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Propensity score weighting is increasingly being used in observational stud-
ies to estimate the effects of treatments. The use of such weights induces a
within-person homogeneity in outcomes that must be accounted for when esti-
mating the variance of the estimated treatment effect. Knowledge of the variance
inflation factor (VIF), which describes the extent to which the effective sam-
ple size has been reduced by weighting, allows for conducting sample size and
power calculations for observational studies that use propensity score weight-
ing. However, estimation of the VIF requires knowledge of the weights, which
are only known once the study has been conducted. We describe methods
to estimate the VIF based on two characteristics of the observational study:
the anticipated prevalence of treatment and the anticipated c-statistic of the
propensity score model. We considered five different sets of weights: those for
estimating the average treatment effect (ATE), the average treated effect in the
treated (ATT), and three recently described sets of weights: overlap weights,
matching weights, and entropy weights. The VIF was substantially smaller for
the latter three sets of weights than for the first two sets of weights. Once the
VIF has been estimated during the design phase of the study, sample size and
power calculations can be done using calculations appropriate for a random-
ized controlled trial with similar prevalence of treatment and similar outcome
variable, and then multiplying the requisite sample size by the estimated VIF.
Implementation of these methods allows for improving the design and reporting
of observational studies that use propensity score weighting.
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1 INTRODUCTION

Dorn suggested that when conducting an observational study one ask “how would the study be conducted if it were
possible to do it by controlled experimentation?1 Rubin suggests that this question defines the objective of an observa-
tional study2 (p. 16). Similarly, Hernan and Robins define the concept of the “target trial” as the randomized controlled
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experiment that one is trying to emulate using observational data.3 Sample size and power calculations are an inte-
gral component of the design of controlled experiments (eg, randomized controlled trials [RCTs]). In RCTs, sample size
calculations are conducted during the design phase of the study, to ensure that the sample size provides adequate power
to detect clinically meaningful effects. Similarly, power calculations serve an important role in observational studies, as
they provide reassurance that the study sample is sufficiently large to provide adequate power to detect as statistically
significant a clinically meaningful effect size. Researchers using observational data are often tempted to provide post-hoc
power calculations, despite this practice being criticized.4

In observational studies, unlike in RCTs, treatment selection is frequently confounded with subject characteristics,
so that treated subjects often differ systematically from control subjects. Consequently, statistical methods must be used
to reduce the effects of confounding. A popular way to do this is using methods based on the propensity score. The
propensity score is the probability of treatment selection conditional on the subject’s measured baseline covariates.5,6

Weighting using the propensity score is one way of using the propensity score to estimate the effects of treatment.7 Using
propensity score-based weights results in a weighted sample in which the distribution of measured baseline covariates is
similar between treated and control subjects. The use of weighting-based methods is becoming increasingly popular in
the medical and epidemiological literature.

When using propensity score-based weighting, estimation of the point estimate of the treatment effect can mimic
the analysis that would be done in an RCT with a similar outcome variable. However, estimation of the variance of the
treatment effect must account for the within-subject homogeneity in outcomes that is induced by weighting.8,9 Zhou and
colleagues described a variance inflation factor (VIF) that describes the inflation in the sample size that has occurred
due to the incorporation of weights.10 The concept of the VIF, or equivalently the design effect (DE), arises from sample
survey design and cluster randomized trials.11-13 It represents the increase in the variance of a test statistic due to using
a sample other than a simple random sample. A drawback to using the VIF for the prospective planning of studies and
for the prospective evaluation of statistical power is that calculation of the VIF requires knowledge of the subject-specific
weights, which are only known once the analyses have been conducted.

The objective of the current study is to examine the relationship between study characteristics and the VIF (or DE). We
examine the relationship between the c-statistic (equivalent to the area under the receiver operating characteristic curve)
of the propensity score model, prevalence of treatment and the VIF (or DE). This will allow study investigators to conduct
power calculations before the weights have been estimated. The paper is structured as follows. In Section 2, we provide
background on propensity score weighting and different sets of propensity score weights. In Section 3, we describe a set
of Monte Carlo simulations to describe the relationship between the c-statistic of the propensity score model, prevalence
of treatment and the VIF (or DE). In Section 4, we report the results of these simulations. In Section 5, we provide a brief
case study illustrating the application of these results. Finally, in Section 6, we summarize our findings and place them
in the context of the existing literature.

