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Abstract: In this study, acrylonitrile butadiene styrene (ABS)/talc/graphene oxide/SEBS-g-MAH
(ABS/Talc/GO/SEBS-g-MAH) and acrylonitrile butadiene styrene/graphene oxide/SEBS-g-MAH
(ABS/GO/SEBS-g-MAH) composites were isolated with varying graphene oxide (0.5 to 2.0 phr) as a
filler and SEBS-g-MAH as a compatibilizer (4 to 8 phr), with an ABS:talc ratio of 90:10 by percentage.
The influences of graphene oxide and SEBS-g-MAH loading in ABS/talc composites were determined
on the mechanical and thermal properties of the composites. It was found that the incorporation of talc
reduces the stiffness of composites. The analyses of mechanical and thermal properties of composites
revealed that the inclusion of graphene oxide as a filler and SEBS-g-MAH as a compatibilizer in the
ABS polymer matrix significantly improved the mechanical and thermal properties. ABS/talc was
prepared through melt mixing to study the fusion characteristic. The mechanical properties showed
an increase of 30%, 15%, and 90% in tensile strength (TS), flexural strength (FS), and flexural modulus
(FM), respectively. The impact strength (IS) resulted in comparable properties to ABS, and it was
better than the ABS/talc composite due to the influence of talc in the composite that stiffens and
reduces the extensibility of plastic. The incorporation of GO and SEBS-g-MA also shows a relatively
higher thermal stability in both composites with and without talc. The finding of the present study
reveals that the graphene oxide and SEBS-g-MAH could be utilized as a filler and a compatibilizer in
ABS/talc composites to enhance the thermo-mechanical stability because of the superior interfacial
adhesion between the matrix and filler.

Keywords: mechanical; thermal; properties; analysis; statistics

1. Introduction

A composite can be described as a material structure that consists of two or more
distinct phases working together to attain new superior properties [1]. These phases are
referred to as the matrix and dispersed phases, where the former is more ductile. The
matrix phase is in a continuous form that supports and shares the load with the dispersion
phase. The dispersion phase is mostly stronger than the matrix phase. Thus, it is usually
identified as the reinforcing phase, which is enclosed in the matrix in a discontinuous form.
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Composites are composed of various formulations, and compositions of materials act
together to provide essential mechanical strength or stiffness for the composite. In general,
a composite material based on a matrix can be divided into ceramic matrix composite
(CMC), polymer matrix composite (PMC), and metal matrix composite (MMC) [1]. The
PMC can be further classified into thermoplastic matrix composite and thermoset matrix
composite. While on a reinforcement basis, composites can be categorized into a particulate
composite, laminate composite, and fibrous composite, which are composed of particles,
laminates, and fibers, respectively [1]. Nowadays, polymer matrix composites or polymer-
based composites are widely used due to their ease of use, and low costs of materials and
processing. PMC also shows exceptional properties, such as high specific stiffness, high
specific strength, and good resistance from corrosion, fatigue, and abrasion. However, these
qualities can only be achieved by reinforcement of polymer by a strong fibrous network
as non-reinforced polymer, and have limited strength, modulus, and impact resistance.
Unfortunately, despite all the advantages, PMC’s main drawbacks are that the polymers
exhibit a high coefficient of thermal expansion (CTE) and have a low thermal resistance.

Polymer composites are highly demanded in engineering applications, such as auto-
motive, electronics, aerospace, construction, and building industries, which require good
mechanical properties of its composite. According to [2], the advanced polymer composites’
market size can be expected to increase by USD 4.95 billion in 2024, and the growth rate for
2020 is up to 7.37%. Increasing environmental concerns shifted the global metal industry
towards the plastic industry. The types of plastics that are commonly used nowadays are
polycarbonate (PC), polypropylene (PP), polyvinyl chloride (PVC), acrylonitrile butadiene
styrene (ABS), and others. Furthermore, the usage of polymer composites in automotive
industries offers a reduction in vehicle weight, which also increases fuel efficiency and
reduces carbon dioxide emissions. For instance, due to the lightweight properties of ABS,
the utilization of bumpers, wheels, door handles, mirror covers, and emblems has increased
over the years.

Acrylonitrile butadiene styrene (ABS) is an amorphous polymer and is widely used in
engineering thermoplastics. Initially, ABS plastic was introduced with only acrylonitrile-
styrene copolymer in the 1940s. However, the limitations of properties in the copolymer
led to the addition of butadiene rubber. The incorporation of the rubber phase in the
acrylonitrile-styrene copolymer produced a well-balanced plastic with high impact strength
and ductile properties [3]. The first industrial application of ABS was in molded parts,
such as pipes and sheets. Then, in 1950, ABS was officially commercialized for domestic,
textile, toys, and fashion applications when the injection molding and graft polymerization
techniques were discovered [4]. Other than the above applications, ABS is also frequently
used in 3D printing, using additive manufacturing technology.

ABS polymers are utilized in diverse applications because of their good thermal
stability, which demonstrates high toughness and adequate stiffness. Furthermore, ABS
does not easily degrade when exposed to environmental stress and has high chemical
resistance properties. The most significant properties of ABS include low cost, ease of
fabrication with superior surface quality and stable dimension, and low CTE. Research
by [4,5] reveals that although ABS exhibits good properties, double bonds present in the
butadiene rubber phase and oxidations make the polymer prone to weathering conditions
and heat and light that will reduce the rigidity and surface quality of ABS. On those
grounds, the ABS industry depends on molecular and morphological factors to transform
the material with better properties.

Researchers and industry have initiated many approaches to enhance the mechanical
and thermal properties of ABS and reduce the cost of resin. For instance, a lot of research
on fillers such as talc [6–9] and graphene oxide (GO) [10–13], and compatibilizers such
as SEBS-g-MA [14–16], has been carried out in order to develop better processability and
properties of ABS at a lower cost. Talc is a versatile mineral, a hydrous magnesium silicate
mineral for which its properties and composition depend on the mining location. Thus,
every talc mined will have a different composition of magnesium oxide (MgO), water
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(H2O), and silicon dioxide or silica (SiO2) [17]. Talc is one of the important reinforcement
materials in the plastic industry due to its platy structure. The structure provides talc
with qualities such as high lubricity, low gas permeability, and high resistivity. Thus,
the incorporation of talc mineral in resin enhances the impact strength and dimensional
stability, and improves the heat distortion temperature [18].

