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Humanmilk (HM) is the golden standard of infant nutrition that can protect immature body

function and enhance nutritionmetabolism to ensure infant growth. Region specificity and

lactation period could change the protein composition in HM. In this research, proteomics

analysis was used to compare proteomes across eight cities, namely Harbin, Lanzhou,

Guangzhou, Chengdu, Jinhua, Weihai, Zhengzhou, and Beijing, which represented the

northeast, northwest, southeast, southwest, east, and north and central regions of

China,. Proteins varied significantly among the cities. These different proteins were

mainly involved in the process of platelet degranulation, innate immune response, and

triglyceride metabolic process, which might be due to different living environments. These

differences also lead to variation in protection and fat metabolism from mothers to infants

in different cities. Four proteins were expressed differently during 6 months of lactation,

namely Dipeptidyl peptidase 1, Lysozyme C, Carbonic anhydrase 6, and Chordin-like

protein 2. The changes in these proteinsmight be because of the change of growth needs

of the infants. The findings from our results might help to improve the understanding of

HM as well as to design infant formula.

Keywords: Chinese human milk, human milk, cities, lactation period, proteomics

INTRODUCTION

Human milk (HM) is a complex liquid that contains variative compositions among mothers. It
consists of true solutions, colloids, membranes, membrane-bound globules, and cells (1). The
exclusive breastfeeding period of the first 6 months then continued up to 2 years is considered as
the ideal standard for infant feeding (2). During the exclusive breastfeeding period, HM acts as the
single source of nutrients that supports the immature immunity and metabolism of the infant (3).
Meanwhile, the composition of HM is altered by many factors such as maternal factors, lactation
stages, environmental exposures, regions, ethnicities, handling, and storage (1, 4).

Human milk contains myriad proteins that play a role in the biological process of infants such
as immunological, antimicrobial, and developmental functions (5, 6). Recently, proteomics has
become a robust approach to explore the overall biological function of HM proteins (7). Previously,
proteomes variation of HM serum and milk fat globule membrane of individual mothers and
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variation of HM and ruminant’s milk have been observed
(3, 8–10). Those prior studies found that HM proteome
contributed to various functions including immune protection,
biological growth, and maturation of the digestive tract. HM
profile, including lipid, oligosaccharides, and distinct patterns of
microbiota varied across the population (11, 12). However, not so
many studies emphasized the variation of protein composition,
especially low abundant ones in the different regions. The
variation of quantitative proteomes between Chinese and Dutch
HM serum and the different proteomes across Chinese ethnicity
and geographic location has been revealed (13, 14). They studied
milk serum proteome of four different regions in China, mainly
focused on the western region of China, namely Yunnan,
Gansu, Xinjiang, and Inner Mongolia. To our knowledge, the
milk proteins, especially low abundant proteins were not well-
investigated in the eastern region of China.

Thus, HM proteomes in eight cities of China, which
represented northeast, northwest, southeast, southwest, east,
north, and central China, during the first 6 months of lactation
were investigated in the present study by using proteomics
methods with a bigger number of samples than prior studies.
The result of this research will build in-depth understanding
of proteomes in each city for further use, for instance, the
development of infant formula for the infants that could not
access sufficient HM.

MATERIALS AND METHODS

Materials
All the reagents were provided in analytical grade and
suitable for liquid chromatography–mass spectrometry
(LC-MS/MS). The Bicinchoninic acid assay (BCA) kit was
purchased from Biodee, China. Ammonium bicarbonate,
dithiothreitol (DTT), and iodoacetamide (IAA) were obtained
from Sigma, USA. Acetonitrile was obtained from Thermo
Fisher, USA. Spectrometry grade of trypsin was purchased from
Promega, USA.

Sample Collection
The Chinese Human Milk Project (the CHMP study) recruited
1,800 participants from eight cities of Mainland China (Beijing,
Guangzhou, Chengdu, Weihai, Lanzhou, Jinhua, Zhengzhou,
and Harbin) to evaluate HM composition in the Chinese
population. This present study used samples during 1–6
months of lactation and had been clinically registered in
ClinicalTrials.gov with registration identifier NCT03675204.