2 PROPENSITY SCORE-BASED WEIGHTS AND VIFS

Let X denote a vector of observed baseline covariates and let Z denote a binary treatment variable (Z = 0 for control vs
Z = 1 for active treatment). The propensity score is defined as e(X) = Pr(Z = 1|X). In practice, the propensity score is often
estimated using a logistic regression model in which treatment selection is regressed on measured baseline covariates.

Rubin developed a framework for causal inference that is referred to as Rubin’s Causal Model.14 Given an outcome Y,
we define two potential outcomes: Y(0) and Y(1), which denote the outcomes under control and treatment, respectively,
if the subject received either the control or treatment under identical circumstances. The effect of treatment is defined
as Y(1)−Y(0). The average treatment effect (ATE) is defined as ATE = E[Y(1) − Y(0)], while the average treatment effect
in the treated (ATT) is defined as ATT = E[Y(1) − Y(0)|Z = 1].

15 The ATE is the average effect of treatment in the entire
population, while the ATT is the average effect of treatment in those subjects in the population who were treated.

In an RCT the population to which the estimated treatment effect pertains is defined by the study inclusion and
exclusion criteria. Thus, in an RCT, the ATE is a well-defined estimand because the overall population is well defined due
to the use of inclusion and exclusion criteria. Similarly, a well-designed observational study attempts to mimic the target
trial, and, as such, will employ inclusion and exclusion criteria. Thus, in a well-designed observational study, the target
population for the ATE is also well-defined. The target population of the ATT is defined as the subset of treated subjects
in the ATE target population. While this population cannot be defined in terms of inclusion and exclusion criteria, it can
be defined in terms of inclusion and exclusion criteria and receipt of treatment. However, the treated population may vary
across jurisdictions, if there are regional characteristics (eg, insurance policy) that influence treatment assignment.
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Different propensity-score based weights have been defined that allow one to balance measured baseline covariates
between treated and control subjects. The original weights were defined as w(X) = (Z∕e(X)) + (1 − Z∕1 − e(X)).

7 We refer
to these weights as IPTW-ATE weights (where IPTW stands for inverse probability of treatment weighting), as they permit
estimation of the ATE. A second set of weights, w(X) = Z + (e(X)∕1 − e(X)), permit estimation of the ATT.15 We refer to
these weights as IPTW-ATT weights. Use of IPTW-ATE weights implies that the ATE is the target estimands, while use
of IPTW-ATT weights implies that the ATT is the target estimand.

Recently, alternative sets of weights have been proposed. These include overlap weights (OW), matching
weights (MW), and entropy weights (EW).10,16 These are defined as: IPTW-OW = Z(1 − e(X)) + (1 − Z)(e(X)),
IPTW-MW = Z min(e(X), 1 − e(X))∕e(X) + (1 − Z)min(e(X), 1 − e(X))∕1 − e(X), and IPTW-EW = Z(−e(X) log(e(X)) −
(1 − e(X)) log(1 − e(X)))∕e(X) + (1 − Z)(−e(X) log(e(X)) − (1 − e(X)) log(1 − e(X)))∕(1 − e(X)), respectively. Use of these
alternative weights targets inference at the subpopulation for whom there is the greatest clinical equipoise about
treatment.10 These weights have been shown to have desirable statistical properties.10 However, it can be difficult to
formally describe the population to whom the estimand applies, whereas this can easily be done for the ATE. While the
target population for the ATE can be formally defined using the study inclusion and exclusion criteria, this cannot be
done for the target population when using OWs, MWs, or EWs. While the target population cannot be formally defined,
the characteristics of the target population can be described by reporting a table in which the weighted means and preva-
lences of baseline variables are reported.17 In an RCT, an examination of such a table allows one to describe the study
sample, but such a table does not allow one to define the population to which the estimated treatment effect pertains.

The use of weighting induces a within-subject correlation in outcomes as subjects can have weights that are unequal
to one another.8,9 This within-subject homogeneity in outcomes must be accounted for when estimating the variance of
the estimated treatment effect. Thus, while the statistical analyses conducted in the weighted sample can reflect those
conducted in a sample that is free from selection-bias (eg, data from an RCT), variance estimation must account for the
within-subject homogeneity in outcomes induced by weighting.