Consequently, reinforcement of thermoplastic is highly used in industry. Filled poly-
mer composite has gained attention due to its low cost and wide application, improving
composites’ physical properties, modulus, and thermal properties. Thus, ASB and talc
composites are reinforced with graphene oxide (GO) using the injection molding method
for this study. Due to its great thermal, electrical, and mechanical properties, graphene
oxide has attracted the researchers’ attention to deepen their knowledge on the properties
and ability to enhance thermoplastics. Graphene oxide is a single monomolecular layer of
graphite with several functional groups of oxygen, such as carboxyl, carbonyl, epoxides,
and hydroxyl groups, which cause the composite’s unique properties. The studies con-
ducted by [19,20] reveal that the addition of graphene oxide to the polymer shows a better
dispersion of GO within the matrix and also exhibits higher solubility and possibility of
surface functionalization for various applications.

Subsequently, among the studies, it is proven that introducing a compatibilizer has
been an effective approach for reducing interfacial tension and improving the phase
morphology of the blend [21]. In most of the studies, the compatibilization of polymer
blends is carried out by the introduction of block or graft copolymers. Specifically, for this
study, maleic anhydride grafted with SEBS (SEBS-g-MAH) is used with ABS as the main
phase. Generally, the compatibilizer is compatible with the ABS and will react with another
phase. In this case, the maleic anhydride (MAH) group will react with the hydroxyl group
of graphene oxide, and the styrene of SEBS will associate with ABS. Despite all the effort
in ensuring the enhancement of the matrixes using fillers and compatibilizers or other
additives, it does not mean that the properties of the matrixes will definitely improve, as it
is also possible that the properties are decreasing.

The demand for commodity and engineering thermoplastics is increasing every year.
With this in mind, the development of thermoplastics is constantly needed to produce
balance properties in terms of mechanical and thermal properties, as well as processability.
In this study, ABS was used as the matrix that has high potential in widening its application
area. ABS is well-known for its performance and costs, which fall between engineering
and commodity plastics. As mentioned previously, the incorporation of fillers into the
matrix is important for better processability and quality at a lower cost. Thus, the addition
of fillers into ABS ensures that the thermoplastic competes with engineering plastic and
commodity plastic in terms of performance [22]. Furthermore, particulate fillers, such as
calcium carbonate, mica, Wollastonite, silica, and talc, are widely used as reinforcement in
polymer composites. These fillers improve the modulus of the composite and increase the
strength of the matrix in some cases. Despite the interest, very few studies are conducted
on mineral fillers and ABS, and many of the researchers only focus on calcium carbonate
(Ca2CO3) as a filler. Few types of research are shown on talc, which has been incorporated
with PC/ABS. The study reveals that the tensile modulus increased and the CTE decreased
with the addition of talc. In another study of ABS filled with talc, the results showed
that the stiffness of pure ABS improved effectively, but resulted in a drastic decrease in
impact strength. This is likely due to the lower interfacial adhesion between the filler
and the matrix phase. The recent development of thermoplastic has led to the findings
of incorporating graphene oxide (GO) in polymers because of the hydrophilicity, surface
energy, and mechanical properties of the nanomaterial. However, most of the studies con-
centrated on the incorporation of GO with biopolymers such as poly (methyl methacrylate)
(PMMA), polylactide (PLA), and poly (vinyl alcohol) (PVA) [22,23]. In particular, there
are few studies that have considered using GO as a filler in ABS or ABS/talc matrix. It
is expected that incorporating graphene oxide and SEBS-g-MAH in ABS/talc will result
in better interfacial adhesion and improved mechanical properties and thermal stability.
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However, studies have been conducted on the utilization of GO or talc as fillers in ABS
composites [23–26]. There are limited studies in the literature that utilize GO as a filler and
SEBS-g-MAH as a compatibilizer in ABS/talc composites. Therefore, the present study was
conducted to isolate ABS/talc/GO/SEBS-g-MAH and ABS/GO/SEBS-g-MAH composites
with varying graphene oxide and SEBS-g-MAH loading. The objective of the present study
was to increase the mechanical and thermal properties of the isolated composites. The
significance of this groundwork is to develop a thermoplastic product, which is ABS with
enhanced properties and is cost-effective. The addition of inorganic fillers such as GO and
talc in a small amount provides the composite with good properties and can lower the
cost for the industries. Other than that, the ABS composite application can be widened
and replace the PC/ABS composite that is highly in demand nowadays, especially in
automotive industries.

2. Methodology
2.1. Materials

Acrylonitrile-butadiene-styrene (ABS) as the matrix used in this study was a high
impact strength ABS with the trade name of Toyolac 100–322, supplied by Toray Plastics
(Penang, Malaysia). The properties for high impact strength ABS are presented in Table 1.
Graphene oxide and silane-treated talc were used as fillers in this study. SEBS grafted
with maleic anhydride (SEBS-g-MA) was selected as the compatibilizer. The process of the
composite production can be seen in Figure 1.

Table 1. Various compounding formulations of composites.

NO. Sample ABS (%) Talc (%) GO (phr) SEBS-g-MAH (phr)

1 ABS 100 - - -
2 ABS/TALC 90 10 - -
3 ABS/Talc/GO-0.5/S6 90 10 0.50 6
4 ABS/Talc/GO-1.0/S6 90 10 1.00 6
5 ABS/Talc/GO-1.5/S6 90 10 1.50 6
6 ABS/Talc/GO-2.0/S6 90 10 2.00 6
7 ABS/Talc/GO-1.0/S4 90 10 1.00 4
8 ABS/Talc/GO-1.0/S8 90 10 1.00 8
9 ABS/GO-0.5/S6 100 - 0.50 6

10 ABS/GO-1.0/S6 100 - 1.00 6
11 ABS/GO-1.5/S6 100 - 1.50 6
12 ABS/GO-2.0/S6 100 - 2.00 6
13 ABS/GO-1.0/S4 100 - 1.00 4
14 ABS/GO-1.0/S8 100 - 1.00 8

Sample No. 1 ABS acts as a control for these compounding formulations.

