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Abstract

Background: Pixel-wise, parametric T2* mapping is emerging as a means of automatic measurement of iron
content in tissues. It enables quick, intuitive interpretation and provides the potential benefit of spatial context
between tissues. However, pixel-wise mapping uses much lower SNR data to estimate T2* when compared to
region-based mapping thereby decreasing both its accuracy and precision. In this study, the effects that noise
has on the precision and accuracy of pixel-wise T2* mapping were investigated and techniques to mitigate those
effects are proposed.

Methods: To study precision across T2* mapping techniques, a pipeline to estimate the pixel-wise standard deviation
(SD) of the T2* based on the fit residuals is proposed. For validation, a Monte-Carlo analysis was performed in which
T2* phantoms were scanned N = 64 times, the true SD was measured and compared to the estimated SD. To improve
accuracy and precision, the automatic truncation method for mitigating noise bias was extended to pixel-wise fitting
by using an SNR scaled image reconstruction and truncating low SNR measurements. Finally, the precision and accuracy
of non-linear regression with and without automatic truncation, were investigated using Monte-Carlo simulations.

Results: Measured and estimated SD’s were >99.9% correlated for non-linear regression with and without truncation.
Non-linear regression with automatic truncation was shown to be the best mapping technique for improving accuracy
and precision in low T2* and low SNR measurements.

Conclusions: A method for applying an automatic truncation method to pixel-wise T2* mapping that reduces T2*
overestimation due to noise bias was proposed. A formulation for estimating pixel-wise standard deviation (SD) maps
for T2* that can serve as a quality map for interpreting images and for comparison of imaging protocols was also
proposed and validated.
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Background
T2* mapping is a non-invasive, diagnostic MR tool used
to detect iron overload in the brain [1], liver [2], and
heart. [3-7] It has been shown that in myocardial tissue,
iron concentration is inversely proportional to the trans-
verse relaxation decay rate after electromagnetic excita-
tion also known as T2*. T2* can be measured by
sampling points along the T2* decay curve using a
gradient-echo sequence and then fitting the points to an
exponential function -. This tool allows clinicians to study
and diagnose diseases that cause iron overload in tissue
such as β -thalassemia and hemochromatosis [3-7].
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T2* measurement was initially implemented as an
ROI-based technique in which an ROI is manually
drawn, and a single T2* value is calculated from the
average signal intensities at various echo times within
that ROI [4,5]. Recently, this idea was extended to pixel-
wise mapping which can be produced automatically
without user interaction [7]. Parametric maps of T2*
values have potential to provide more spatial context
than the ROI-based method in that the delineation of
adjacent tissues with different T2* values may be less ap-
parent on the raw images. Studies have shown that using
pixel-wise T2* maps as opposed to the region-based
approach reduces inter- and intra-observer variability
[8]. However, pixel-wise T2* mapping suffers from
having to use pixel-wise intensity measurements that are
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Figure 1 Plot of SNR vs. Signal intensity for different numbers
of coils for root sum of squares combining. As we increase the
number of coil elements, the noise bias (which is the signal at
an SNR = 0) increases. Cardiac surface coil arrays can have up
to 32-elements, however, the use of adaptive coil combining
reduces the effective number of coils to one (see arrow) thereby
reducing the noise bias.
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much noisier than the averaged intensity measurements
used in ROI-based mapping. This noise affects both the
precision and accuracy of estimated T2* values.
In this paper, the effects that MR noise has on the pre-

cision and accuracy of T2* values estimated using the
pixel-wise mapping method are investigated. The auto-
matic truncation method [9] for mitigating noise bias
was extended to pixel-wise fitting by using the SNR
scaled image reconstruction [10] and truncating low
SNR measurements. We hypothesized that automatic
truncation would improve T2* measurement accuracy by
reducing bias which results from low signal-to-noise ra-
tio at long echo times for cases of low T2*.
The accuracy and precision of the exponential fit is

also dependent on the method for fitting. Exponential
regression using a non-linear fit is widely used [9,11,12],
although some users continue to use the simpler linear
regression to the logarithm of the signal, which is com-
putationally faster. We use the non-linear fitting in this
work.
A method for evaluating the precision of T2* mapping

techniques by estimating the pixel-wise standard devi-
ation (SD) of the T2* based on the fit residuals which
were transformed analytically to compute the parametric
error is proposed. We hypothesized that pixel-wise SD
maps would be a useful quality metric for in-vivo map-
ping and would also be useful for comparison and
optimization of imaging protocols.

