultaneously without the need for chro-
matographic separations (Brown et al., 2005; Zhang
et al., 2005). The ultra high mass accuracy enables
assignment of putative chemical formulae to metabolites

since only a finite number of combinations of carbon,
nitrogen, oxygen, hydrogen, sulfur and phosphorus can
yield the same precise measured mass.

This capability to assign likely chemical formulae to a
multitude of metabolites may allow the analysis of met-
abolomes at a level comparable to microarray analysis of
the transcriptome. However, as we demonstrate in this
manuscript, as masses of metabolites increase the ability
to assign individual chemical formulae diminishes.
However, judicious analysis of the data from a given
metabolomics experiment, can go some way to resolving
this problem. This is because, in addition to offering
putative identification of formulae, ultra high mass
accuracy has the potential to identify the connectivity
between related metabolites, since chemically trans-
formed species will be related by measurable, clearly
defined mass differences. In the present study we are able
to position observed molecules uniquely and accurately
in comprehensive metabolic networks that are generated
ab initio from the measured mass peaks. Links in these
networks correspond explicitly to actual chemical reac-
tions and thus go beyond the metabolite correlation
networks used previously (Steuer et al., 2003). We show
that the ab initio metabolic networks have a highly
informative, non-random structure and can be used to
assign putative molecular identities to metabolites.
Moreover, they open up a novel perspective on the global
structure of cellular metabolism by providing the first
comprehensive experimental assessment of metabolite
connectivities, unbiased by the historical contingencies of
classical biochemistry. The topology of metabolic net-
works described to date has been inferred based upon
reactions predicted to occur within a given cell type based
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upon reactions that may be catalyzed by enzymes whose
presence is predicted through genome analysis (Arita,
2004; Ma and Zeng, 2003a, b; Pfeiffer et al., 2005). The
networks generated to date fail to take into account the
fact that enzymes need not be expressed constitutively,
nor compartmentalized in a manner allowing them to
contribute to a given sub-network. Moreover, roles of
non-enzymatic metabolite interconversions within the
cell are not accounted for, nor are roles for enzymes with
promiscuous substrate specificity. In spite of these limi-
tations, metabolic network building is an important dis-
cipline and one that will benefit greatly from the
introduction of techniques that can directly measure the
metabolites present within a cell and report upon their
connectivity. The work that we present here demon-
strates the potential of using ultra high resolution mass
spectrometry to generate such networks ab initio.

Another important implication of the present work is
the ability to construct metabolic networks for organ-
isms that have so far been outside the focus of classical
biochemistry, i.e. beyond yeast and E. coli. Indeed,
genomic information of any kind is not required for these
analyses. Construction of such ab initio networks will
form a useful basis for future system-wide comparative
studies of metabolism in a wide variety of species.

2. Materials and methods

2.1. Chemicals and standards

ATP, ADP, NAD, NADP and diminazene aceturate
(berenil) were of the highest grade available from Sigma.
Trypanothione (N1,N8 bis-glutathionylspermidine) was
from G.H. Coombs (University of Glasgow). DB75 (2,5-
bis(4-amidinophenyl)furan) was from D. Boykin (Geor-
gia State University). Pentamidine isethionate was from
Aventis (through the World Health Organisation).
Cymelarsan (melarsen oxide in solution) was from
M. Turner (University of Glasgow).

2.2. Preparation of trypanosome extracts

Bloodstream form trypanosomes (Lister 427 line)
were collected by cardiac puncture at 5�108 parasites/ml
from Wistar rats and separated from red blood cells as a
buffy coat by centrifugation at 3000g. The same parasite
line was grown in HMI-9 medium supplemented with
20% foetal calf serum to mid-log phase (8�105 para-
sites/ml) of culture medium. Parasites were then centri-
fuged at 3000g for 5 min with pellets and supernatant
then flash frozen in liquid nitrogen prior to extraction.