The present study used cross-sectional sample by using one
sample from one individual analyzed for one time. HM was
collected at 9:00–11:00 in the morning from 15 to 180 days after
delivery. The samples were collected from both the right and
left sides of fully pumped breasts. The minimum size for each
sample was 60ml. The inclusion criteria were lactating mothers
25–35 years old, breast-fed infants 15–180 days old, physically
healthy, non-smoking and non-alcoholic consumers, given birth
to physically healthy infants, and signed informed consent forms.
The detailed number of the samples is figured in Table 1. The

TABLE 1 | Number of samples obtained from the hospitals in eight cities in China.

Cities Total samples Number of samples in month

1 2 3 4 5 6

Beijing 30 1 9 4 8 5 3

Guangzhou 24 3 4 5 4 4 4

Chengdu 24 4 4 5 3 5 3

Weihai 16 2 2 4 3 2 3

Lanzhou 31 3 5 9 5 9 0

Jinhua 34 5 5 5 5 5 5

Zhengzhou 30 3 7 5 5 5 5

Harbin 18 3 3 3 3 3 3

obtained samples were frozen and transported to the lab and
stored at a temperature of−80◦C until further analysis.

Protein Digestion
The procedure of protein digestion was described as previously
(15). In brief, the HM samples were centrifuged at 3,000 rpm at
10◦C for 30min. The fat layer was removed and the remaining
parts of protein concentration were measured using the BCA
kit. Based on the results of the BCA, 10 µl proteins (1 µg/µl)
was diluted with 100 µl 0.05M ammonium bicarbonate in 0.5ml
Eppendorf tube. Approximately, 10 µl 0.1M DTT was added.
The mixture was kept in 56◦C water-bath for 30min, followed
by adding 15 µl 0.5M Iodoacetamide (IAA). The mixture was
incubated at room temperature for 30min in the dark. The
protein digestion was performed by adding a mass ratio of 1:100
trypsin/protein andmildly shook at room temperature overnight.
The digestion was stopped by adding 1% formic acid. Before
running in LC-MS, the samples were desalted using C-18 column.

Liquid Chromatography–Mass
Spectrometry
The proteomics was performed using EASY-nLC 1200 coupled
with Q Exactive HF. Generally, the samples were separated using
a C18 analytical column (150µm inner-diameter, outer-diameter
15 cm−1.9µm, 120Å pore size, ReproSil-Pur C18-AQ). The
mobile phase was constituted by 0.1% formic acid in water and
0.1% formic acid as solution A; and 19.9% water mixed with
80% acetonitrile as solution B. The flow rate was 0.6 µl/min, the
column temperature was 50◦C, the gradient was 4–7% solution
B at the initial 1min, 7–13% solution B for 1–7min, 13–25%
solution B for 7–47min, 25–40% solution B for 47–68min, 40-
955 solution B for 68–69min, and keeping 95% solution B for
69–75min. The MS setting was 2.1 kV spray voltage. MS data
were acquired by using data-dependent acquisition mode which
dynamically chose the top-30 most abundant precursor ions
from survey scan (300–1,400 m/z) for high energy collisional
dissociation (HCD) fragmentation with a resolution of 120,000
(200 m/z). The MS/MS spectra were acquired in the HF normal
scan mode.
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Data Analysis
The results from LC-MS/MS raw files were analyzed by using
Maxquant 1.6.3.4 (9, 16). The Homo sapiens proteome database
was downloaded from Uniprot (https://www.uniprot.org) and
configured by Maxquant. In addition, the contamination
database of Maxquant was adopted.

The carbamide-methylation of cysteine was set as fixed
modification, and oxidation of methionine, N-terminal
acetylation, and deamidation of asparagine or glutamine was
set as variable modifications. Mass tolerance was set as 20
ppm for MS peaks and 0.5 Da for MS/MS peaks. The false
discovery rates (FDR) was set as 1% and at least 1 peptide was
required for identification. Label-free quantification (LFQ) and
intensity-based absolute quantification (iBAQ) values were
selected for relative protein quantification across all the samples
and comparing the levels of different proteins from the same
sample, respectively.