2.2. Preparation of Composite

The composite will be prepared following the processes below. ABS blend formulation
is shown in Table 1. The content of the graphene oxide (GO) filler and the SEBS-g-MA
compatibilizer in this formulation was varied to find the optimal mechanical and thermal
properties. The preparation process involved mixing ABS filled with talc/GO/SEBS-g-MA
in a twin-screw extruder, followed by injection molding.

2.3. Melt Blending Process

ABS pellets and talc were dried in a hot-air oven at 80 ◦C for 4 h to remove the
moisture before compounding, which caused a defect in produced ABS/talc. The filler
was melt-compounded with ABS using an internal mixer (Thermo Haake 600p) at 190 ◦C,
and a rotor speed of 90 rpm for 15 min. The stabilization of the torque value suggested the
absence of further degradation of the matrix and the leveling of filler dispersion.
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Figure 1. Schematic diagram of the production of ABS/Talc/GO/SEBS-g-MAH through melt blending.

2.4. Melt Extrusion Process and Injection Molding

After the process parameters were decided, the ABS/talc were extruded with different
amounts of GO and SEBS-g-MA using a twin-screw extruder. The counter-rotating screw
blends and melts the materials. The twin-screw was set with a 30 rpm screw speed, and
the barrel temperature to the head was set to 180, 190, 200, 210, 220, 230, and 240 ◦C. The
GO loading in ABS/talc ranged from 0.5 to 2.0 phr, while SEBS-g-MA ranged from 4 to
6 phr. Then, the extruded pellets were crunched into small pellets using an automatic
cutter attached to the extruder. Subsequently, the pellets were dried in an oven for 24 h
before the injection molding process.

The extruded pellets were then injected into the injection molding machine into
standard tensile, flexural, and Charpy impact samples. After 24 h of drying, the pellets
were fed into the hopper of the injection molding machine with barrel temperature set
from 190 to 245 ◦C and the mold temperature of 60 ◦C.

2.5. Mechanical Properties Test

The composites were subjected to undergo various mechanical properties tests. Ten
samples of each formulation were tested, and the average value was recorded. The test
specimens were initially conditioned for 48 h at 23 ◦C. The sample evaluated for the
tensile test was performed under ambient conditions in accordance with ASTM D638
using the Lloyd Universal Testing Machine with a crosshead speed of 5 mm/min. The
three-point bending flexural test was performed according to the ASTM D790 using the
Lloyd Universal Testing Machine with a crosshead speed of 15 mm/min, and the support
span for the flexural testing was 50 mm. The Charpy impact test was conducted according
to the ASTM D256 using the Ray-Ran Pendulum Impact Tester System with a hammer
weight of 1.19 kg and a speed of 2.90 m/s. Ten specimens for each formulation were cut
into 8 cm length, and the thickness was determined before testing.

2.6. Thermal Properties Test

Thermal properties analyses of the composites were conducted using the Mettler
Toledo Thermogravimetric Analyzer (TGA) model 851e, complete with nitrogen and
purified air burning conditions. The samples were dried for 2 h at 100 ◦C before the test to
minimize moisture effects. The samples were firstly placed in an alumina crucible. Then,
the samples were tested with temperatures ranging from 25 to 800 ◦C with a heating rate
of 10 ◦C/min under nitrogen to examine the thermal degradation behavior. The thermal
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degradation onset temperature and residue weight loss were determined. The infrared
spectroscopy analyses were carried out using Nicolet i10s FTIR equipped with attenuated
total reflection. The spectral range used was from 4000 to 500 cm−1 at a resolution of
2 cm−1 at room temperature. The data obtained were recorded in accordance with ASTM
E168 in the transmittance mode.

2.7. Statistical Analysis

The data for different compositions were analyzed using analysis of variance (ANOVA)
and descriptive statistics, including a five-number summary (boxplot), including min, max,
first quartile, second quartile, and third quartile.

3. Results and Discussion
3.1. Determination of Parameters for Compounding Process

The compounding process was carried out to determine the suitable mixing parame-
ters through several experiments. Other than the determination of parameters, the results
obtained can be used to study the fusion characteristic of ABS. In the preparation proce-
dure, the ABS was first loaded into the internal mixer and preheated for 2 min. The next
15 min of the compounding period were allocated, and the required amount of talc was
added to melt ABS after 2 min. Initially, the temperature and speed of the rotor were set
at 190 ◦C and 90 rpm to compound and allow homogenous mixing of ABS and talc. The
compounding of ABS/talc was fixed to 90% of ABS and 10% of talc. In this experiment, the
amount of pure ABS was 40 g, whereas, for the compounding, the amount of ABS and talc
were 36 and 4 g, respectively. Table 2 outlines the parameter settings for melt mixing that
were used in this study.

Table 2. Parameter settings for melt mixing.

Parameter Value

Speed 90 rpm 90 rpm 30 rpm 30 rpm
Temperature 190 ◦C 220 ◦C 200 ◦C 190 ◦C

Duration 15 min 15 min 15 min 15 min

As ABS pellets were introduced into the compounding chamber, the initial peak was
observed, indicating the increase in torque. The viscosity of the ABS reduced as it started
to melt with time and pressure, where there was a decrease in torque. After 2 min, talc was
added. A sharp peak was shown in the graph that indicated that the torque was decreasing,
as illustrated in Figure 2. The dispersion of the sample was considered complete as the
torque stabilized and showed a plateau in the graph. Talc was homogeneously blended
with ABS only at a temperature of 190 ◦C and speed of 90 rpm. The samples differ in color,
where the lower temperature has a slightly greyish color, but the color was slightly darker
brownish at the higher temperature. This proved that the materials are well-preserved
from being burned during the process.

The observations can be supported with the degradation characteristic of ABS and
talc. [27] studied the degradation of different ABS grades: general-purpose, high heat
resistance, and high-impact ABS. According to the analysis conducted, the degradation
temperature for all grades ranges from 324 to 475 ◦C, with a one-step thermal decompo-
sition. Moreover, the DTG curves reveal a large mass loss at a stated temperature. The
analysis was supported by the results reported by the work of Jang [27], which claimed
that the normal ABS degrades at 410 ◦C with the residue of 1% above 600 ◦C.

