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Abstract
Secretory phospholipase 2 (sPLA2) acts as a mediator between proximal and distal events

of the inflammatory cascade. Its role in SARS-CoV-2 infection is unknown, but could con-

tribute to COVID-19 inflammasome activation and cellular damage. We present the first

report of plasma sPLA2 levels in adults and children with COVID-19 compared with con-

trols. Currently asymptomatic adults with a history of recent COVID-19 infection (�4weeks

before) identified by SARS-CoV-2 IgG antibodies had sPLA2 levels similar to those who

were seronegative (9� 6 vs.17� 28 ng/mL, P¼ 0.26). In contrast, children hospitalized with

severe COVID-19 had significantly elevated sPLA2 compared with those with mild or

asymptomatic SARS-CoV-2 infection (269� 137 vs. 2� 3 ng/mL, P¼ 0.01). Among children

hospitalized with multisystem inflammatory syndrome in children (MIS-C), all had severe

disease requiring pediatric intensive care unit (PICU) admission. sPLA2 levels were signif-

icantly higher in those with acute illness <10days versus convalescent disease �10days

(540� 510 vs. 2� 1, P¼ 0.04). Thus, sPLA2 levels correlated with COVID-19 severity and acute MIS-C in children, implicating a

role in inflammasome activation and disease pathogenesis. sPLA2 may be a useful biomarker to stratify risk and guide patient

management for children with acute COVID-19 and MIS-C. Therapeutic compounds targeting sPLA2 and inflammasome activa-

tion warrant consideration.
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Introduction

SARS-CoV-2 is currently causing a devastating pandemic
and there is a pressing need to understand the mechanisms
of disease in order to rapidly develop novel therapeutics.
Systemic inflammation is a component of severe disease in
the clinical spectrum of COVID-19.1

Phospholipases are a large family of enzymes that facil-
itate the degradation of lipids.

The group II secretory phospholipase A2 (sPLA2) is an
important constituent of an interactive network of
enzymes, lipid mediators, and cytokines which contribute
to normal physiology as well as pathophysiology.2

Impact statement
sPLA2 acts as a mediator between proxi-

mal and distal events of the inflammatory

cascade, and we report for the first time

that sPLA2 is elevated in children with

acute COVID-19 infection and MIS-C.

sPLA2 correlated with pediatric COVID-19

severity and acute MIS-C, implicating a

potential role in inflammasome activation

and disease pathogenesis. This study

helps fill the void of mechanistic data in the

literature on etiology of inflammation in

pediatric COVID-19 infection and MIS-C.

The value of sPLA2 as a biomarker of

inflammation and potential therapeutic

target warrants investigation; this work

may lead to novel interventions for COVID-

19 infection and MIS-C.
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The lipolytic activity of sPLA2 releases fatty acids from the
sn-2 position of membrane phospholipids, ultimately gen-
erating important lipid mediators such as prostaglandins,
leukotrienes, and platelet activating factor.3 Arachidonic
acid, and its numerous metabolites, act as intracellular
and intercellular messengers contributing to normal cell
physiology by modulating enzyme activities and ion chan-
nels. The products of sPLA2 are substrates for inflammato-
ry lipid mediators that play important roles in the
pathogenesis of inflammatory diseases.2 Formation of
sPLA2 and C-reactive protein (CRP) is initiated by proin-
flammatory cytokines (IL-1, IL-6, TNF-a) under control of
glucocorticoids.4 sPLA2 acts as a mediator between proxi-
mal and distal events of the inflammatory cascade. Upon
stimulation, an increase of mRNA levels for sPLA2 is
observed in several different tissues including renal mes-
enchymal cells, chondrocytes, vascular smooth muscle,
osteoblasts, and endothelial cells. An increase in enzyme
activity paralleled by an increase in concentration has
been found in human disease including rheumatoid arthri-
tis, septic shock, acute myocardial infarction, Crohn’s dis-
ease, hematological malignant disorders, febrile bacterial
infections, ulcerative colitis, and nephropathy,2 and often
correlates with disease severity.5 sPLA2 is also well known
to be involved in lung inflammation and surfactant degra-
dation based on animal and human studies,6,7 which may
be relevant to COVID-19 infection. In contrast to the closely
related phospholipases from snake and bee venom, sPLA2
will not randomly break down normal human cell mem-
branes, but it will attack bacterial membranes or apoptotic
cells that expose phosphatidyl serine (PS).8 We have previ-
ously shown that the level of sPLA2 measured in patients
with sickle cell disease (SCD) is a harbinger of the onset of
acute chest syndrome (ACS),9,10 and predicts severity of
cellular damage in trauma.11 We have also observed very
high sPLA2 levels in two children diagnosed with
Kawasaki disease (KD), early in the course of their illness.12