Zhou et al describe a VIF quantifying the inflation in the sample size due to weighting: VIF = (N1(N −

N1)∕N)
[(∑N

i=1 Ziw(xi)2
/(∑N

i=1 Ziw(xi)
)2

)
+
(∑N

i=1 (1 − Zi)w(xi)2
/(∑N

i=1 (1 − Zi)w(xi)
)2

)]
, where N denotes the sam-

ple size and N1 =
∑N

i=1Zi denotes the number of treated subjects.10 Computation of the VIF requires knowledge of the
weights, which are only known after the analysis has been conducted, which complicates computations to determine sta-
tistical power or the necessary sample size prior to the sample being collected and the weights determined. The VIF (or
DE) is related to the concept of the “effective sample” size discussed by Golinelli et al, which denotes the reduction in
sample size due to the use of matching or the incorporation of weights.18

3 EFFECTS OF STUDY CHARACTERISTICS ON THE VIF: METHODS

We conducted a set of Monte Carlo simulations to examine the effect of the proportion of subjects who were treated and
the c-statistic of the propensity score model on the VIF for a given set of weights. The c-statistic is a measure of discrim-
ination that assesses the ability of the estimated propensity score model to discriminate between treated and untreated
subjects. It ranges from 0.5 to 1, which a value of 0.5 denoting discrimination no different than random choice, and 1
denoting perfect discrimination. The c-statistic can be computed by considering all possible pairs consisting of treated
and untreated subjects and determining the proportion of these pairs in which the treated subject had a higher propensity
score than the untreated subject. Perfect discrimination would occur if all treated subjects had a higher propensity score
than all untreated subjects.

We conducted four sets of simulations to examine the effect of study characteristics on the VIF. In the primary set
of simulations, we assumed that the single predictor variable was normally distributed. We then conducted three sets of
simulations as sensitivity analyses in which the single predictor variable followed either a Beta distribution, a Chi-squared
distribution, or a log-normal distribution.

3.1 Primary simulations: normally distribution predictor variable

For a given prevalence of treatment and c-statistic of the propensity score model, we simulated a continuous baseline
covariate for each of 1 000 000 subjects: xi ∼ N(0, 1). This covariate can be thought of as either a single covariate (eg, age)
or as a linear predictor summarizing information on a set of covariates.
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We specified a logistic model for treatment status as logit(Pr(Z = 1)) = 𝛼0 + 𝛼1X . Under the assumption that var(X|Z =
0) = var(X|Z = 1) = 𝜎2 the c-statistic of the logistic model is equal toΦ(𝜎𝛼1∕

√
2), whereΦ denotes the normal cumulative

distribution function.19 Thus, the c-statistic of the propensity score model is entirely determined by the log-odds ratio
for the continuous variable and the variance of the continuous variable in the treated and control subjects (under the
assumption that this variance is equal in treated and control subjects). Using the above relationship, we determined the
value of α1 that would result in a propensity score model with the desired c-statistic. We then used a bisection approach to
determine the value of α0 that would result in the desired prevalence of treatment in the overall sample. Once the values
of α0 and α1 had been determined, we generated a binary treatment status for each subject using a Bernoulli distribution
with a subject-specific probability determined from the propensity score model. This completed the construction of the
simulated dataset of 1 000 000 subjects. The dataset consisted of two variables: the continuous predictor variable and the
binary treatment status variable.

Once the simulated dataset had been constructed, we regressed the binary treatment status variable on the continuous
predictor using a logistic regression model. We then determined the empirical c-statistic of the fitted propensity score
model. This may differ slightly from the theoretical value because the assumption that var(X|Z = 0) = var(X|Z = 1) = 𝜎2

may be violated in the simulated sample. Using the estimated propensity score we computed the five different sets of
weights described above (IPTW-ATE, IPTW-ATT, IPTW-OW, IPTW-MW, and IPTW-EW) and the corresponding VIFs.

We allowed two factors to vary in our simulations: the c-statistic of the propensity score model and the prevalence of
treatment. We allowed the former to vary from 0.55 to 0.95 in increments of 0.025, while the latter varied from 0.10 to 0.90
in increments of 0.10. We thus considered 153 different scenarios (17 c-statistics× 9 prevalences of treatment).