Methods
Pixel-wise T2* estimation
The T2* recovery curve is described by a 2-parameter
mono-exponential of the form:

y TEð Þ ¼ A � exp −
TE
T 2

�

� �
ð1Þ

where y is the measured signal intensity, TE is the echo
time, A is the signal amplitude, and T2* is the transverse
decay constant.
Signal intensities along the T2* recovery curve are

measured using a multi-echo GRE sequence and an ex-
ponential regression is performed to fit the measured
data to the signal model described above. The regression
estimates A and T2* such that the fit residuals are
minimized in the least-squares sense. In the case of
ROI-based mapping, the regression is performed on one
set of average signal intensities inside a manually drawn
region for all echo times. In pixel-wise T2* mapping, this
process is done on a per-pixel basis generating a para-
metric map that displays each pixel’s T2* value. This
map may be used to evaluate whether the tissues
have abnormally low T2* values which is a sign of iron
overload.
Both non-linear and especially linear regression
methods tend to overestimate intrinsically shorter T2*
values in the range of 0–6 ms due to a noise bias in
the acquired data. Noise bias results due to magnitude
detection of the normally distributed complex noise,
which results in a Rician distribution [13]. For a single coil
receiver, the noise bias is approximately 1.25 standard
deviations and becomes more significant when root sum-
of-squares combining is used with a larger number of coil
elements (Figure 1) computed using the non-central chi
distribution of magnitude detected multi-echo images
(Equation 1–3 of [13]). Using adaptive coil combining
[10], the effective number of coils becomes one, which
minimizes the noise bias.
Tissues with short T2* have low SNR for long echo

times and thus the long echo time measurements are
contaminated by the noise bias leading to an apparent
non-exponential curve (Figure 2). In this figure, the
measured data (in blue) is simulated by adding complex
random noise to exponential decay data at the given
SNR and T2* value, followed by magnitude detection.
For shorter T2* data, if all points are weighted equally,
inaccurate and biased points at long echo times will pull
the fitted exponential up making the T2* estimate artifi-
cially longer. Otto et al. showed that for the log-linear
method, the overestimation can be large enough to po-
tentially lead to misdiagnosis [14]. This effect is not ob-
served in intrinsically longer T2* because their curves
decay much slower, and low SNR points samples do not
occur until later echo times which are not sampled.



Figure 2 Observed data for a low SNR measurement (SNR = 15)
with a T2* of 1.5 ms is simulated. In the fitted curve, T2* appears
artificially longer due to the noise bias which become apparent in
the last several points.
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To address noise bias, Taigang et al. [9] proposed an
automatic truncation method where inaccurate points
are truncated based on whether or not that truncation
improves the R2 metric of the fitted curve. However, this
method is only applicable to ROI-based fitting and not
pixel-wise due to insensitivity of the R2 metric in low
SNR measurements. A modified scheme for truncation
of inaccurate points that can be applied to pixel-wise fit-
ting is proposed. By utilizing an image reconstruction
scheme that outputs images directly in SNR units [10],
an SNR threshold is chosen so that all points below it
are considered inaccurate and are not used in the
regression.

