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ABSTRACT
Chloranthus fortunei (A. Gray) Solms-Laub. is a perennial herb in a basal angiosperm family
Chloranthaceae. Here, we reported the complete plastid genome of C. fortunei using Illumina short-
read data. The total genome size was 157,063 bp in length, containing 79 protein-coding genes, 30
tRNA genes, and four rRNA genes. The gene content and order were consistent with previously
reported Chloranthus plastid genomes. The overall GC content of the C. fortunei plastid genome was
39.0%. In the phylogenetic result, genus Chloranthus was monophyletic and divided into two sub-
clades: C. japonicusþC. angustifoliusþC. fortunei, and C. henryiþC. spicatusþC. erectus. Our phylogenetic
result was consistent with previous phylogenetic studies, and was supported by a previously proposed
infrageneric classification of the genus Chloranthus.
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Chloranthus Swartz (Chloranthaceae) consists of two subge-
nera, subgenus Tricercandra and subg. Chloranthus, based on
androecium morphology, such as the extent of splitting in
the tripartite lobes (Kong 2000a; Kong and Chen 2000; Kong
et al. 2002). Chloranthus fortunei (A. Gray) Solms-Laub. (1869)
belongs to subg. Tricercandra, and is distributed in southern
parts of China, Korea, and Japan (Kim 2007; Xia and J�er�emie
2007). This species has been cultivated as an ornamental
herb, and also used for the Chinese folk medicine as a treat-
ment of bone fractures (Ben Cao 1999). Morphologically, C.
fortunei is very similar to C. japonicus Siebold which is widely
distributed in East Asia (Kim 2007; Xia and J�er�emie 2007);
however, C. fortunei can be distinguished from the former by
the anther position of the androecium, ploidy level, and tri-
partite androecium with long longitudinal connections (Kong
2000b; Kim 2007; Xia and J�er�emie 2007; Figure 1). Whole
plastid genomes have been widely used for molecular phylo-
genetics, species identifications, and conservation genetics
(Burke et al. 2012; Huang et al. 2014; Walker et al. 2014).
Here, we report the plastid genome of C. fortunei, which will
be useful for the conservation genetic studies of this species
as well as phylogenetic reconstructions of Chloranthus and
other basal angiosperms.

Leaf material of C. fortunei was collected from
Ongnyeobong, Geoje-si, Gyeongsangnam-do province of
South Korea (latitude 34.8455, longitude 128.6954). The vou-
cher specimen (KWNU91773) has been deposited in the
Kangwon National University Herbarium (KWNU; https://

biology.kangwon.ac.kr/, Ki-Oug Yoo, yooko@kangwon.ac.kr).
Total genomic DNA was extracted from silica gel dried leaves
using the Exgene Plant SV Midi Kit (Geneall Biotechnology,
Seoul, South Korea). Paired-end reads of 2� 150 bp were
generated using an Illumina HiSeq Xten (Theragen Bio Co.
Ltd., Suwon, South Korea). A total of 2.26GB raw reads of
150 bp were generated, of which 146,514 paired-end reads
were extracted as plastid genome sequences using a refer-
ence genome sequence of the C. japonica plastid genome
(KP256024). Using 146,514 reads, the de novo assembly was
performed using GetOrganelle pipeline (Jin et al. 2020) with
C. japonica plastid genome as a reference, and the assembled
contig was manually confirmed using Geneious 7.1
(Biomatters Ltd, Auckland, New Zealand). The initial annota-
tion of the C. fortunei plastid genome was performed using
GeSeq (Tillich et al. 2017). After the initial annotation, puta-
tive starts, stops, and intron positions were determined by
comparison with homologous genes in previously reported
Chloranthus plastid genomes. The tRNA genes were anno-
tated using GeSeq and tRNAscan-SE (Schattner et al. 2005).
The annotated sequence was deposited in the NCBI GenBank
under accession number ON023121, and the circular map of
the C. fortunei plastid genome was drawn using the CPGview
(http://www.1kmpg.cn/cpgview/).