Statistical Analysis
The significant differences were analyzed using SPSS 22 (IBM,
USA), and the test used was one-way ANOVA with post-hoc
Tukey’s HSD (P < 0.05). Protein differentiation and principal
component analysis (PCA) were performed by XLSTAT 2021
with the Benjamini-Hochberg test (P < 0.05).

Cluster and Gene Ontology Enrichment
Analysis
The GO enrichment of protein was performed by using DAVID
Bioinformatics resources 6.8 (https://david.ncifcrf.gov) (9, 17).
The protein–protein interaction was figured out by using
STRING 9 (18).

RESULTS

Identified Proteins in Eight Cities
In the present study, 860, 760, 1,426, 1,298, 1,029, 1,029,
1,022, and 960 proteins were identified in Beijing, Guangzhou,
Chengdu, Weihai, Lanzhou, Jinhua, Zhengzhou, and Harbin,
respectively. The list of identified proteins can be seen in
Supplementary Table 1.

Major GO biological processes from the overall identified
protein (Figure 1) showed that translational initiation had
the dominant function in HM proteomes with a p-value
of 4.52 x 10−86. It was followed by viral transcription,
cell-cell adhesion, Fc-epsilon signaling pathway, translation,
complement activation, and receptor-mediated endocytosis. The
metabolism function was represented by terms of proteolysis
and carbohydrate metabolic process. Several immune related
functions showed to be significant in the GOBP enrichment, such
as antigen processing and presentation, immune response, and
innate immune response with a p-value of 1.28 x 10−28, 4.42 x
10−11, and 1.40 x 10−7, respectively.

Protein Variation Across the Cities and
Lactation Periods
The PCA showed from principal component 1 (PC1) and
principal component 2 (PC2) could explain 99.37% of intensity-
based protein variance among eight cities. From PC1 and
PC2, the first pool consisted of Weihai, Chengdu, and Jinhua,
which could be discriminated from the second pool that
consisted of Zhengzhou, Beijing, Guangzhou, Lanzhou, and
Harbin (Figure 2A). Those discrimination were based on several
protein including LALBA, CSN2, and IGKC that were higher in
the second pool. Meanwhile, CSNS1, CSN3, LTF, CEL, IGHA1,
CLU, B2M, LYZ, and XDH were abundant in the first pool
(Figure 2B).

Proteins among different lactation periods were figured out
by using PC1 and PC2 that could explain 99.95% of intensity-
based protein variation (Figure 3). The first pool consisted of
the 1st, 2nd, and 5th months of the lactation period, while the
other groups consisted of the 3rd, 4th, and 5th months of the
lactation period (Figure 3A). These groups were discriminated
by several proteins, including LALBA, CSN1S1, CEL, LTF, B2M,
SPP1, and IGHA1 that were abundant in the first pool. The
second pool had a higher abundance of CSN2, CSN3, LYZ, IGKC,
CLU, and PIGR (Figure 3B). The seven major proteins in all the
cities were LALBA, CSN2, CSN1S1, CSN3, LTF, ALB, and CEL.
The average intensity-based absolute quantification (iBAQ) value
and the putative function of each protein based on the DAVID
Bioinformatics were available in Table 2. Among the identified
proteins, LALBA shared the highest percentage than the rest of
the proteins. Zhengzhou had the highest LALBA concentration.
LALBA and CSN2 in Weihai were below the other provinces
on average, while the kappa-casein was the highest. Bile salt-
stimulated lipase (CEL), as the seventh major protein in HM
across the provinces, was noticed as the highest in Jinhua.

The intensity of 184 proteins was significantly different among
the cities (Supplementary Table 2), including several abundant
proteins: CSN1S1, CSN2, CSN3, LTF, CEL, IGKC, IGHA1,
B2M, and PIGR. Four proteins were significantly different
during 6 months of lactation, namely CTSC, LYZ, CA6, and
CHRDL2 (Supplementary Table 3). As the lactation prolonged,
the intensity of CTSC, CA6, and CHRDL2 decreased, while the
intensity of LYZ increased.