SD Map theory
The precision of an estimated T2* value can be assessed
by estimating the covariance matrix of the fitted parame-
ters. The formulation follows the approach described by
Kellman et al. [15,16] for the purpose of T1 mapping.
The SD is estimated by computing the covariance matrix
for the signal model parameters by inverting a first-
order approximation to the parameters’ Hessian matrix:

C ¼ σT2
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where σT 2
�2 and σA

2 are the variances of T2* and A re-
spectively, y (TEi) is the signal model equation, and σi

2

is the variance of the measurement noise. The partial
derivatives of the signal model with respect to its
parameters for each echo time TEi were analytically de-
rived and found to be:
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The noise is independent and identically distributed
across measurements with a normal distribution (σi = σ)
and the noise standard deviation (σ) may be robustly
estimated by using the median absolute deviation of the
fit residuals [17].

Imaging
Images were acquired on a 1.5 T clinical MR scanner
(MAGNETOM Aera, Siemens AG, Erlangen, Germany)
using a multi-echo GRE sequence. A dark blood prepar-
ation [18,19] was used to suppress the strong blood pool
signal in order to prevent the adjacent blood pool signal
from contaminating the desired myocardium signal. For
both the in-vivo and phantom studies, a breath-held,
segmented acquisition with ECG triggering was used.
The multi-echo GRE sequence used gradient flyback for
mono-polar readout with 8 echoes (TE = 1.6, 3.9, 6.2,
8.5, 10.8, 13.2, 15.5, and 17.8 ms and TR = 19.7 ms). The
matrix size was 256×144 with typical FOV of 360×270
mm2 and 8 mm slice thickness. The excitation flip angle
was 18°. There were 9 segments acquired each heartbeat.
Parallel imaging with factor 2 acceleration was used for
a single subject to compare the precision with and with-
out acceleration.

Processing
A 2-parameter mono-exponential signal model was used
to fit all T2* recovery curve data. The downhill simplex
minimization proposed by Nelder and Mead [20] was
used for the non-linear fit with the initial guess being
the solution of the log-linear approach. Images were re-
constructed in SNR units and measurements were ex-
cluded for all TEs after values fell below a specified SNR
threshold. An SNR threshold of 2.5 SDs was used for
automatic pixel-wise truncation of measurements. All T2*
mapping methods were written in C++ and implemented
in the Gadgetron [21] medical image reconstruction
framework for inline processing on the scanner.

Phantom studies
Phantom studies were conducted in order to validate the
SD map estimation method. Six agar gel phantoms were
created from solutions of 1.5% agarose, cupric sulfate,
saline, and varying amounts of Feridex I.V. (Advanced
Magnetics Inc., Cambridge, MA), an intravenous con-
trast agent containing colloids of iron oxide. Depending
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on the concentration of Feridex, each phantom had a
different T2* which was chosen to cover a range of 3 –
30 ms. The phantoms were scanned N = 64 times in
order to calculate an estimate of the SD at each pixel
and compare it to the mean of estimates provided by the
SD maps. ROIs were drawn for each tube and the pre-
dicted and calculated SD’s were compared. To perform
the fitting, both automatic truncation and no truncation
were used to quantify the effect on the standard devi-
ation. We hypothesized that there would be negligible
difference between estimated SD’s for both methods.

In-vivo studies
In-vivo studies were performed with the SNR-scaled re-
construction in order to measure the typical SNR in the
septum (N = 20 subjects). SNR estimates were performed
using the amplitude fit parameter, i.e., at TE = 0. These
studies were run in order to determine the proper range
of SNR’s to use in our Monte-Carlo simulations for the
noise bias and accuracy studies. Septal ROI values (n =
20) for T2* and SNR were compared with measured SD
from the SD maps. This study was approved by the local
Institutional Review Board of the National Heart, Lung,
and Blood Institute, and all patients gave written in-
formed consent to participate. All patients were referred
for CMR assessment of known or suspected heart dis-
ease. SD maps were generated for all studies to evaluate
their potential for quality maps.