Figure 2 depicted the general fusion curve for unfilled ABS melted in Haake internal
mixer, with an initial temperature of 190 ◦C, speed of 90 rpm, and blending time of 15 min.
Referring to Figure 2, point A shows the peak for sample loading. Once the sample
loading and driving force of free material flow are balanced, the torque values will decrease
and generate point B. Then, torque values increase again due to the onset of fusion and
compaction, which is shown in the figure as point C.
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Figure 2. General fusion curve of unfilled ABS compound melted in Haake internal Mixer at a temperature of 190 ◦C, with
the speed of 90 rpm at 15 min of blending time.

When it reaches point C, the material begins to melt at the interface between the hot
surface and compacted material. This happens when the material reaches a void-free state.
There is a slight increase in temperature with a long time of blending because of thermal
energy absorbed by the material. In fact, increasing the temperature leads to the reduction
of the material’s melt viscosity. Thus, the torque value decreases as the blending time
increases. This study defines the period between fusion point A and point C as the fusion
time. In contrast, the fusion percolation threshold (FPT) is the variation of torque between
points B and C.

Figure 3 shows the melt mixing torque graph of unfilled ABS and ABS/talc at
30 and 90 rpm, respectively. As mentioned earlier, there was an increase in the torque
value where the first sharp peak was shown in the graph, indicating the resistance in the
rotor when un-melted ABS was fed into the chamber. The shearing action caused the ABS
to melt and reduced the resistance towards the shearing force of the rotor. Figure 3 shows
that the unfilled ABS has a shorter fusion time compared to talc-filled ABS. In addition,
at a lower rotor speed of 30 rpm, the fusion time lengthened compared to unfilled ABS
and talc-filled ABS at 90 rpm, respectively. Increasing fusion time can be caused by the
physical characteristic of talc, which has a plate-like structure. Furthermore, the difficulty
of the ABS composite to fuse with the talc filler might also occur due to the low adhesion
property and low specific surface area of talc. The statement can be supported by a previous
study performed by [28] on the fusion time of talc-filled PVC. The study reveals that the
composite and fillers are difficult to blend, and the incorporation of talc to PVC lengthens
the fusion time to two times longer than the unfilled PVC.

Table 3 illustrates the effect of adding talc filler and using different rotor speeds to
blend the composites on the torque value. It can be seen that the incorporation of talc
filler reduced the final torque of the ABS compound slightly due to the separation of ABS
particles. Reductions of the final torque indicate reducing melt viscosity, by which less
force is required to continue mixing and homogenizing.

These findings are in line with the previous finding reported by [28] on talc-filled
PVC. The previous study shows that at a maintained rotor speed of 45 rpm, the fusion
torque decreases with the addition of talc fillers. The study suggests that the addition of
talc filler can increase the fusion temperature and reduce the melt viscosity. According
to [29], addition of fillers such as SM90 and talc can increase the heat transfer and shear
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throughout the PVC grains. Consequently, higher shear and heat transfer offers increments
in fusion temperature and a reduction of melt viscosity [28]. In addition, better heat and
shear transfer between the filler and compound are promoted by talc’s characteristics, such
as the orientation of particles, plate-like structure, and the surface adhesion of the talc filler.
These characteristics result in friction energy between ABS and talc particles. However,
in this case, the results show a small reduction in fusion torque caused by low shear and
heat transfer.

Figure 3. Effect of talc filler on fusion time fusion torque of ABS composites.

Table 3. ABS/talc composites’ composition, fusion torque, and final torque.

Speed (rpm) ABS (%) Talc (%) Fusion Torque
(Nm)

Final Torque
(Nm)

30 90 10 11.2 7.4
90 90 10 11.5 7.6
90 100 - 13.5 9.3

Referring to Table 3, the final torque of the filled ABS exhibited a much lower torque
value at an average of 7.5 Nm compared to the unfilled ABS torque value at 9.3 Nm. This
proves that the addition of talc into ABS increased the processability of the composites.
Therefore, for better processability and compatibility of the composites, SEBS-g-MAH
and GO were incorporated in this study. Despite the limitations of this method and
consequently poor results in the fusion study, our findings do, however, suggest that the
fusion torque and final torque will be lower, and the processing of the composite will
be easier.

3.2. Fusion Percolation Threshold (FPT)

Table 4 shows the effect of talc addition on the fusion percolation threshold (FPT) of
ABS composites. Referring to Table 4, the incorporation of talc promotes a longer fusion
time and FPT compared to unfilled ABS. These values correlate favorably with [29], and
further support the concept of increasing fusion time resulting in increasing FPT of the
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composite. In fact, fusion time indicates the requirement of thermal energy to be absorbed
in order to fuse composites and fillers. Thus, higher thermal energy than the FPT is needed
to fuse the composites. The addition of talc in ABS increased the FPT to 5.5 Nm, which
indicates that talc-filled ABS required higher thermal energy to be fused together.

Table 4. ABS/talc composites’ composition and fusion percolation threshold (FPT).

Speed (rpm) ABS (%) Talc (%) FPT (Nm)

30 90 10 5.5
90 90 10 5.5
90 100 - 2.3

3.3. Effect of Different Loading of Graphene Oxide (GO) on Tensile Strength, Young’s Modulus,
and Elongation at Break of Composites

An investigation into the effect of GO and SEBS-g-MA as fillers and compatibilizers
on the mechanical properties of ABS/talc composites at different loading was carried out.
All the composites used were in the ratio of 90:10 by the percentage of ABS:talc ratio,
as outlined in the earlier study. The amount of loading of GO and SEBS-g-MAH in the
composite added ranged from 0.5 to 2.0 phr, and 4.0 to 6.0 phr, respectively. In order to
investigate the properties of the composites, the mechanical properties reported are tensile
strength (TS), elongation at break (EB), Young’s modulus (YM), flexural strength (FS),
flexural modulus (FM), and impact strength (IM). From the findings, it was found that the
addition of GO improves the interfacial adhesion between the matrix and filler particles,
hence enhancing the mechanical properties of the composite. In order to study the tensile
properties, tensile strength, Young’s Modulus, and elongation at break are investigated.
Figure 4 shows the properties of TS, YM, and EB of ABS and ABS/talc with different
loading of GO and SEBS-g-MAH. The terms ABS/talc/GO-0.5/S-6, ABS/talc/GO-1.0/S-6,
ABS/talc/GO-1.5/S-6, and ABS/talc/GO-2.0/S-6 indicate the usage of 0.5, 1.0, 1.5, and
2.0 phr of GO.