Gene Ontology Enrichment of Significantly
Different Proteins
Gene ontology biological process (GOBP), cellular (GOCC), and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
were enriched from the significantly different proteins across the
cities (Figure 4). Platelet degranulation was the most noticeable
GOBP observed that had a p-value of 3.66 x 10−27, and
it was followed by innate immune response and triglyceride
metabolic process with a p-value of 1.87 x 10−5 and 5.38 x 10−4,
respectively. The white bar showed the extracellular exosome
as the major GOCC, and the KEGG pathway was dominated
by complement and coagulation cascades, fat digestion and
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FIGURE 1 | Major gene ontology (GO) biological process of overall identified proteins in Chinese human milk (HM) enriched by the DAVID bioinformatics.

FIGURE 2 | The principal component analysis (PCA) plots based on protein intensity of: (A) B, Beijing; G, Guangzhou; C, Chengdu;W, Weihai; L, Lanzhou; J, Jinhua;

Z, Zhengzhou, and H, Harbin. Weihai, Chengdu, and Jinhua are located in the same pool, while Lanzhou, Beijing, Guangzhou, Harbin, and Zhengzhou are located in

the second pool. (B) Loading plots based on the intensity of the proteins showed that CSN2, LALBA, and IGKC were the abundant proteins in the second pool, while

the first pool had abundance of CSN1S1, CSN3, LTF, LYZ, B2M, IGHA1, CEL, CLU, B2M, and XDH.

absorption, and peroxisome proliferator-activated receptors
(PPAR) signaling pathway.

The intensity of proteins enriched in platelet degranulation,
triglyceride metabolic process, and innate immune response is
summed in Figure 5. Figure 5A shows the obvious different
intensities in platelet degranulation across eight cities except

in the 1st month of lactation which ranged from 5 to 11% of
the iBAQ values. Weihai had the highest iBAQ values in the
term of platelet degranulation during the 1st to 5th months of
the lactation period. Meanwhile, in the 6th month Weihai and
Chengdu were not significantly different based on the HSD post-
hoc test. Zhengzhou consistently had the lowest intensities during
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FIGURE 3 | The PCA plots based on protein intensity of: (A) Different lactation periods during the 6 months of lactation. The first pool includes the 1st, 2nd, and 5th

month of lactation, while second pool includes the 3rd, 6th, and 4th month of lactation. (B) Loading plots based on intensity of the proteins based on the different

lactation periods. The first pool was abundant in LALBA, CSN1S1, CEL, LTF, B2M, SPP1, and IGHA1. Meanwhile, the second pool was abundant with CLU, PIGR,

IGKC, LYZ, and CSN.

TABLE 2 | Most abundant protein identified in eight cities.

Gene

names

Average iBAQ (%)a across the citiesb Putative function

B G C W L J Z H

LALBA

Alpha-

lactalbumin

23.61 ± 3.36 24.71 ± 3.82 21.43 ± 3.81 18.07 ± 4.90 25.11 ± 4.59 27.73 ± 4.71 30.20 ± 2.86 29.68 ± 2.22 Enzyme: apoptotic process,

cell-cell signaling, defense

response to bacterium, lactose

biosynthetic process, signal

transduction

CSN2

Beta casein

25.83 ± 6.63 26.75 ± 6.20 15.65 ± 6.56 12.27 ± 4.20 22.39 ± 8.04 19.08 ± 5.58 26.69 ± 4.66 22.70 ± 2.64 Transport: calcium ion transport,

lactation, negative regulation

of-cystein type endopeptidase

CSN1S1

Alpha casein S1

10.41 ± 1.90 8.71 ± 2.73 10.96 ± 1.93 12.02 ± 2.70 8.42 ± 1.82 8.37 ± 1.56 8.66 ± 1.35 7.25 ± 1.82 Transport: response to