2.3. Mass spectrometric analysis

Fourier transform mass spectrometry was performed
as we have described previously (Tohge et al., 2005).
Briefly, cell pellets and media (300 lL) were extracted in

solvents ranging from polar (aqueous) to non-polar with
most proteins and nucleic acids removed during extrac-
tion. Extracts were stored at )80 �C. After appropriate
dilution, samples were analysed on a Bruker Daltonics
APEX III Fourier transform ion cyclotron resonance
mass spectrometer equipped with a 7.0 T superconduct-
ing magnet (Bruker Daltonics, Billerica, MA). Samples
were directly injected using electrospray ionization (ESI)
and atmospheric pressure chemical ionization (APCI) at
a flow rate of 600 lL per hour. Different sample extracts
were analyzed separately, and the processed mass spec-
tral data for each sample were combined. Sample peaks
were calibrated using internal standards with peak mass
error <1 ppm relative to the theoretical mass. Measured
masses were combined into a single table for exploration
using DISCOVAmetricsTM software.

2.4. Computational analysis

Further analyses used a combination of Microsoft
Excel, MATLAB and custom-written Perl scripts, which
are available from the authors upon request. The degree
distributions in figure 1A were calculated from the ab
initio networks by counting how often a particular
‘‘commonly observed’’ mass difference or a certain ‘‘bio-
chemical reaction’’ mass difference occurred in the net-
work. The mass differences were then ranked by their
number of occurrences and plotted in that order. The
degrees in figure 1B were obtained by counting the num-
ber of mass pairs each observed mass was involved in, i.e.
its number of edges in the undirected ab initio networks.

3. Results and discussion

3.1. Mass precision and resolution of FTMS

We started our study by analyzing a mixture of stan-
dard chemicals, including ATP, ADP, NAD, NADP,
glutathione and a number of trypanocidal drugs impor-
tant to our research. For the 13 standards that were
detected in our sample, the average mass accuracy was
0.783 ppm (maximum 2.47 ppm; table 1). As we detect
masses between 100 and 1500 atomic mass units, this
resolution is sufficient to discriminate at least 50,000
molecular species, even when we assume that many of
them will be represented by several peaks (isotope peaks
and ion adducts). Indeed, for most of our standard mol-
ecules, single and double 13C peaks were detected in the
expected proportions, as were a large number of minor
contaminants, confirming the high sensitivity of the
method.

3.2. FTMS analysis of a parasitic protozoan,
Trypanosoma brucei

We then proceeded with the analysis of metabolite
samples from Trypanosoma brucei, a protozoan parasite
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that causes the fatal disease sleeping sickness in Africa
(Barrett et al., 2003). We collected metabolic profiles for
parasites grown in vivo (in rats) and in vitro (in serum
culture) and compared these to the profiles from their
environment (rat serum and culture medium, respec-
tively). As a parasite, T. brucei has a drastically
streamlined set of metabolic enzymes, making it partic-
ularly suitable for pioneering studies in metabolomics.
At the same time, metabolic enzymes represent key
targets for drugs used in treating sleeping sickness, and
new targets are urgently required (Butler, 2005).

Excluding 13C isotope peaks and common ion ad-
ducts, a total of 399 masses were identified from rat-
derived trypanosomes, while for in vitro grown cells the
total number was 262. Of these, about 30% could be
matched to putative identities in the chemical database
PubChem (http://www.pubchem.ncbi.nlm.nih.gov/).
These matches offer reasonable certainty regarding the
empirical formula (matches to two alternative empirical

formulae within 2 ppm are rare) although mass alone
does not allow discrimination of chemical connectivity
of atoms within the molecules.

3.3. Generation of ab initio metabolic networks

A majority of masses in our sample did not match to
any known compound. This is due to the prevailing lack
of knowledge about the total complexity of the metab-
olome of T. brucei and most other biological species,
rather than limitations of mass accuracy. We have sys-
tematically explored the accuracy requirements needed
for database matching and found that about 1–2 ppm is
sufficient for a unique hit in PubChem, which in the
release used contained 72,634 unique empirical formulae
(table 2). However, making use of the high mass accu-
racy of Fourier transform mass spectrometry, and par-
ticularly studying mass–mass differences, has allowed
us here to make significant progress in surmounting
this problem. Two approaches were used to generate
ab initio reconstructions of metabolic networks from the
available data:

(1) In a completely untargeted approach, all pairwise
mass–mass differences were calculated. Considering
all possible pairwise differences makes the approach
unbiased, although not all molecules are related in a
chemically feasible way. Thus, in a next step fre-
quently occurring mass differences were identified
(defined as clusters of more than five pairwise dis-
tances that differed by less than 0.0001 mass units).
Such commonly observed distances are very unlikely
to be observed by chance and can hence be expected
to have a chemical basis. Compounds whose masses
differed by one of these commonly observed masses
were assumed to be related by a chemical transfor-
mation.