Figure 1 reports the distribution of the propensity score separately in treated and control subjects when the target
c-statistic ranged from 0.55 to 0.90 in increments of 0.05 and the prevalence of treatment was 0.5. There is one panel for

F I G U R E 1 Distribution of the propensity score in treated and control subjects (primary simulations) [Colour figure can be viewed at
wileyonlinelibrary.com]
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each of the eight empirical c-statistics (as opposed to the target c-statistic). The overlap in the propensity score distribution
between the treated and control subjects decreased as the empirical c-statistic increased. Thus, an increasing c-statistic is
indicative of increasing dissimilarities between treated and control subjects. Note that despite the covariate being normally
distributed, the distribution of the propensity can be non-normal in treated and control patients, particularly when the
c-statistic is moderate to high. There were scenarios with a high overlap in the distribution of the propensity score between
treated and control subjects and scenarios with relatively little overlap.

An R function is provided in the Appendix A that allows one to compute the VIF for each set of weights and for any
value of the c-statistic of the propensity score model and prevalence of treatment. The function has two input parame-
ters: the prevalence of treatment and the target c-statistic of the propensity score model. It assumes that the covariate
follows a standard normal distribution and uses the methods described above to estimate the regression coefficients for
the propensity score model. Along with outputting the VIFs for the different sets of weights, it also provides the empirical
c-statistic that was associated with the simulations.

3.2 Secondary simulations: non-normally distribution predictor variable

We repeated the above set of simulations, using three different distributions for the baseline covariate: a Beta distribu-
tion, a Chi-squared distribution, and a log-normal distribution. In the first set of secondary simulation, we simulated a
continuous baseline covariate for each of 1 000 000 subjects: xi ∼ 𝛽(1, 1). In the second set of secondary simulations, we
assumed that the covariate followed Chi-squared distribution with 3 degrees of freedom. In the third set of secondary
simulations, we assumed that the covariate followed a standard log-normal distribution (ie, the logarithm of the random
variable had mean zero and variance one). In the latter two sets of simulations, once the baseline covariate was simulated,
we standardized it to have mean zero and SD one.

In all three secondary simulations we specified a logistic model for treatment status as logit(Pr(Z = 1)) = 𝛼0 + 𝛼1X
and used an iterative bisection approach to determine values of 𝛼0 and 𝛼1 to induce the desired prevalence of treatment
and c-statistic. Apart from these modifications, the simulations were conducted identically to those described above.
Figures S1–S3 in the online supplemental material describe the distribution of the propensity score separately in treated
and control subjects when the target c-statistic ranged from 0.55 to 0.90 in increments of 0.05 and the prevalence of
treatment was 0.5.

4 EFFECTS OF STUDY CHARACTERISTICS ON THE VIF: RESULTS

4.1 Primary set of simulations

The relationship between the prevalence of treatment, the empirical c-statistic of the propensity score model and the VIF
is reported in Figure 2 (there is one panel for each of the five sets of weights). We added a horizontal line denoting a
VIF of 2 to two of the panels, indicating that the use of weights resulted in an effective sample size that was 50% smaller
than the initial sample. Note that the scale of the vertical axis for the figures for the IPTW-ATE and IPTW-ATT weights
is substantially different from that for the other three sets of weights.

Across all five sets of weights, the VIF increased as the empirical c-statistic of the propensity score model increased.
When using IPTW-ATE weights, the VIF tended to be below 2 when the c-statistic of the propensity score model was
less than or equal to 0.75. The VIF was very large when the c-statistic was very high and the prevalence of treatment was
either very low or very high. Similar observations were made for the ITPW-ATT weights. With IPTW-OW, IPTW-MW,
and IPTW-EW, the VIF was always less than 2, even when the c-statistic of the propensity score model was very high and
treatment prevalence was very low or very high. When the empirical c-statistic of the propensity score model was modest
(≤0.75), then the VIF was always lower than 1.3 for these three latter sets of weights.