From the results, it can be deduced that the incorporation of fillers into ABS increased
the tensile strength of ABS composites. This indicates that the composites are ductile and
strong. It is interesting to note that the tensile strengths of ABS composites with addition
of GO and SEBS-g-MAH are higher than unfilled ABS but lower than ABS/talc composites.
In general, properties of polymer composites are heavily dependent on the dispersion
of reinforcing fillers. The dispersion will help in increasing the reinforcement surface
area and affect the neighboring polymer chains. Therefore, incorporation of GO/SEBS-g-
MAH with uniform dispersion onto the matrix will ensure a significant reinforcement of
the composite.

Figure 4a shows the most significant increase of tensile strength using 1.5 phr of GO
and 6.0 phr of SEBS-g-MA when compared to unfilled ABS. The tensile strength of the
ABS/talc/GO-1.5/S-6 was higher by 11.136 MPa. Although the incorporation of filler
and compatibilizer shows a reduction in TS when compared with the ABS/talc system,
the formulations with 1.5 phr of GO show only a slight reduction of 3.713 MPa and can
be considered as insignificant. This formulation shows a considerably good TS value
compared to other formulations. The trends are also similar in Young’s modulus and
elongation at break, where the YM increased by 10.3% and the EB decreased by 31% for the
formulation with 1.5 phr of GO in ABS/talc. This concurs well with the previous findings
of by [30], where the addition of SEBS-c-GOS into PS illustrated an increase in both tensile
strength and Young’s modulus, with only 2.0 wt.% of SEBS-c-GOS. The enhancement in
these properties is due to the bonding of GO’s oxygen functional group with the polar
polymers. The bonding promotes a strong interfacial adhesion between the filler and matrix.
Other than that, the authors also highlighted that grafting of SEBS in the composites is
important for effective load transfer between the fillers and matrix.
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Figure 4. (a) Tensile strength, (b) Young’s modulus, and (c) elongation at break of ABS and ABS/talc, with different loading
of GO.

Furthermore, the experiment was also conducted to examine the effect of GO/SEBS-g-
MAH on ABS. By referring to Figure 4a–c, it can be seen that the incorporation of fillers
and compatibilizers to the matrix enhanced ABS properties, especially in the strength of
the composite. However, the addition does not promote a significant increment in terms of
stiffness that values of YM can deduce. In a recent study of PP/GO with the addition of
PP-g-MAH to the composites, the study reveals that without the addition of compatibilizer,
PP and GO are incompatible with each other [13]. With the presence of PP-g-MAH, the
interfacial bonding of PP/GO improved and hence resulted in better thermal properties.

3.4. Effect of Different Loading of SEBS-g-MAH on Tensile Strength, Young’s Modulus, and
Elongation at Break of Composites

The SEBS-g-MAH is widely used as a compatibilizer in composites as it can improve
the adhesion between the matrix and filler. This can promote a better interaction of particles
between the matrix and filler. Thus, the effect of different loading of SEBS-g-MAH was also
studied to examine the impact on the composite. The ABS/talc/GO-1.0/S-4, ABS/talc/GO-
1.0/S-6, and ABS/talc/GO-1.0/S-8 indicate the usage of 4, 6, and 8 phr of SEBS-g-MAH.

Figure 5 shows an increment towards the tensile properties when compared to un-
filled ABS. Compared to unfilled ABS, the composites with 6 phr of SEBS-g-MAH in the
ABS/talc/GO system showed the most significantly enhanced properties, with 33% and
7% increments of TS and YM, respectively. Consequently, higher loading of SEBS-g-MAH
into the system will only deteriorate the properties of the composite. For instance, adding
8 phr of SEBS-g-MAH reduced the TS and YM but increased EB extensively, up to 34%.
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This may be due to aggregation of reinforcing fillers and chain entanglement that cause
high extensibility to reach breaking point [13]. A high amount of chemical bonds leads to
chain entanglement, especially in the ABS/talc system.

Figure 5. (a) Tensile strength, (b) Young’s modulus, and (c) elongation at break of ABS and ABS/talc, with different loading
of SEBS-g-MAH.

By comparing the effect of SEBS-g-MAH loading in ABS/GO, the strength of compos-
ites is considerably higher compared to the addition in the ABS/talc/GO system. However,
the absence of talc in the system deteriorates the stiffness of the composite. The plausible
explanation is that the stiffness of the ABS composite is offered by the talc properties. Over-
all, it can be deduced that the higher the concentration of SEBS-g-MAH in the composite,
the lower the properties of YM, but it also increases the EB.

3.5. Effect of Different Loading GO on Flexural Strength and Flexural Modulus

Figure 6a illustrates the flexural strength of ABS/talc/GO/SEBS-g-MAH composites.
From Figure 6, it is interesting to see that the trends of flexural properties have a similar
positive trend compared to tensile properties. As can be seen in Figure 6a, incorporation of
GO and SEBS-g-MAH into the composite increases the flexural strength (FS) by an average
of 15%. Rather than lowering the strength as depicted in tensile strength when compared to
the ABS/talc system, the addition of filler and compatibilizer enhances flexural properties.
It can be seen that the FS are much higher than ABS/talc and unfilled ABS composites.
The flexural strength of ABS/talc/GO/SEBS-g-MAH shows a similar trend as in tensile
strength, where the addition of 1.5 phr of GO has the highest increment relative to unfilled
ABS and ABS/talc. The increment with 1.5 phr of GO loading in the ABS/talc system is
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27.2% and 27.8% compared to ABS and ABS/talc, correspondingly. Whereas, without talc
in the system, the FS is still higher compared to ABS and ABS/talc.

Figure 6. (a) Flexural strength and (b) flexural modulus of ABS and ABS/talc, with different loading of GO.

Figure 6b illustrates the flexural modulus of ABS/talc/GO/SEBS-g-MAH. The in-
corporation of all amounts of GO improved the flexural modulus in the ABS composite.
Next, high FM can be seen when using 1.5 phr of GO loading when compared to ABS and
ABS/talc. This is a similar trend as in FS and TS. However, without talc in the system, the
modulus of the composite is lower than the ABS composite with talc filler. The existence of
talc can explain this as promoting the stiffness and strength of the composite. According to
Abu Bakar et al. [28] higher flexural properties are attributed to the physical characteristics
of talc in terms of the orientation and particles’ aspect ratios. Thus, high flexural modulus
contributed to the high resistance of bending when stress is applied.