(2) In the first approach above we have focused on all
measured relationships within the dataset. This
totally unbiased approach will not distinguish be-
tween metabolic transformations within the cell and

Figure 1. Zipf plots of the reaction (A) and metabolite (B) degrees in the ab initio metabolic network of Trypanosoma brucei. In (A), the red dots

correspond to the reactions inferred automatically from the mass–mass differences, while the green dots are based on a pre-defined set of common

biochemical reactions. The fitted lines are based on power-law (A) and exponential distributions (B), respectively.

Table 1

Molecular standards detected by FTMS

Compound Predicted

mass

Measured

mass

ppm Average

S/N

Glutathione 307.083807 307.0835 1 438

Oxidized glutathione 612.152 612.1516 1 328

Trypanothione 723.3044 723.3036 1 16

Oxidized trypanothione 721.2887 721.2889 0 281

NADP 743.075458 743.0766 2 442

NAD 663.109125 663.1096 1 1229

ATP 506.99575 506.9945 2 289

ADP 427.029418 427.0293 0 118

AMP 347.063086 347.0633 1 14

Berenil 281.138894 281.139 0 9

Pentamidine 340.1899 340.1897 1 67

DB75 304.132411 304.1325 0 115

Melarsen oxide 292.00538 292.0053 0 113

Several of the standards were detected in multiple ionization modes.

Only the measured mass with the strongest signal is listed in these

cases. Average S/N is the average signal-to-noise ratio over all ioni-

zation modes that gave a detectable signal.
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chemical alterations induced during sample prepa-
ration and analysis by FTMS. As the full inventory
of FTMS based artifacts becomes clear it will be-
come possible to filter data for as many of these as
possible. To work towards this approach we adop-
ted a second, semi-targeted approach in which
the observed pairwise mass–mass differences were
compared to a list of 83 mass differences
corresponding to common metabolic reactions
compiled from biochemistry textbooks (table 3).

Here, metabolites whose mass differed by the ex-
pected amount (within 2 ppm) were considered to be
related by the corresponding metabolic transfor-
mation.

This approach is related to the technique used for the
de novo sequencing of proteins using tandem mass
spectrometry (in which masses are related by the mas-
ses of individual amino acids). The task in proteomics
is facilitated by the linear nature of the examined

Table 2

Average number of matching empirical formulae identified in PubChem at various mass accuracies, averaging over all masses in the present
release of the database (mass range 2–9200, median mass 438)

ppm 0.01 0.02 0.05 0.08 0.1 0.2 0.5 0.8 1 2 5 10 20

Hits 1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.06 1.09 1.32 2.03 3.40 6.08