For each set of weights we used quantile regression to regress the logarithm of the VIF on the empirical c-statistic
of the propensity score, the square of the empirical c-statistic of the propensity score, and the prevalence of treatment,
with the latter being treated as a categorical variable with nine levels.20,21 The estimated regression coefficients for each
of the five models are reported in Table 1. For each of the 153 scenarios and each set of weights, we computed the
absolute difference between the true VIF and the VIF estimated using the regression coefficients. The median abso-
lute difference across the 153 scenarios was 0.12 (IPTW-ATE), 0.17 (IPTW-ATT), 0.01 (IPTW-OW), 0.01 (IPTW-MW),
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F I G U R E 2 Variance inflation factors/design effects for main simulations [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 Quantile regression results for VIF analysis, where the outcome is log(VIF)

Parameter ATE ATT OW MW EW

Intercept 10.88 8.65 1.18 1 1.27

c-Statistic −34.53 −29.9 −4.59 −4.11 −4.85

c-Statistic2 28.03 24.84 4.21 3.94 4.44

Prevalence of treatment = 0.2 −0.16 0.09 0.06 0.07 0.05

Prevalence of treatment = 0.3 −0.25 0.24 0.09 0.09 0.07

Prevalence of treatment = 0.4 −0.34 0.36 0.1 0.1 0.08

Prevalence of treatment = 0.5 −0.36 0.39 0.1 0.1 0.09

Prevalence of treatment = 0.6 −0.36 0.48 0.1 0.1 0.08

Prevalence of treatment = 0.7 −0.21 0.55 0.09 0.09 0.07

Prevalence of treatment = 0.8 −0.18 0.61 0.06 0.07 0.05

Prevalence of treatment = 0.9 0 0.66 0 0 0

Median absolute prediction error

Main simulations 0.12 0.17 0.01 0.01 0.01

Beta distribution 0.19 0.28 0.02 0.03 0.02

Chi-squared distribution 0.87 2.10 0.04 0.04 0.04

Log-normal distribution 2.81 18.72 0.07 0.06 0.06

Note: The quantile regression models are for log(VIF). The linear predictor must be exponentiated to obtain estimated VIF.

http://wileyonlinelibrary.com
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F I G U R E 3 Comparing estimated and true variance inflation factor/design effect: normal distribution [Colour figure can be viewed at
wileyonlinelibrary.com]

and 0.01 (IPTW-EW) (Table 1). Modified Bland-Altman plots comparing estimated vs true VIFs across the 153 scenar-
ios are reported in Figure 3.22 The horizontal axis denotes the true VIF, while the vertical axis denotes the difference
between true and estimated VIF. There is one panel for each set of weights. The points in each panel are color coded
to indicate the empirical c-statistic associated with that point. On each panel we have superimposed two horizontal
lines denoting the 25th and 75th percentiles of the absolute difference between the true and estimated VIFs across
the 153 scenarios. With the IPTW-ATE and IPTW-ATT weights, prediction error was highest when the c-statistic
was very high. In general, prediction was accurate when the c-statistic of the propensity score model was not very
high.

4.2 Results of secondary simulations

In each of the three sets of secondary simulations, the empirical prevalence of treatment was within 0.01 of the
target prevalence of treatment across the 153 scenarios. Due to these minimal differences, we use the target preva-
lence of treatment in the following analyses. The relationship between the empirical c-statistic of the propensity score
model and the VIF across different prevalences of treatment is described in Figures S4–S6 in the supplemental online
material. In general, for a given prevalence of treatment, the VIF increased as the c-statistic of the propensity score
model increased. There were scenarios in which very large VIFs were observed for the IPTW-ATE and IPTW-ATT
weights.

For each set of secondary simulations, we applied the quantile regression model estimated in the previous section
(whose coefficients are reported in Table 1) when the baseline covariate was normally distributed. The median absolute
difference between estimated and true VIFs are reported in Table 1. Modified Bland-Altman plots comparing estimated

http://wileyonlinelibrary.com
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F I G U R E 4 Comparing estimated and true VIF/DE: Beta distribution [Colour figure can be viewed at wileyonlinelibrary.com]

and true VIFs across the 153 scenarios for each of the three sets of secondary simulations are described in Figures 4–6. As
in the main set of simulations, prediction error tended to be minimal except when the c-statistic of the propensity score
model was very high.