3.6. Effect of Different Loading of SEBS-g-MAH on Flexural Strength and Flexural Modulus

Figure 7 presents the data on flexural strength (Figure 7a) and flexural modulus
(Figure 7b) with different loading of SEBS-g-MAH. The figures demonstrated that the
optimum FS and FM in both ABS/talc/GO/SEBS-g-MAH and ABS/GO/SEBS-g-MAH
composites is found by using 4 phr of SEBS-g-MAH. Similar trends can be seen in YM in
tensile properties, wherein the higher the amount of SEBS-g-MAH, the lower the modulus.
In terms of composite stiffness, the composite with the absence of talc has a lower modulus.
The addition of 4 phr of SEBS-g-MAH shows an increment of up to 31% when compared
to unfilled ABS and ABS/talc. The compatibilizer also shows a higher increment of 37%
when SEBS-g-MAH is added into the composite. The FM depicted in Figure 7a shows that
higher loading of SEBS-g-MAH leads to a reduction of modulus properties.

3.7. Impact Strength of Composites with Different Loading of Graphene Oxide and SEBS-g-MAH

Figure 8a,b demonstrate the data of impact strength of the ABS composite. Talc-filled
composites showed the lowest impact strength in ABS. Then, the incorporation of GO
and SEBS-g-MAH showed an increment in the impact strength, but still lower compared
to unfilled ABS. Furthermore, the composite without talc filler promotes higher impact
strength than the talc-filled ABS, as proposed by the theory of introducing talc into a
composite system. Referring to Figure 8a, the incorporation of SEBS-g-MAH shows that
the higher the amount of loading, the better the impact properties. The best explanation
for this matter is that the presence of GO in the composites promotes better interfacial
adhesion onto the surface of the matrix and fillers. In addition, as mentioned for tensile
properties, the addition of a compatibilizer is crucial to obtain better adhesion between GO
and the ABS matrix.
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Figure 7. (a) Flexural strength and (b) flexural modulus of ABS and ABS/talc, with different loading of SEBS-g-MAH.

Figure 8. Impact strength of ABS composite with different loading of (a) graphene oxide (GO) and (b) SEBS-g-MAH.

3.8. Effect of Thermogravimetric Analysis (TGA) on Different Loading of GO

As mentioned earlier, ABS has become one of the common plastics to be used in
engineered and commodity plastics due to its impressive properties. In addition, ABS
has high sensitivity towards thermo-oxidative processes. At a range of 220–240 ◦C, the
C=C double bond in polybutadiene undergoes cross-linking phenomena that cause the
polymer to be prone to the oxidation process. ABS degradation usually happens in a
single-step process. It was also reported that ABS could undergo a two-step degradation
process attributed to the styrene and butadiene phases in the composite, that occurs at
425 and 650 ◦C, respectively [27]. However, standard TGA does not have the ability to
show the separation of SAN and butadiene components. Table 5 presented the overall ther-
mogravimetric analysis (TGA) with different amounts of GO loading in every formulation.
The analysis was performed to determine the effect of graphene oxide addition into the
composite. According to Abu Bakar et al. (2005) and Yuan et al. (2003) as cited in [28], the
thermal stability of polymer composites can be investigated by the increase in 5% weight
loss temperature.
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Table 5. Thermogravimetric analysis (TGA) data of ABS and ABS/talc composites with different loading amounts of GO.

Sample
Decomposition Temperature (TD) in ◦C at

Different Weight Loss (%) Residue wt. % (WR)
at 800 ◦C

Inflection Point (◦C)
2 5 10 20 30

ABS 362.10 384.77 396.61 406.08 411.86 0.98 422.45
ABS/Talc 363.06 380.02 388.43 397.56 403.81 7.76 409.81

ABS/Talc/GO-0.5/S-6 368.57 385.69 394.96 404.96 411.85 8.16 416.94
ABS/Talc/GO-1.0/S-6 366.11 384.86 394.34 403.80 410.38 9.23 413.08
ABS/Talc/GO-1.5/S-6 361.23 384.76 394.78 404.83 411.66 7.60 415.96
ABS/Talc/GO-2.0/S-6 361.79 384.67 395.76 405.60 412.28 8.27 418.33

ABS/GO-0.5/S-6 371.23 384.91 393.23 401.42 407.10 3.41 413.30
ABS/GO-1.0/S-6 371.66 385.02 395.09 405.00 410.10 2.03 423.94
ABS/GO-1.5/S-6 370.42 387.00 397.07 406.87 413.11 2.15 424.93
ABS/GO-2.0/S-6 373.40 389.58 399.27 408.92 415.07 2.29 423.42

From Table 5, the data show that the addition of GO and SEBS-g-MAH increased the
temperature at 5% weight loss when compared to the ABS/talc system only. Following
the trends in mechanical properties, the addition of 1.5 phr of GO also showed a posi-
tive outcome, where the temperature at 5% weight loss increased by 4.7 ◦C compared to
ABS/talc decomposition. The incorporation of GO and SEBS-g-MAH also increased the
ABS/GO/SEBS-g-MAH system when compared to both ABS and ABS/talc. Moreover, the
decomposition temperature showed a higher temperature for all formulations compared
to the formulations with talc. For instance, the most significant increase in thermal decom-
position at 5% weight loss was shown by the addition of 2.0 phr of GO with an increment
of 4.81 ◦C when compared to ABS.

By comparison, the presence of GO and SEBS-g-MAH improved the decomposition
temperature for weight loss of 5%, 10%, 20%, and 30%. Thus, ABS/talc/GO/SEBS-g-MAH
and ABS/GO/SEBS-g-MAH are more thermally stable than pure ABS and ABS/talc. In ad-
dition, retarding of emissions, dispersion of molecules, and the presence of the vast amount
of oxygen functional groups are the main factors affecting the thermal stability [31]. In this
case, GO might have acted as a barrier and a thermal retarding agent for the composite.
Other than that, GO has a vast amount of oxygen functional groups where the exothermal
energy from the decomposition of GO enhances the decomposition temperature of the
ABS matrix. Similar observations have been reported by [32,33]. Ref. [33] quoted that the
increase in thermal stability was attributed to the inhibition of polymer segment mobility
at the interphase of the matrix and filler. This inhibition occurs because of the strong inter-
action between the polymer and the matrix. The determination of the inflection point can
also deduce thermal degradation. In this study, the inflection point of ABS/talc/GO/SEBS-
g-MAH showed a shift towards the right, when compared to the ABS/talc composite,
as presented in Table 6, where the addition of fillers and compatibilizers increased the
inflection point values.