The genome size of the C. fortunei plastid genome was
157,063 bp, including a pair of inverted repeat (IR) regions
of 26,102 bp separated by the small single-copy (SSC) region
of 18,484 bp, and the large single-copy (LSC) region of
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86,375 bp (Figure 2). The C. fortunei plastid genome con-
tained 113 genes, 18 of which were duplicated in the IR
region, giving a total of 131 genes. The plastid genome of C.
fortunei contained 30 distinct tRNAs, seven of which were
duplicated in the IR region. Ten protein-coding genes (atpF,
ndhA, ndhB, petB, petD, rps12, rps16, rpl2, rpl16, and rpoC1)
and six tRNA genes (trnA-UGC, trnG-GCC, trnI-GAU, trnK-UUU,
trnL-UAA, and trnV-UAC) contained one intron, while two
genes (clpP, ycf3) contained two introns. A trans-spliced rps12
gene was divided into two independent transcription units
(exon 1, and exons 2–3) as described in previous studies
(Hildebrand et al. 1988; Schmitz-Linneweber et al. 2006). The
overall GC content was 39.0% in the entire genome, 37.4% in
the LSC, 43.2% in the IR, and 34.1% in the SSC regions.

Phylogenetic analysis based on 78 protein-coding genes
was performed using representative species from
Amborellales in basal angiosperms to Magnoliales in magno-
liids, and Amborella trichopoda was selected as the outgroup
(Figure 3). A total of 69,404 bp was aligned using MAFFT
(Katoh and Standley 2013). Maximum-likelihood (ML) analysis
was performed using RAxML v. 7.4.2 with 1000 bootstrap

replicates and the GTRþ IþG model (Stamatakis 2006;
Darriba et al. 2012). Our phylogenetic result was consistent
with topologies from previous studies in which all families
and orders were monophyletic (Angiosperm Phylogeny
Group 2016) (Figure 1). Within Chloranthaceae, Sarcandra gla-
bra was sister to the clade of Chloranthus with 100% boot-
strap supporting values, and the genus Chloranthus was
monophyletic as shown in previous studies (Kong et al. 2002;
Zhang et al. 2011). The three species, C. fortunei, C. angustifo-
lius, and C. japonicus of subg. Tricercandra formed a subclade,
and the subclade was sister to the other clade of subg.
Chloranthus including C. henryi, C. spicatus, and C. erectus
with 100% bootstrap supporting values (Figure 3). The pair-
wise identity of concatenated 78 protein-coding gene
sequences within the genus Chloranthus was 99.2%, and
those within both two subgenera was 99.5%, respectively.

Ethical approval

This study complies with relevant institutional, national, and inter-
national guidelines and legislations. According to the national and

Figure 1. Chloranthus fortunei. This species has a tripartite androecium with long longitudinal connections. (A) Habitat, (B) flower, and (C) the specimen deposited
in Kangwon National University Herbarium (KWNU) under the voucher no. KWNU91773. The photos of C. fortunei in field (A, B) and the voucher specimen (C) were
taken and provided by Jong-Soo Kang and Ki-Oug Yoo, respectively.
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local legislations, no specific permission was required for collecting
the species in this study, and Ki-Oug Yoo identified and deposited
the voucher specimen in the Kangwon National University
Herbarium (KWNU).
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Figure 2. The map of the Chloranthus fortunei plastid genome. The circular map of the C. fortunei plastome was drawn using the CPGview program. The map con-
sists of six circles and information about each circle is as follows: (from the center) the first circle indicates repeat distribution. The second circle indicates the tan-
dem repeats with short bars. The third circle indicates the microsatellite sequences with short bars. The fourth circle indicates the size of LSC, SSC, and IR regions.
The fifth circle indicates the GC content. The sixth circle indicates the genes having different colors based on their functions.
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