dehydroepiandrosterone,

response to estradiol, response

to progesterone, transmembrane

transport

CSN3

Kappa casein

7.80 ± 1.21 8.67 ± 1.35 9.51 ± 2.50 10.50 ± 3.12 7.41 ± 1.50 9.36 ± 1.55 6.94 ± 1.09 7.81 ± 1.29 Transport: lactation, protein

stabilization, transmembrane

transport

LTF

Lactotransferrin

6.40 ± 1.35 6.76 ± 1.45 7.22 ± 1.15 7.91 ± 1.35 7.52 ± 1.64 7.14 ± 1.41 6.66 ± 1.03 6.75 ± 0.86 Immune: antibacterial humoral

response, innate immune

response, cellular protein

metabolic process, retina

homeostasis

ALB

Albumin

4.32 ± 0.82 5.05 ± 0.80 6.92 ± 1.19 7.32 ± 1.64 3.35 ± 1.28 3.88 ± 1.13 4.73 ± 0.72 5.23 ± 0.60 Transport: platelet degranulation,

cellular protein metabolic

process, receptor-mediated

endocytosis

CEL

Carboxyl-ester-

lipase

3.36 ± 1.17 2.90 ± 0.78 3.44 ± 1.27 3.28 ± 0.92 3.35 ± 1.27 3.88 ± 1.13 2.08 ± 0.66 2.61 ± 2.90 Enzyme: fatty acid catabolic

process, chemical synaptic

transmission, lipid digestion, lipid

metabolic process

aAccounted as average of iBAQ during 6 months of lactation.
bB, Beijing; G, Guangzhou; C, Chengdu; W, Weihai; L, Lanzhou; J, Jinhua; Z, Zhengzhou; H, Harbin.
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FIGURE 4 | The GO enrichment of significantly different protein across eight cities. White: GO cellular location, dominated by extracellular exosome; Gray: Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways that consisted of complement coagulation cascades, fat digestion and absorption, and Peroxisome

proliferator-activated receptors (PPAR) signaling pathway; and Black: GO biological process, dominated by platelet degranulation, innate immune response, and

triglyceride metabolic process.

FIGURE 5 | The summed intensities of GO biological process in the terms of: (A) platelet degranulation; (B) innate immune response, and (C) triglyceride metabolic

process periods showed the most varied intensities values among the cities.
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FIGURE 6 | Interaction of platelet degranulation and innate immune response

protein in Chinese HM were enriched with DAVID Bioinformatics and visualized

using STRING 9.

the periods, while Harbin also shared the insignificant difference
with Zhengzhou except in the 5th month of lactation.

Remarkable different protein intensities were found during
6 months of the lactation period in terms of innate immune
response that ranged from 4 to 11% of the iBAQ values
(Figure 5B), especially in Weihai, Lanzhou, and Jinhua, which
had higher intensities among the other cities. In contrast, Beijing
and Zhengzhou were lower in iBAQ values compared with the
others. In this term, the significant variation was observed along
the lactation period in each city. The 2nd and 4th months had
more variation intensities compared to that of the other periods.

The triglyceridemetabolic process, which ranged from 2 to 6%
of the iBAQ values, revealed a significant difference in the 1st and
5th months of the lactation period (Figure 5C). Meanwhile, no
significant difference was observed during the rest of the lactation
period. Harbin had the lowest intensities in the 1st month of the
lactation period; in contrast, Jinhua was the highest. However,
in the 5th month, Zhengzhou had the lowest iBAQ values, and
Jinhua still had the highest.

The proteins from platelet degranulation and innate immune
response were illustrated by STRING 9 to see the protein–
protein interactions since both the terms were enriched under
the complement and coagulation cascade in the KEGG pathways
(Figure 6). Almost all of the proteins were connected except the
SMPDL28, SIRPB1, IGLL, and IGJ.

DISCUSSIONS

Human Milk Proteome Varied Across the
Cities and Lactation Periods
Human milk composition is suited for infant needs and growth.
However, the profile of HM is crucial for developing products
for infants who either cannot access their mother’s milk or
whose mothers’ milk production volume was insufficient. The
HM variation in the different continents had been reported
previously using the metabolomics method (11). The present
method found a higher number of identified proteins than
the previous study (13). It means our proteomics method was
comparable to the other methods and could be deeper in the
bioinformatics enrichment since more proteins were identified
to interpret its biological function.