For residual weight at 800 ◦C, ABS/GO/SEBS-g-MAH showed higher residues than
ABS, ABS/talc, and ABS/talc/GO/SEBS-g-MAH. This was caused by the presence of GO
in the composite.

As discussed earlier, the incorporation of SEBS-g-MAH and GO shows an increase
in thermal stability. Overall, the thermal stability increased with an increasing amount
of compatibilizer when incorporated with 1.0 phr of GO. These trends are similar to the
trends illustrated for impact strength. The data shown in Table 6 also show that the most
significant increase in decomposition temperature of ABS/talc/GO/SEBS-g-MAH was
with the addition of 8 phr of compatibilizer at 2% weight loss. A similar enhancement
trend can be seen in the impact strength of the composite. The addition of 8 phr of
SEGS-g-MAH increased the stability by 1.75% and 2.01% compared to ABS/talc and ABS,
respectively. Similar to the ABS/talc/GO/SEBS-g-MAH system, the composite without
talc also contributed to higher thermal stability, with an average of 2.42% of increment at
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2% of weight loss. However, in terms of inflection point temperature, the analysis did not
show any significant difference between the unfilled ABS and filled ABS. However, the
analysis showed a high decomposition temperature and residue with the addition of 4 phr
of SEBS-g-MAH into the ABS/talc system and 6 phr into the ABS composite. However, the
plausible explanation is that the interfacial adhesion between the fillers and the matrix is
lower. Thus, the fillers are left as residues as the composite degrades.

Table 6. Thermogravimetric analysis (TGA) data of ABS and ABS/talc composites with different loading amounts of
SEBS-g-MAH.

Sample
Decomposition Temperature (TD) in ◦C at

Different Weight Loss (%) Residue wt. % (WR)
at 800 ◦C

Inflection Point (◦C)
2 5 10 20 30

ABS 362.10 384.77 396.61 406.08 411.86 0.98 422.45
ABS/Talc 363.06 380.02 388.43 397.56 403.81 7.76 409.81

ABS/Talc/GO-1.0/S-4 365.60 382.60 392.98 401.68 410.45 9.10 412.85
ABS/Talc/GO-1.0/S-6 366.11 384.86 394.34 403.80 410.38 9.23 413.08
ABS/Talc/GO-1.0/S-8 369.51 383.07 392.36 401.50 408.30 9.75 417.01

ABS/GO-1.0/S-4 359.90 386.46 397.48 407.55 413.37 0.47 421.62
ABS/GO-1.0/S-6 362.66 386.69 398.00 408.00 414.10 2.66 422.94
ABS/GO-1.0/S-8 370.69 387.56 398.37 408.66 415.11 2.99 423.57

3.9. FTIR Analysis

FTIR analysis was carried out for ABS, talc, GO, ABS/talc/GO-1.5/S-6, and ABS/GO-
2.0/S-6 composites, as shown in Figure 9. FTIR analysis was performed to determine the
effect of GO and SEBS-g-MAH treatment in ABS/talc un-compatibilized composites. As
illustrated in Figure 9, the ABS spectrum shows peaks at 970–966, 1494, and 2237 cm−1,
corresponding to the polybutadiene region, aromatic C-C stretching of styrene, and CN
stretching, respectively. After the addition of GO and SEBS-g-MAH, there was no change
in intensity of these peaks that indicates the existence of ABS in the composite. The peaks
at 3448, 1637, and 1047 cm−1, attributed to the hydroxyl group absorbed water on the
GO surface, the vibration of the un-oxidized graphitic domain, and stretching vibrations
of C-OH of alcohol respectively, exist in GO [31]. Better dispersion of GO in the ABS
composite can be explained by the interaction of polar groups in GO and ABS that react to
form a strong hydrogen bond.

In addition, ABS/talc/GO-1.5/S6 showed new peaks at 3671 cm−1 that indicate
the presence of the Mg-OH bond of talc in the composite. The incorporation of talc
can also be seen in the IR spectrum, where the region at 1017–910 cm−1 shows that the
intensity is higher compared with the ABS/GO/S spectrum, which indicated an interaction
occurs between talc and the ABS polymer. Other than that, new peaks can be seen at
1818–1809 cm−1, which represent the reaction between SESB-g-MAH with GO that forms
the carbonyl group at that region. Next, the peak for the isocyanate group (C=N=O) is
illustrated at 2339 cm−1 in the ABS/GO/S system, which shows the possibility of GO-
SEBS-g-MA’s interaction with the acrylonitrile region of ABS. Thus, it can be deduced
that the composites are compatibilized and hence promote better interfacial adhesion
between fillers and the matrix. Therefore, the mechanical properties are enhanced as
discussed previously.

3.10. Statistical Analysis

The results of 98 experiments for various selected responses covering 14 different com-
positions (7 replications at each composition) are summarized and presented in a graphical
form using a boxplot (Figure 10). The graphical presentation exhibited fluctuations in
the behavior of selected responses to various compositions. For instance, tensile strength
showed the highest response with composition ABS/Go-1.0/S-6 and the lowest response
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with composition ABS, whilst other compositions showed tensile strength between these
two compositions.

Figure 9. FTIR spectrum of ABS, talc, ABS/talc/GO −1.5/S6, and ABS/GO −2.0/S6.