Table 3

Common metabolic transformations and corresponding formulae

Alanine C3H5NO Guanosine 5-diphosphate (–H2O) C10H13N5O10P2

Arginine C6H12N4O Guanosine 5-monophosphate (–H2O) C10H12N5O7P

Asparagine C4H6N2O2 Guanine (–H) C5H4N5O

Aspartic acid C4H5NO3 Guanosine (–H2O) C10H11N5O4

Cysteine C3H5NOS Deoxythymidine 5¢-diphosphate (–H2O) C10H14N2O10P2

Cystine C6H10N2O3S2 Thymidine (–H2O) C10H12N2O4

Glutamic acid C5H7NO3 Thymine (–H) C5H5N2O2

Glutamine C5H8N2O2 Thymidine 5¢-monophosphate (–H2O) C10H13N2O7P

Glycine C2H3NO Uridine 5¢-diphosphate (–H2O) C9H12N2O11P2

Histidine C6H7N3O Uridine 5¢-monophosphate (–H2O) C9H11N2O8P

Isoleucine C6H11NO Uracil (–H) C4H3N2O2

Leucine C6H11NO Uridine (–H2O) C9H10N2O5

Lysine C6H12N2O Acetylation (–H) C2H3O2

Methionine C5H9NOS Acetylation (–H2O) C2H2O

Phenylalanine C9H9NO C2H2 C2H2

Proline C5H7NO Carboxylation CO2

Serine C3H5NO2 CHO2 CHO2

Threonine C4H7NO2 Condensation/dehydration H2O

Tryptophan C11H10N2O Diphosphate H3O6P2

Tyrosine C9H9NO2 Ethyl addition (–H2O) C2H4

Valine C5H9NO Formic Acid (–H2O) CO

Acetotacetate (–H2O) C4H4O2 Glyoxylate (–H2O) C2O2

Acetone (–H) C3H5O Hydrogenation/dehydrogenation H2

Adenylate (–H2O) C10H12N5O6P Hydroxylation (–H) O

Biotinyl (–H) C10H15N2O3S Inorganic phosphate P

Biotinyl (–H2O) C10H14N2O2S Ketol group (–H2O) C2H2O

Carbamoyl P transfer (–H2PO4) CH2ON Methanol (–H2O) CH2

Co-enzyme A (–H) C21H34N7O16P3S Phosphate HPO3

Co-enzyme A (–H2O) C21H33N7O15P3S Primary amine NH2

Glutathione (–H2O) C10H15N3O5S Pyrophosphate PP

Isoprene addition (–H) C5H7 Secondary amine NH

Malonyl group (–H2O) C3H2O3 Sulfate (–H2O) SO3

Palmitoylation (–H2O) C16H30O Tertiary amine N

Pyridoxal phosphate (–H2O) C8H8NO5P C6H10O5 C6H10O5

Urea addition (–H) CH3N2O C6H10O6 C6H10O6

Adenine (–H) C5H4N5 D-ribose (–H2O) (ribosylation) C5H8O4

Adenosine (–H2O) C10H11N5O3 Disaccharide (–H2O) C12H20O11

Adenosine 5¢-diphosphate (–H2O) C10H13N5O9P2 Glucose-N-phosphate (–H2O) C6H11O8P

Adenosine 5¢-monophosphate (–H2O) C10H12N5O6P Glucuronic acid (–H2O) C6H8O6

Cytidine 5¢-diphosphate (–H2O) C9H13N3O10P2 Monosaccharide (–H2O) C6H10O5

Cytidine 5¢-monophsophate (–H2O) C9H12N3O7P Trisaccharide (–H2O) C18H30O15

Cytosine (–H) C4H4N3O
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peptides and the well-defined set of possible building
blocks, however the same principle, but using a more
extensive set of transformation masses, should be
informative in mass spectrometry as applied to
metabolomics.

Table 4 summarizes the results of the first approach.
About 25,370 mass–mass differences corresponded to
one of 2472 ‘‘commonly occurring’’ mass differences.
This is a dramatic excess over the number observed for
random lists of masses (uniformly distributed between
100 and 1500 atomic mass units) shown in the same
table. Thus, there are an astonishing 25,000 or more
relationships between observed masses that can be
explained by ab initio predicted chemical transforma-
tions. The most common of them are listed in table 4
and assigned to the most likely underlying chemical
difference (including isotope variability). It is clear that
not all of these enriched mass–mass differences will
correspond to a catalyzed metabolic (or even chemical)
reaction. Some of them may just be artificial fragmen-
tation products, but just as in proteomics applications,
where such artificial fragments are systematically
exploited for peptide identification, they will also be
informative in the case of metabolomics. More impor-
tantly, such artifacts provide an excellent ‘‘gold stan-
dard’’ for the evaluation of our approach: we know,
for example, that isotope peaks should exist in our
dataset, so re-discovering the corresponding patterns in
an unsupervised manner demonstrates the general
feasibility of the approach.

The semi-targeted approach confirms the results of
the untargeted network reconstruction, and largely
overcomes the issue of mass spectrometric artifacts. In
this case, 1438 mass differences correspond to one of the
major biochemical transformations, compared to 271
(±25) for a random list of masses of the same size. The
most common mass differences correspond to hydroge-
nation/dehydrogenation (H2; 284 occurrences), ethylene
addition (C2H2; 211), ethyl addition (C2H4; 191),
hydroxylation (O; 84) and palmitoylation (C16H30O;
57), all of them expected to be abundant in our mem-
brane rich samples, based on general biochemical
knowledge.