Twelve proteins were the discriminants of the cities, namely
LALBA, CSN2, IGKC, CSN1S1, CSN3, LTF, CEL, IGHA1, B2M,
LYZ, CLU, and XDH. These discriminant proteins were mainly
contributed as host defense in the biological process of an infant.
It was agreed with a previous research that found the immune
protein including lactalbumin, lactoferrin, and IgA were varied
among the population as a function of pathogen pressure of the
environment (19).

In the most abundant protein in HM, this study found that
CSN1S1, CSN2, and CSN3, which belonged to casein, were
statistically different across the cities. Casein plays the role of
primary source of phosphate and calcium in HM due to its
function in casein-micelle aggregates in the calcium transport
process (20, 21). This finding was in line with a prior study
that reported the remarkable difference of kappa and beta casein
in HM serum of Chinese and Dutch mothers (14). The LTF
variations across the cities were in line with previous findings in
Chinese HM across distinct regions (22).

Based on differential expression tests, variation of significant
proteins across the cities was very high that presented in
Supplementary Table 2. A total of 184 proteins were significantly
different across the city with a p-value of below 0.05 that
was followed by enrichment in Figure 4. Meanwhile, only
four proteins were statistically different during the 6 months
of lactation, namely CTSC, LYZ, CA6, and CHRDL2. LYZ
was upregulated while CTSC, CA6, and CHRDL2 were
downregulated. The downregulated CHRDL2 was in line with
a prior proteomics research in HM over lactation (3). Since the
function of CHRDL2 is related to ossification, it might be possible
that the expression was downregulated by organ maturation
throughout the 6 months. The increase of LYZ in the human
mature milk was previously described by Montagne et al. as
the passive protective agents of breast-fed infants during mature
lactation (23).

In Figure 2, the first pool consisted of the 1st, 2nd, and 5th
months of the lactation period that had a high abundance of
LALBA, CSN1S1, CEL, LTF, B2M, SPP1, and IGHA1. The high
abundance of LALBA and CSN1S1 in the beginning months of
the lactation had been previously reported in bovine milk (24).
B2M, IGHA1, and LTF as the proteins related to antibacterial
humoral response were logical to have a high abundance in
the 1st and 2nd months of lactation since newborns had
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little protection against bacteria from the environment. CEL,
as the main protein related to fat metabolism, was reported
to be highly abundant during the initial months (3) since
it functions as an immature pancreatic lipase substitution.
Meanwhile, the highly percentage of aforementioned proteins in
the fifth month needs to be further investigated. We speculated
it was because of the highly individual variation in the 5th
month samples.

Significant Different Proteins Across the
Cities Were Linked to Newborn Protection
The significantly different proteins across the cities were involved
in platelet degranulation, and those proteins were mainly located
in the extracellular exosome (Figure 4). It was agreed with
a previous finding in proteomics of bovine milk exosome
that showed platelet degranulation was the most significant
biological process (25). Beyond its primary role in thrombus
or plug formation in wound healing, the platelet also worked
in tissue repair, angiogenesis, inflammation, and host defense
(26–30). In newborns, overall platelet degranulation released
during platelet activation was lower compared to adults (31).
Based on our results, there was no significant difference
in platelet degranulation in the 1st month across the cities
(Figure 5A). It might indicate that the newborns demanded HM
proteins to regulate platelet degranulation for completing platelet
function since platelets activation was low in the first few days
of life (32).