5 CASE STUDY

Assume that an investigator wanted to design an observational study to compare the effectiveness of coronary artery
bypass graft (CABG) surgery with that of percutaneous coronary interventions with drug eluting stents in patients with
unprotected left main coronary artery disease. In a previous study on this topic, Zheng and colleagues reported a propen-
sity score model with a c-statistic of 0.831 and that, in their single-center study, approximately two thirds of patients were
treated with CABG surgery.23

We assumed that the prevalence of CABG surgery in the setting in which the new study is being planned was 0.67
and that the c-statistic of the propensity score model was 0.83 (ie, we assumed that both the prevalence of treatment
and the c-statistic in the new study would be the same as in the study of Zheng and colleagues). We estimated the VIF
for the five different sets of weights using both the regression equations in Table 1 and the R function provided in the
Appendix A (to do so, we rounded the prevalence of treatment to 0.70, as this factor is categorical in the regression
model). When using the regression equations in Table 1, the estimated VIFs were 3.75 (IPTW-ATE), 4.42 (IPTW-ATT),
1.43 (IPTW-OW), 1.47 (IPTW-MW), and 1.45 (IPTW-EW). When using the R function, the estimated VIFs were 1.71
(IPTW-ATE), 2.41 (IPTW-ATT), 1.35 (IPTW-OW), 1.37 (IPTW-MW), and 1.35 (IPTW-EW). The function indicated that
the empirical c-statistic upon which this was based was 0.80. Using an input c-statistic of 0.88 produced an empirical
c-statistic of 0.83. The VIFs associated with this value of the c-statistic were 3.11 (IPTW-ATE), 5.28 (IPTW-ATT), 1.46
(IPTW-OW), 1.52 (IPTW-MW), and 1.42 (IPTW-EW).

http://wileyonlinelibrary.com
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F I G U R E 5 Comparing estimated and true VIF/DE: Chi-squared distribution [Colour figure can be viewed at wileyonlinelibrary.com]

In an RCT in which the probability of assignment to the experimental intervention was 0.67, we would require 865
subjects under the assumption that the event was observed for 25% of subjects (and the remaining 75% were censored) to
have a power of 80% to detect a hazard ratio of at least 1.50 using a significance level of 0.05 (Source: PASS 2020, version
20.0.3, NCSS LLC, Kaysville, UT).

Given the within-subject homogeneity in outcomes induced by weighting, we would multiply the above sample
size (865) by the estimated VIF. Using the VIFs obtained using the R function (with a c-statistic of 0.88 producing an
empirical c-statistic of 0.83), we would need a sample size of 3244 (IPTW-ATE), 3823 (IPTW-ATT), 1237 (IPTW-OW),
1272 (IPTW-MW), or 1254 (IPTW-EW). Thus, depending on the weights used, the observational study that we are
designing would require between 1237 subjects and 3823 subjects. Note that the choice of which set of weights to
use should not be decided primarily by which requires the lowest sample size or which results in the greatest statis-
tical power. Instead, the decision should be informed, at least in part, by which target estimand is most appropriate
for addressing the investigators’ researcher question. The original study by Zheng and colleagues included 4046 sub-
jects, and thus a study of that size would have been adequately powered, regardless of which set of weights the authors
elected to use.

6 DISCUSSION

Sample size and power calculations for studies using propensity score weighting require knowledge of the weights to
allow the computation of the VIF. However, the weights are only known once the study sample has been assembled.
The reporting of post-hoc power calculations have been criticized by statistical authors.4 The results provided in the
current study can facilitate sample size and power calculations before conducting weighted analyses. These results can
facilitate good study design by allowing for sample size and power calculations to be conducted prior to the study analyses
being conducted.

http://wileyonlinelibrary.com
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F I G U R E 6 Comparing estimated and true VIF/DE: log-normal distribution [Colour figure can be viewed at wileyonlinelibrary.com]

Propensity-score weighting accounts for confounding using weighting. In the weighted sample, the distribution of
measured baseline covariates is similar in treated subjects as in control subjects.6 Consequently, the statistical analyses
conducted in the weighted sample can reflect the analyses that would be conducted in an RCT with a similar outcome
variable. Thus, for continuous outcomes, the mean outcome can be computed in each arm and the difference in means
reported. For binary outcomes, the probability of success or failure can be reported in each arm and the difference and
ratio of these probabilities can be reported as the absolute risk difference and the relative risk. For time-to-event outcomes,
survival curves can be reported along with the absolute difference in survival at clinically relevant times. These can be
complemented with the reporting of a hazard ratio from a univariate Cox regression model.24 While the estimation of
the point estimate of the effect of treatment in a weighted analysis can reflect what would be done in an RCT, variance
estimation must account for the within-subject homogeneity in outcomes induced by weighting. Note that the validity
of conclusions drawn from propensity score analyses rest on two assumptions: (i) the assumption of no unmeasured
confounders; (ii) the positivity assumption.5 The latter assumption is that all subjects have a non-zero probability of
receiving either treatment.