To determine the importance of mass accuracy for
the ability of reconstructing metabolic networks, we
added random noise of various size to the observed
masses, i.e. a uniformly distributed random number
from an interval indicated in the table was added or
subtracted from each observed mass. We then per-
formed the same untargeted analysis as before on these
noisy data (table 5). The results show clearly that the
reconstructed networks are robust against noise of this
type – provided the accuracy of mass identification is
ultra high. This analysis indicates that when mass
accuracy falls to a number greater than 10 ppm in the
order of 50% of the inferable transformations are lost.
High accuracy spectra are essential for this approach to
work.

Further confirmation of the non-random nature of the
observed mass–mass difference network is provided by

Table 4

Comparison of the most common mass differences in observed and random metabolite networks

Observed metabolite network Random metabolite network

Mass

difference

Frequency Formula Exact mass Mass

difference

Frequency

2.01595 382 H2 2.01565 92.70975 7

21.98312 326 Na–H 21.98194 205.30491 7

1.00320 284 13C isotope 1.0033 52.82462 7

24.00000 260 C2 24 193.60014 6

26.01629 237 C2H2 26.01565 243.29213 6

28.03188 218 C2H4 28.03130 254.75355 6

4.03201 197 H4 4.03130 6.46724 6

1.01259 164 H2)
13C isotope 1.01229 52.69339 6

3.01910 148 H2+
13C isotope 3.01900 21.98649 6

22.99695 140 C2)
13C isotope 22.99664 22.12482 6

Total 25,370 (in 2472 clusters

of >5 members)

Total 115±22 (in 19±4 clusters

of >5 members)

Table 5

Stability of network inference against noise

Real data 1 ppm 2 ppm 5 ppm 10 ppm 20 ppm 100 1000 10,000 Random

Clusters 2472 2254 2040 1660 1365 1113 470 53 35 19

Explained distances 25,370 22,988 21,094 16,966 13,213 10,003 3261 328 213 115

% Excess over random 100 90.5 83.1 66.7 51.9 39.2 12.5 0.8 0.4 0

Uniformly distributed random noise of the indicated size was added to all observed masses and the network reconstructed as described in the text.
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an analysis of the frequency of the various reactions. As
shown in figure 1A, the number of times a specific mass
difference is observed depends on its rank in the form of a
power-law. This means that there are many rare reac-
tions, but a few principal reactions/mass differences
account for most chemical interconversions visible
within the total dataset. Such a distribution would not be
expected in a random network, but has been reported as
an organizing principle for various metabolic networks
(Jeong et al., 2000; Wagner and Fell, 2001; Ravasz et al.,
2002; Almaas et al., 2004). These previous studies were
generally based on a select series of enzymes and
metabolites reported in the basic biochemical literature,
or from genome-wide analysis of enzymatic reactions
putatively present in an organism, superimposed on this
historical view of metabolism (Edwards et al., 2001;
Schilling et al., 2002; Forster et al., 2003; Covert et al.,
2004). In striking contrast, the networks that we have
identified, based on mass spectrometric data, reveal the
potential of generating network connectivity ‘‘on the fly’’
from experimental results, without biasing outcomes
based on well-established, but clearly incomplete, bio-
chemical pathways. Interestingly, the degree distribution
of the observed metabolites (i.e. the number of metabolic
reactions in which each is predicted to participate) does
not fit a power-law distribution in our data, but rather
follows an exponential distribution with only slightly
heavy tails (figure 1B). This is not consistent with those
earlier reports (Jeong et al., 2000; Wagner and Fell,
2001) describing network properties extrapolated from
enzymatic pathways predicted from whole-organism
genome sequence information. It is, however, important
to reiterate that we only reliably measure metabolites in
the range 100–1500 atomic mass units. Thus, many
central metabolites (e.g. water, CO2, pyruvate, gluta-
mate) fall outside the mass window that we explore. This
results in an absence of numerous major network
‘‘hubs’’, and this influences the overall topology of the
network and in particular removes the corresponding
heavy tails in the degree distribution. In contrast, when
examined from the point-of-view of metabolic transfor-
mations, which will take many important ‘‘hub metab-
olites’’ into account implicitly, the degree distribution is
clearly following a power-law, although in the case pre-
sented here this distribution is also influenced by other
chemical relationships that result from our mass spec-
trometric analysis. A future challenge will be to refine
networks to include maximal information derived from
the metabolome, while minimizing interference related to
technical effects associated with sample preparation and
analysis. In spite of this, the ab initiometabolic networks
described here are in good agreement with the in silico
networks derived through interpretation of genome
content and biochemical literature. Technical refine-
ments and variations in experimental design will cer-
tainly lead to further improvements in the amount and
quality of information that can be used to build networks