Noise bias and accuracy experiment
In order to study how precision and accuracy are
affected by noise for different regression methods, Monte-
Carlo simulations were performed using MATLAB
(MathWorks, Natick, MA) in which phantoms of dif-
ferent T2* values and SNR’s were simulated. For each
phantom, ground truth decay curves were constructed
with T2* = 2, 4, 6, 8, 10, 15, 20, 25 ms and SNR = 15,
25, 35, 45. White noise was added and magnitude
detection was used assuming a single coil element
corresponding to adaptive combining. Phantoms were
Figure 3 Phantom validation of SD Maps for T2* using 64 repeated m
3–30 ms range. Multi-echo images are shown scaled in SNR units for 8 ech
then processed with and without automated trunca-
tion. For each T2*-SNR combination, N = 32,768 trials
were ran and both the bias error and standard devi-
ation of the estimated T2* were calculated to compare
methods. Median values were used rather than mean
values to avoid contamination by outliers.

Results
Phantom validation of SD maps
Multi-echo images and corresponding T2* and SD maps
are shown in Figure 3 for the phantom study. SNR for
the 6 tubes ranged from 40 to 43, calculated at TE = 0
from the exponential fit. Figure 4 plots the estimated SD vs.
measured SD for both no truncation and automatic trunca-
tion. Measured SD’s and estimated SD’s were >99.9% corre-
lated for both methods. No significant difference was found
between the slopes of the automatic truncation and no
truncation best fit lines. The measured and estimated SD’s
are in close agreement.

Noise bias and accuracy experiment
Results of Monte-Carlo simulation of the accuracy and
precision for T2* fitting are shown in Figure 5. The bias
error increases for low T2* and low SNR Truncation
mitigates noise bias at a small penalty in precision at
low T2*.

In-vivo measurements
The average SNR in the septal ROI’s was 34.3 ± 7 (N = 20
subjects). The average value of SD measured in the septal
ROI was 4.7 ± 1.5 ms (m ± SD, N = 20). In these same
ROIs, the average T2* was 37.4 ms. Using the measured
value of T2* = 37.4 ms and average SNR = 34.3, the SD
predicted by Monte-Carlo calculation was 3.7 ms.
Examples of good and poor quality breath-holds for

T2* and their corresponding SD maps are shown in
Figure 6. The SD in the septal region was approximately
3 ms for the good breath-hold and approximately 30 ms
for the poor breath-hold. The SD may be used to mask
T2* values that are too noisy (Figure 6, right column) as
easurements. Phantoms consisted of 6 tubes with T2* values in
oes. T2* maps on scale 0–40 ms, and SD maps on scale 0–6 ms.



Figure 4 Measured vs estimated SD’s for T2* phantom validation are plotted for exponential fitting method without truncation (left)
for noise bias mitigation and with truncation (right). The estimated SD was in excellent agreement with the measured SD in both cases.
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means of indicating alerting users to low confidence
areas.
T2* and corresponding SD maps (Figure 7) are shown

for a single subject comparing 2 protocols: without par-
allel imaging acceleration (left) and using parallel im-
aging factor 2 (right). The T2* maps are similar in
appearance, but the precision of the accelerated map is
degraded as expected by trading off acquisition time for
lower SNR. The mean value of T2* in the septum was
37.6 ms without acceleration and 38.93 with acceler-
ation. The pixel-wise SD in the septal region was 3.8 ms
without acceleration and 7 ms with acceleration.

Discussion
Statement of key findings
We demonstrated that it is possible to estimate pixel-
wise SD maps and that they can potentially serve as a
quality metric for improving the confidence in interpret-
ing images. SD maps may also be useful for optimizing
imaging protocols. As shown in the in-vivo case in
Figure 6, poor breath-holding and/or arrhythmias re-
sulted in higher SD estimates due to the ghosting
Figure 5 Monte-Carlo simulation of the accuracy (bias on left) and pr
simplex fit. Coefficient of variation (SD/T2*) is shown on right. Dotted line
lines represent fitting using proposed automatic truncation of values below
SNR. Truncation mitigates noise bias at a very small penalty in precision at
artifacts that cause uncharacteristic variations in the col-
lected recovery curve data. Signal intensities from differ-
ent pixels are mixed together resulting in recovery
curves that are no longer exponential. Note that this
non-exponential behaviour is a model mismatch and no
longer represents the actual formulation of a noise limited
SD. Nevertheless, it is still serves as a useful indication of
quality of the T2* map.
It was also demonstrated that the automatic truncation