We suggest that investigators using weighting in observational studies proceed as follows: first, obtain estimates
of the c-statistic of the propensity score model and of the prevalence of treatment. These can be informed by pre-
viously published research, pilot studies, or by the investigators’ clinical judgment. Granger and colleagues con-
ducted a review of the use of propensity score diagnostics in papers published in the medical literature and noted
which studies reported estimates of the c-statistic of the propensity score model.25 Similarly, Sturmer and colleagues
reviewed the use of propensity score methods in the medical literature.26 They note that the c-statistic of the propen-
sity score model was presented in 73 studies and provide a table containing the study-specific c-statistics. These
reviews can serve as resources for obtaining plausible estimates of the c-statistic across different areas of medi-
cal research and for different exposures. Alternatively, investigators can select a range of plausible values of the
c-statistic. Second, compute the VIF using either the regression results in Table 1 or the R function provided in the

http://wileyonlinelibrary.com
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Appendix A. Third, determine the necessary sample size for a two-armed RCT with the same prevalence of treatment
and with the same type of outcome variable. Fourth, inflate the estimated sample size by the VIF obtained in the
second step.

We examined the VIF for five different sets of weights. The VIFs for the use of IPTW-OW, IPTW-MW, and
IPTW-EW tended to be much smaller than those for IPTW-ATE and IPTW-ATT. This finding complements those
of Zhou and colleagues who found that the latter three sets of weights results in estimates that had lower
standard errors and that displayed lower variability compared to estimates obtained using the first two sets of
weights.10

The choice of which set of weights to use should not be dictated solely by which induces the lowest VIF, and thus results
in the highest statistical power (assuming a fixed sample size). Instead, the primary motivation should be which target
estimands best addresses the investigators’ research question. The differences between the VIFs for the first two sets of
weights and the last three sets of weights were amplified as the c-statistic increased. As the c-statistic increased, differences
in the distribution of the propensity score between treated and control subjects were amplified. This suggest that in settings
with a high c-statistic, there is likely a sub-population of subjects who would most often receive the control exposure and
a different sub-population of subjects who would most often receive the active exposure. In these settings, the focus of
interest may be on those subjects for whom there is clinical equipoise. Thus, in settings with a very high c-statistic, the
use of IPTW-OW, IPTW-MW, or IPTW-EW may be preferable to the use of IPTW-ATE or IPTW-ATT weights. It is these
settings that these three sets of weights offer a striking advantage, resulting in much smaller VIFs that the use of the other
two sets of weights.

There are certain limitations to the current study. First, there are other propensity score methods, such as matching
on the propensity score. We have focused on methods to estimate sample size requirements and statistical power when
using weighting-based methods. Future research should focus on developing comparable methods for matching-based
methods. Second, there is another set of weights that we have not examined: stabilized weights, which are defined as
wstab(X) = Pr(Z = 1)(Z∕e(X)) + Pr(Z = 0)(1 − Z)∕(1 − e(X)).

8,27 However, if one computes the VIF associated with the
use of stabilized weights, it is equal to the VIF associated with the use of IPTW-ATE weights. Thus, all our find-
ings for IPTW-ATE weights would apply to their stabilized counterpart. Third, our simulations were restricted to
settings with a single covariate. However, our findings should be generalizable to more complex settings. If there
were multiple covariates (either continuous, categorical, or a mixture of the two), we could consider the linear
predictor that combined these covariates. As the number of covariates increased, the central limit theorem would
suggest that, in many settings, the linear predictor would be approximately normally distributed. Finally, we have
assumed a prospective sample size calculation and that the assembled cohort will reflect this calculation. However,
the proposed method may adapted to work with dynamic sample size methods or the necessary sample size may be
re-estimated once interim data are available and accurate estimates of the c-statistic and prevalence of treatment are
available.