ab initio using Fourier transformmass spectrometry. Our
results indicate that the effort required for these technical
refinements is clearly warranted by the potential of the
method to provide comprehensive and relatively unbi-
ased overviews of the cellular metabolome.

Figure 2 shows an extract of the metabolic network,
focusing on compounds that are greatly enriched in
parasites compared to their environment. The same
diagram also demonstrates the ease with which predicted
transformations may be visualized within the network.
Mass 809.5939 was predicted by database matching to be
a choline phospholipid with four unsaturated bonds and
38 carbons in the lipid side chains. While mass alone
cannot provide the identity of such a lipid, 1-stearoyl,
2-arachidonoyl-phosphatidylcholine (calculated mass =
809.5935) falls within the limits determined for these
FTMS experiments. Moreover, a phosphocholine of this
class has previously been identified as predominant in the
T. brucei phospholipidome (Patnaik et al., 1993) making
this a very like candidate. This identification was then
used to predict the molecular identity of the connected
metabolites, and all but one of the network’s 44 members
were successfully assigned putative formulae in this way.
All of them are phospholipids with various side chain
compositions and different headgroups, which again
conforms to expectations, as the parasite samples are
rich in membrane material. This identification is con-
firmed by the clear pattern that emerges when one looks
for metabolites whose mass-to-mass difference can be
explained by side-chain elongation and side-chain
(de-)saturation. Figure 3 shows the resulting pattern. It
demonstrates that the abundance of the predicted
phospholipid masses follows a clear trend, with higher
degrees of unsaturation at larger side chain length. This
is a well-known phenomenon supports our mass identi-
fication. Even stronger support is obtained when we
compare the abundance of masses in parasites and
serum. Three ether phospholipids stand out as dramati-
cally enriched in parasites compared to their environ-
ment. This overabundance is in perfect agreement with
reports in the literature (Patnaik et al., 1993). Figure 3
also shows that many of the putative phospholipid
masses correlate with mass 809.5939 in abundance in the
parasite samples. This indicates that correlations in ion
abundance can also be used as indicators of connectivity,
although at a coarser level than provided by the mass–
mass differences. In a large-scale system perturbation
study, such correlations could thus be an important piece
of complementary information.

3.4. Metabolic fragment analysis

Mass spectrometry fails to resolve structural isomers.
Thus in spite of the high likelihood that our assigned
chemical identification is robust (based on both exact
mass calculation and metabolic connectivity) we have
sought additional means of assigning an identity. The
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Figure 2. Extract of the ab initio metabolic network of Trypanosoma brucei. For clarity we show only metabolites that correlate in abundance

with mass 809.5939, an unsaturated phosphatidyl choline phospholipid that is part of an enriched metabolite family in the parasite. The inset

(A) highlights the first generation of transformations originating from mass 809.5939, the main figure (B) shows the entire subgraph, which

connects more than 60% of the most strongly correlating masses (Pearson correlation r>0.85). Assigned molecular identities for each metabolite

are indicated in a shorthand notation, where Cn:m stands for a phosphatidyl choline with n carbon atoms in the side chains and m unsaturated

bonds. Alternative headgroups are explicitly mentioned in the labels. Shades of green indicate the abundance of the metabolites in the parasite.