method can be extended to pixel-wise mapping without
suffering from the effects of low SNR data. The benefit
of truncating low SNR measurements is only relevant
for very low T2* and low SNR as seen in the accuracy
and precision plots in Figure 5. Longer T2* curves are not
truncated at all since points that fall below the noise
threshold do not occur until later echo times which are
not sampled. It is important to note that truncation may
actually cause a small bias (on the order of 0.1 ms) in
fitted curves with intermediate T2*’s between 5 and 15 ms
depending on the SNR. This occurs because the last
sampled points for these curves are at or close to the
SNR = 2.5 threshold and so they get truncated. Points at
ecision (center) of estimated T2* vs true T2* and SNR using the
s represent fitting without truncation to mitigate noise bias, and solid
a specified SNR. Note that bias error increase for low T2* and low

low T2*.



Figure 6 Examples of in-vivo short axis view T2* and SD maps. The top row shows an example of a good quality breath-hold acquisition
while the bottom row shows a poor quality case, which was contaminated by strong motion related ghosting artifacts. Ghosting artifacts in the
T2* maps resulted in an increase in the apparent SD (displayed between 0–10 ms). The third column shows the T2* maps in which unreliable
points with a high SD were masked. The SD map provides quality control.
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the threshold are just beginning to become biased and
may not be completely inaccurate. Truncation of these
end points make it seem as if the curve is not decaying as
fast causing the T2* to be slightly overestimated. However,
this bias is considered slight compared to the gain in pre-
cision and accuracy when estimating shorter even T2* (<5
or 6 ms). The T2* bias for the lowest T2* and SNR consid-
ered (T2* = 2 ms and SNR = 15) went from 3.6 ms to
0.6 ms after applying truncation of low SNR values.

SD maps
The measured and estimated SD’s were well correlated
and SD values measured in septal ROIs were in close
agreement with prediction. The slopes of the best fit
lines both with and without truncation were within
approximately 5% which is more than sufficient for pur-
pose of a quality metric. This can be attributed to longer
T2*s which are difficult to estimate because there are
not enough samples to fully characterize the exponential
behavior. These curves almost look linear as there are
not enough samples at longer echo times where true ex-
ponential behaviour is observable.
SD maps serve the purpose of telling us the precision

of T2* measurement. If the precision is poor for areas of
interest in the image, the clinician would know that they
cannot trust it and should re-scan. SD maps could also
be useful for discriminating various thresholds for man-
agement of diseases, particularly if the T2* values are
borderline. SD maps could also potentially be very useful
for prototyping and comparing precision between differ-
ent T2* techniques as in Figure 7.
The SD map only provides information regarding the

random error and does not in itself provide any informa-
tion on systematic bias errors. Although the SD map
may indicate obvious artifacts, it will not necessarily re-
flect bias errors due to mechanisms such as intravoxel
dephasing due to susceptibility gradients. Intravoxel
dephasing results in a reduction in the apparent T2* which
is artifactual, i.e., not a characteristic of the underlying tis-
sue. Signal decay due to intravoxel dephasing is not purely
exponential and will result in some model mismatch that
may increase the estimated SD. The effect of intravoxel
dephasing was not studied and was not considered signifi-
cant in the septal region, however is important to consider
in the lateral wall and near vessels. Intravoxel dephasing is
generally more significant at higher field strength, e.g., 3 T
but was not considered in this study.

Effect of truncation on SD
Initially we hypothesized that truncation was only going
to affect the accuracy of T2* measurements as it was for-
mulated as a fix for noise bias at short T2*. Calculations
of precision and accuracy based on Monte Carlo trials
showed that the SD was also lowered when truncation
was used for lower T2*. The model mismatch due to
noise bias causes regression methods to be highly un-
stable thereby increasing the SD. Using truncation solves
the model mismatch problem, and therefore the SD is



Figure 7 Example of T2* and SD maps comparing imaging protocols with (left) and without (right) parallel imaging acceleration
illustrating the trade-off in acquisition time and measurement precision, and demonstrating how SD maps may be used in comparing
performance of imaging protocols.
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slightly lower for very low T2* values. SD is unaffected
by truncation for higher T2* values because truncation
is only applied to faster decaying curves which have
points that fall below the threshold. This reduction in
SD corresponds to the improvements in R2 as described
by Taigang et al. [9].