Neonates were generally believed to have partially
immunological incompetence and were susceptible to
infections. Platelets also played a role in the host defense of
the newborns. By the present result, platelet degranulation
shared similar proteins with the innate immune response in
GOBP, including FGA, FGB, CLU, SERPING1, and CD36.
All proteins contributed in both terms were figured out in
protein network connection (Figure 6). Platelet glycoprotein 4
(CD36) had a responsibility in the phagocytosis process (31).
Phagocytosis was an important innate immune response process
to protect infants from microbes. CLU is a highly glycosylated
protein that was linked to cell damage and apoptosis. This
protein was found to be overexpressed at stressed tissues to
provide a chaperone-like activity and prevent other proteins
from damage (33). FGA is known as the main protein in handling
fibrin production as one of the primary components of blood
clots. It also acts as a fibrin deposition process that is associated
with infection, where it protects against IFNG-mediated
hemorrhage. The link of platelet degranulation and immune
response as the host defense were regulated in complement
and coagulation cascades, which were enriched in major KEGG
pathway (Figure 4).

Immune response plays important roles in infants, especially
innate immune response in newborns since adaptive immune
response is not well-developed yet. The function of HM
as a complementary immune system for newborns has
been previously reported (34). From our identified protein
(Supplementary Table 1), above 54 proteins were enriched
as innate immune response in biological process with p-value

1.6 x 10−10. It was higher than previous findings that used a
similar GO enrichment tool in HM (8). That research found
the p-value of the immune system to be 1.8 x 10−7. The reason
might be because this study had higher identified proteins.
Based on the significant expressed protein enrichment, the
p-value of the innate immune response was 1.87 x 10−5,which
consisted of 17 proteins, namely FGB, FGA, IGHM, CFI, CLU,
IGHG4, C4A, IGHG1, IGHG2, IGKC, IGLL1, SERPING1,
CD14, IGHA1, SMPDL3B, IGHA2, and B2M. These 17
proteins brought variation to the quantitative amount of
innate immune response across the cities (Figure 5B) that
showed significant variations in each period of the lactation.
The differences of immune-related protein intensity were
also previously found in the different geographic location
and ethnicity in China because the environment could
influence the pathogen (13). However, other factors such
as the health condition or infection of the infant should be
further observed, since the infant infection could upregulated
immune proteins in the HM, especially in the first year of
lactation (35, 36).

Triglyceride Metabolism Variations Across
the Cities
Breastfeed infants have better lipid utilization compared to
formula-feed infants (37–39). Since delivery, infants used fat
as the major energy source that contributed about 40–55% of
the total energy and could obtain 5.5 kg fat intake during 6
months of lactation (40, 41). Triglycerides represented 98–99%
of total fat in HM (42). Fat metabolism and fat absorption were
noticed as the enriched KEEG pathway from the significantly
expressed proteins (Figure 4). The crucial protein that handled
fat metabolism in HM was CEL, which was found to be
the seventh abundant protein (Table 2) and also significantly
expressed protein across the cities (Supplementary Table 2).
CEL from HM played a major role in infant lipid utilization by
replacing pancreatic triglycerides lipase (PTL), which is secreted
by the pancreas, while the pancreas condition is immature
(38, 43). The present research found five significantly expressed
proteins in different cities, namely CEL, APOH, APOA2, LPL,
and APOE which were enriched in the triglycerides metabolic
process. These proteins brought remarkable variation in the
triglyceride metabolic process (Figure 5C), particularly in the
1st and 5th months of the lactation period. This could be
noteworthy because the lower abundance of the triglyceride
metabolic process proteins might lead to lower weight gain of the
infant since fat should be the major energy intake. In addition,
the immature digestion tract of the infant needs HM protein to
aid fat digestion (43).

However, bigger samples in a longitudinal study during the
lactation stages will give more benefit to fill the gaps in this
research as well as decrease the variations among individual
mothers. It will bring a deeper quality of biological role
interpretation as the basic data for developing the most suitable
infant formula for babies who cannot obtain HM in the exclusive
breastfeeding period.
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CONCLUSION

This present research found a noticeable variation of HM
proteins across eight cities in China and four significantly
expressed proteins during the 6 months of lactation.
The 184 significantly expressed proteins across the cities
mainly influenced the infant biological process in terms
of platelet degranulation, innate immune response, and
triglyceride metabolic process. This research could be a
good recommendation for developing specialized region
infant formula or HM fortifiers during the exclusive
breastfeeding period.
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