The graph layout was generated using aiSee (http://www.aisee.com).
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gold standard in determining positive identification
involves targeted fragmentation of selected masses fol-
lowed by a second mass spectrometry step. This tandem
mass spectrometry process is, however, itself challenging
and requires additional sample preparation and techni-
cal development.

Careful analysis of the FTMS dataset offers an
additional route to add supporting data towards
assignments, based on what we call ‘‘metabolic fragment
analysis’’. The technique is based solely on peaks
derived from the dataset. Most biomolecules (including
phospholipids) are formed by the condensation of
building blocks and these may also be catabolized back
to the building blocks by hydrolysis. For phospholipids,
these building blocks will comprise the side chain fatty
acids and the polar head groups. Hence, we searched for
all triples of masses that could be explained by con-

densation/hydrolysis reactions (i.e. mass1 + mass2 =
mass3 + massH2O, at 2 ppm accuracy). About 581
masses (about half of all those detected) are putative
condensation/hydrolysis products of other masses
within the dataset, with a total of 1637 inferred reac-
tions. Fifteen masses are putatively involved in at least
20 condensations each, and four masses in more than 30
each (table 6). With the exception of phosphocholine
these all have masses in a narrow range between 280 and
370, and most of them are putative sidechain fatty acids.
Other common ‘‘metabolic fragments’’ are choline
phosphate (183.0661) with 26, glycerylphosphorylcho-
line (257.1029) with 15, and palmitoyl lysolecithin
(495.3316) with 17 condensation reactions. This infor-
mation can be used to infer the side chain composition
of the phospholipids. For example, mass 727.5509, the
most abundant phospholipid of the trypanosome pellet,

Figure 3. Abundance profile of various phospholipid classes. Diacyl cholines, alkylacyl cholines and alkylacyl ethanolamines are shown. The

number of unsaturated bonds increases from left to right, the number of carbons in the side chains from top to bottom. The upper left

corresponds to a saturated C16, C16 phospholipid, the bottom right to an 8-fold unsaturated C22, C22 molecule. The left column shows the

absolute signal strength in trypanosomes in vivo. The right column shows the relative abdundance of the lipids compared to their concentration in

the serum supernatant. Shades of blue indicate depletion in the parasites, yellow and red enrichment. One star denotes that the difference is

significant at p<0.05 (two-tailed t-test), two stars indicate that the same significant difference is also seen in vitro. A bar highlights masses that

correlate in abundance with mass 809.5939. All three lipid classes show the same overall trends, with higher unsaturation at higher chain length.

The highest abundance is found for three types of alkylacyl lipids, which can be putatively identified as C18:2,C18:0 alkylacyl phosphatidyl

choline, C18:2, C18:0 alk-1-enylacyl phosphatidyl choline, and C18:2, C18:0 alk-1-enylacyl phosphatidyl ethanolamine.
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is a putative condensation product of masses 465.3207
and 280.2395. The latter corresponds to linoleic
acid, leading to the prediction that 727.5509 is an 18:0
alk-1-enyl,18:2 acyl phosphatidylethanolamine. The
single previous study (Patnaik et al., 1993) aimed spe-
cifically at characterizing the molecular species of phos-
pholipids in trypanosomes also revealed that 18:0, 18:2
species were by far the most abundant in trypanosomes.

4. Concluding remarks

Our results indicate that the unprecedented mass
accuracy of Fourier transform mass spectrometry can
lead to qualitative, rather than merely quantitative,
advances in the study of cellular metabolism. Issues of
sample preparation (e.g. loss of labile metabolites) and
metabolite detection (e.g. ion suppression), which cur-
rently restrict the numbers of metabolite visible in
Fourier transform mass spectrometry, remain a chal-
lenge (as discussed in Aharoni et al., 2002; Tohge et al.,
2005). However, our study shows that the technology,
coupled to advances in bioinformatic data interpreta-
tion, has great potential to allow unbiased and com-
prehensive studies of complex metabolic systems.
Increasing numbers of metabolites should become visi-
ble as sample preparation parameters are optimized, and
further advances in ultra-high resolution mass spec-
trometry promise to lead to substantial increases in the
quantity of high resolution mass spectrometry data
available for analysis (see for example Olsen et al.,
2005). This will have a dramatic impact on the way such
systems will be perceived and analyzed by biologists.
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