The highest spread was exhibited with compositions ABS and ABS/Go-1.0/S-6, while
other compositions exhibited a much lower spread compared to these two compositions. In
general, the dispersion of the data was low and acceptable. The results of 98 experiments
were further analyzed using analysis of variance (ANOVA) to investigate the effect of
different compositions (14 different compositions) on 6 selected responses, namely tensile
strength (TS), Young’s modulus (YM), elongation at break (EB), flexural strength (FS),
flexural modulus (FM), and impact strength (IS). The results of ANOVA for the selected re-
sponses in Table 7 showed that different compositions significantly affect the six responses,
which indicates that different compositions will result in different values of the selected
responses. Significant results could be due to the dispersion of GO and the interfacial
interactions with the matrix with the addition of SEBS-g-MAH. Additionally, talc at 10 wt.%
acts as the reinforcing filler that increases the tensile modulus and stiffness but reduces
the strain-to-break and impact strength. The reason for using all three is to balance the
enhancement properties of the intended composite. The composition should improve the
tensile and flexural strength, modulus, and strain-at-break, while maintaining the impact
properties of the composite. This is evidence from the data obtained from the mechanical
testing conducted. The data were further analyzed using Tukey’s test for multiple compar-
isons to find the composition that causes the differences, which is indicated with p-values
less than 0.05.
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Figure 10. Boxplot for the selected responses using 14 different compositions.

Table 7. The results of ANOVA for the selected variables.

ANOVA

Sum of Squares df Mean Square F Significant (p-Value)

TS

Between Groups 987.150 13 75.935 14.725 0.000

Within Groups 433.169 84 5.157

Total 1420.319 97

YM

Between Groups 1,069,730.138 13 82,286.934 42.979 0.000

Within Groups 160,826.240 84 1914.598

Total 1,230,556.378 97
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Table 7. Cont.

ANOVA

Sum of Squares df Mean Square F Significant (p-Value)

EB

Between Groups 741.339 13 57.026 4.045 0.000

Within Groups 1184.255 84 14.098

Total 1925.594 97

FS

Between Groups 947.920 13 72.917 177.294 0.000

Within Groups 34.547 84 0.411

Total 982.468 97

FM

Between Groups 402,722.339 13 30,978.641 472.662 0.000

Within Groups 5505.430 84 65.541

Total 408,227.769 97

IS

Between Groups 16,477.942 13 1267.534 5.519 0.000

Within Groups 19,292.899 84 229.677

Total 35,770.841 97

4. Conclusions

In the present study, the influence of graphene oxide as a filler and SEBS-g-MAH as
a compatibilizer was determined on the mechanical and thermal properties of ABS/talc
composites. It was found that the incorporation of GO and SEBS-g-MAH yielded lower
torque and eased the mixing between the matrix and fillers. The addition of GO at
0.5 to 2.0 phr showed marginal improvement of mechanical and thermal properties of
ABS/talc/GO/SEBS-g-MAH and ABS/GO/SEBS-g-MAH composites. The mechanical
properties of ABS/talc/GO/SEBS-g-MAH composites revealed that the inclusion of GO in
the polymer matrix increased Young’s modulus, flexural modulus, and flexural strength,
which might be due to better interfacial adhesion between the matrix and fillers. However,
drastic reductions in impact strength are attributed to the properties of talc. In thermal
properties’ analysis, it was shown that the ABS/talc/GO/SEBS-g-MAH composites needed
higher temperatures to be deflected at a specific height compared to ABS and ABS/talc,
which suggests the presence of GO as a thermal retardant agent. Moreover, the introduction
of SEBS-g-MAH at 4 to 8 phr as a compatibilizer in the composite further increased the
mechanical properties. From the mechanical and thermal properties’ analyses of the
composites, the optimum loading was found to be 1.0 phr of GO, at a 90:10 ratio of ABS
to talc, and 4 phr of SEBS-g-MAH, to obtain maximum mechanical and thermal stability
of the composites. The findings of the present study revealed that graphene oxide and
SEBS-g-MAH could be utilized as a filler and a compatibilizer respectively, in ABS/talc
composites to enhance the mechanical and thermal stability.

Author Contributions: Conceptualization, F.N.J.A. and M.Z.; methodology, F.N.J.A., A.F.M.A. and
M.Z.; software, H.A.H.; validation, F.N.J.A.; formal analysis, H.A.H.; investigation, F.N.J.A.; writing—
original draft preparation, F.N.J.A. and H.A.H.; writing—review and editing, H.A.H., A.F.M.A. and
M.Z.; visualization, F.N.J.A.; supervision, A.F.M.A., S.S.A.A., N.A.K., A.N.A.Y., M.S.H., A.H. and
M.Z.; project administration, M.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by University Kuala Lumpur Short-Term Research Grant (STRG),
Ref: UniKL/CORI/STR19036.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Polymers 2021, 13, 3180 19 of 20

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Jose, J.P.; Goda, K.; Sreekala, M.S.; Malhotra, S.K.; Joseph, K.; Thomas, S. Advances in polymer composites: Macro- and

Microcomposites-State of the Art, New Challenges, and Opportunities. Polym. Compos. 2012. [CrossRef]
2. Technavio. Global Advanced Polymer Composites Market. 2020. Available online: https://www.technavio.com/report/

advanced-polymer-composites-market-industry-analysis (accessed on 1 April 2021).
3. Moore, J.D. Acrylonitrile-butadiene-styrene (ABS)—A review. Composites 1973, 4, 118–130. [CrossRef]
4. Olivera, S.; Muralidhara, H.B.; Venkatesh, K.; Gopalakrishna, K.; Vivek, C.S. Plating on acrylonitrile–butadiene–styrene (ABS)

plastic: A review. J. Mater. Sci. 2016, 51, 3657–3674. [CrossRef]
5. Rahman, A.H. The Mechanical Properties of Acrylonitrile-Butadiene-Styrene (ABS)/Nylon 6/Talc Composites. Ph.D. Thesis,

Universiti Teknologi Malaysia, Johor, Malaysia, 2007.
6. Pegoretti, A.; Yao, Z.; Heng, J.Y.Y.; Lanceros-m, S.; Ji, X.; Hadjittofis, E.; Tang, J. Study on the surface properties of colored talc

filler (CTF) and mechanical performance of CTF/acrylonitrile-butadiene-styrene composite. J. Alloy Compunds 2016, 676, 513–520.
[CrossRef]

7. Mederic, P.; Moan, M.; Klopffer, M.H.; Saint-Gerard, Y. Talc filled thermoplastic composites: Melt rheological properties. Appl.
Rheol. 2003, 13, 297–304. [CrossRef]

8. Denac, M.; Šmit, I.; Musil, V. Polypropylene/talc/SEBS (SEBS-g-MA) composites Part 1. Structure. Compos. Part. A Appl. Sci.
Manuf. 2005, 36, 1094–1101. [CrossRef]
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