Complex vs. magnitude fitting
In the regression methods described in this paper, fitting
was performed on the magnitude of complex image data
which is the conventional approach. Noise bias may be
eliminated by fitting to the complex signal instead of the
magnitude, but this requires accurate knowledge of
the off-resonance frequency. It is possible to implement
complex fitting by estimating the field map from fat-
water separated imaging [22-24], but complex fitting was
beyond the scope of this paper. Fat water separated im-
aging combined with T2* estimation offers the additional
benefit of a robust elimination of fat from contaminating
the water signal.

ROI measurements
The formulation of pixel-wise SD maps may be extended
to ROI measurements provided that the number of
independent samples in the ROI is known or can be esti-
mated. The SD of the mean T2* within an ROI is calcu-
lated as SDROI = SDpixel/sqrt(Nindep), where SDpixel is the
pixel-wise SD formulated in this work and Nindep is the
number of independent pixels in the ROI. The number
of independent pixels is generally less than the number
of image pixels in the ROI due to image interpolation
and other effects that blur the spatial resolution. A gen-
eral framework for calculating the SD for ROI measure-
ments is provided by Hansen, et al. [25], which may be
extended to parametric mapping.

Fitting method
There have been other signal models considered that
provide corrections for signal model mismatches such as
the offset exponential and the bi-exponential [12], but
these require more parameters to be estimated which
lowers the regression precision. When fitting to a mono-
exponential model, there are two types of regression that
are often used: log-linear and non-linear regression. In a
log-linear regression, the measured pixel intensities y are
transformed by log operation, which effectively linearizes
the data. The parameters can then be estimated using
the ordinary least squares method. Since an analytical
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solution can be directly obtained by formula, the log-
linear method is computationally more efficient than any
non-linear method. However, using a log-linear regres-
sion is not recommended because its formulation
assumes that samples are homoscedastic (uniform vari-
ance), which is no longer true for T2* decay curve data
after a log transformation. Without homoscedasticity of
samples, log-linear regression becomes unstable, which is
why non-linear regression was chosen for experiments
described in this paper. Non-linear regressions methods
employ iterative direct-search minimization algorithms
such as Levenberg-Marquardt or downhill simplex to esti-
mate parameters. These methods, however, are computa-
tionally slower and require a close initial guess in order to
ensure convergence.

Limitations
One of the limitations of our study was that the imaging
protocol was not suitable for very short T2*. The earliest
echo time at which recovery curves were sampled was
1.56 ms, which for very short T2*’s (<3 ms) means that
there are not enough points sampled before measure-
ments are too noisy and have essentially become the noise
bias. In order to sample with shorter echo times and
smaller echo spacing it is necessary to reduce the readout
resolution. For severe iron overload in the liver where T2*
values are much shorter (<3 ms), it is recommended to
use a readout matrix of 128 with increased bandwidth.
SNR scaled reconstruction can be useful for determin-

ing when to switch protocols to a lower resolution ac-
quisition with shorter initial echo time and echo time
spacing. This may be readily implemented by inspection
of the number of measurements used in the automatic
truncation, which can be output as another image series.
If the number of significant measurement reaches 3,
then it is an indication of very short T2* and suggests
repeating at lower spatial resolution with shorter echo
times.

Conclusions
A method for applying an automatic truncation method
to pixel-wise T2* mapping that reduces T2* overesti-
mation due to noise bias was proposed. A formulation
for estimating pixel-wise SD maps for T2* that can serve
as a quality map for interpreting images and for com-
parison of imaging protocols was also proposed and
validated.
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