In summary, knowledge of the VIF allows for conducting sample and power size calculations for observational studies
that use propensity score weighting. We provide methods to estimate the VIF based on two characteristics of the obser-
vational study: the prevalence of treatment and the anticipated c-statistic of the propensity score model. Implementation
of these methods allows for improvements in the design and reporting of observational studies that use propensity score
weighting.
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APPENDIX A

R code for computing VIF
# Function for estimating VIF as a function of c-statistic and
# prevalnce of treatment.
# THIS SOFTWARE IS PROVIDED FOR ILLUSTRATIVE PURPOSES AND COMES WITH ABSOLUTELY
# NO WARRANTY.

library(rms)

vif <- function(auc,prev.treat){
# auc: c-statistic of PS model.
# prev.treat: Prevalance of treatment.

set.seed(1)

N <- 1000000
# Population size.

################################################################################
# Generate covariate.
################################################################################

x <- rnorm(N)
# Assume standardized so that it is standard normal.

################################################################################
# Generate beta for PS model.
################################################################################

# auc = phi(sigma*beta/sqrt(2))

beta.ps <- sqrt(2) * qnorm(auc)

################################################################################
# Determine intercept for PS model for desired prevalance of treatment.
################################################################################

bias <- 1

lower.int <- -20
upper.int <- 20

while (bias > 0.001){

beta0.treat <- (lower.int + upper.int)/2

# Generate treatment status for each subject.
logit.treat <- beta0.treat + beta.ps*x
p.treat <- exp(logit.treat)/(1 + exp(logit.treat))
treat <- rbinom(N,1,p.treat)
emp.prev.treat <- mean(treat)

bias <- abs(prev.treat - emp.prev.treat)

if (emp.prev.treat > prev.treat) {
upper.int <- beta0.treat
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} else {
lower.int <- beta0.treat

}
remove(logit.treat,p.treat,emp.prev.treat)

}

remove(bias,lower.int,upper.int)

################################################################################
# Compute weights
################################################################################

psm <- lrm(treat ∼ x)
auc.emp <- psm$stats[“C”]
ps <- exp(psm$linear.predictor)/(1 + exp(psm$linear.predictor))

iptw <- (treat/ps) + (1-treat)/(1-ps)
att <- treat + (1-treat)*(ps/(1-ps))
ow <- treat*(1-ps) + (1-treat)*ps
mw <- treat*pmin(ps,1-ps)/ps + (1-treat)*pmin(ps,1-ps)/(1-ps)
entropy <- treat*(-ps*log(ps) - (1-ps)*log(1-ps))/ps +

(1-treat)*(-ps*log(ps) - (1-ps)*log(1-ps))/(1-ps)

remove(x,beta.ps,psm,ps)

################################################################################
# Compute VIFs
################################################################################

N1 <- sum(treat)
N0 <- N - N1

VIF.iptw <- (N1*N0/N) * (sum(treat*iptw*iptw)/((sum(treat*iptw))∧2) +
sum((1-treat)*iptw*iptw)/((sum((1-treat)*iptw))∧2) )

VIF.att <- (N1*N0/N) * (sum(treat*att*att)/((sum(treat*att))∧2) +
sum((1-treat)*att*att)/((sum((1-treat)*att))∧2) )

VIF.ow <- (N1*N0/N) * (sum(treat*ow*ow)/((sum(treat*ow))∧2) +
sum((1-treat)*ow*ow)/((sum((1-treat)*ow))∧2) )

VIF.mw <- (N1*N0/N) * (sum(treat*mw*mw)/((sum(treat*mw))∧2) +
sum((1-treat)*ow*ow)/((sum((1-treat)*ow))∧2) )

VIF.entropy <- (N1*N0/N) * (sum(treat*entropy*entropy)/((sum(treat*entropy))∧2) +
sum((1-treat)*ow*ow)/((sum((1-treat)*ow))∧2) )

remove(N1,N0,iptw,att,ow,mw,entropy)

return(c(auc,auc.emp,prev.treat,VIF.iptw,VIF.att,VIF.ow,VIF.mw,VIF.entropy))

}