Despite its important role in inflammatory processes,
sPLA2 has not yet been studied in COVID-19, the disease
caused by SARS-CoV-2. COVID-19 severity has been
reported to be associated with elevated levels of CRP,13

apoptosis,14–16 and related cell damage;17 however, knowl-
edge of the correlations between several biomarkers and
COVID-19 is limited, and the pathogenesis of multiorgan
damage is unclear.18 We hypothesized that sPLA2 plasma
levels in patients with COVID-19 could correlate with dis-
ease severity. In this study, we evaluated this premise in a
cohort of pediatric patients with acute COVID-19 and those
with multisystem inflammatory syndrome in children
(MIS-C) associated with COVID-19, which shares features
with KD.19–26

Materials and methods

Subjects

This was a prospective observational study involving two
patient cohorts. The first was a case–control study of
asymptomatic pediatric health-care workers (HCWs) �18
years of age, screened between April and June 2020 for

SARS-CoV-2 IgG antibodies27 as part of a longitudinal
COVID-19 surveillance study.28 Those who tested positive
for SARS-CoV-2 IgG antibodies were matched by age and
gender with HCWs who tested negative for IgG antibodies.
The second observational cohort included children
0–21 years of age hospitalized at Children’s Healthcare of
Atlanta (CHOA) between March and May 2020 with
asymptomatic SARS-CoV-2 (identified through screening
by PCR), confirmed or suspected COVID-19, MIS-C, or
KD who were enrolled for prospective and/or residual
blood collection and had plasma samples available for anal-
ysis. Cohorts were defined as having COVID-19 if they
tested positive for SARS-CoV-2 by nasopharyngeal (NP)
PCR and had symptoms consistent with COVID-19; MIS-
C if they tested positive for SARS-CoV-2 by either NP PCR
or commercial IgG antibody test (Abbott), and met the case
definition proposed by the Centers for Disease Control and
Prevention (CDC; https://emergency.cdc.gov/han/ 15
May 2020) and KD if they met the American Heart
Association diagnostic criteria for complete or incomplete
KD.29 Hospitalized controls were defined as patients eval-
uated for any of the above conditions, but did not meet
diagnostic criteria. A convenience sample of asymptomatic
patients testing positive for SARS-CoV-2 by PCR, but hos-
pitalized for other reasons requiring screening preopera-
tively or for intensive care unit admission was also
included. Serologic data for a subset of this cohort has
been previously published; however, the cohorts are not
identical due to plasma sample availability and different
enrollment periods.30 Demographic information was col-
lected from both the adult and pediatric cohorts. Clinical
course and laboratory data were extracted from the elec-
tronic medical record of the pediatric cohort.

Measurements

Patient blood was collected in EDTA or CPT tubes, and
plasma was separated by centrifugation and stored at
�20�C until analysis. Both the HCW cohort and the pedi-
atric cohort were tested for SARS-CoV-2 antibodies by mea-
suring the IgG antibody responses to the receptor binding
domain of the spike protein using an enzyme-linked immu-
nosorbent assay (ELISA) as previously described.27 The
pediatric cohort was also tested for SARS-CoV-2 using
clinician-ordered tests, which included SARS-CoV-2 NP
PCRs and/or nucleocapsid IgG antibody ELISAs
(Abbott). sPLA2 was measured with an ELISA kit
(Cayman Chemical, Ann Arbor, MI) using the manufac-
turers’ provided protocol. In the HCW cohort, CRP
(Cayman Chemical) and F1.2 (MyBioSource Inc., San
Diego, CA) were also measured using ELISA kits and the
manufacturers’ protocols.

For the asymptomatic adult HCW cohort, sPLA2 levels
were measured in patients free of symptoms for greater
than twoweeks. For the pediatric cohort, sPLA2 levels
were measured in all available samples andwere compared
among four groups (SARS-CoV-2 positive by PCR, MIS-C,
KD, and hospitalized controls). Because some children
identified with SARS-CoV-2 lacked symptoms of
COVID-19, but were hospitalized for other conditions for
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which screening for SARS-CoV-2 by PCR was performed
(e.g. Tylenol ingestion, appendicitis, presyncope with
underlying congenital heart disease), we performed a sub-
group analysis of children hospitalized with symptomatic
COVID-19 versus children who had mild or asymptomatic
SARS-CoV-2 infection that were ostensibly hospitalized for
other reasons. Samples from children with MIS-C that were
obtained early in the disease process (<10 days following
symptom onset) were compared with later samples
(�10 days following symptom onset) in a subgroup
analysis.

Data analysis

Demographic data were reported as frequencies for cate-
gorical data and medians for ordered normal data. Means
(� standard deviations) were used for continuous normal
data, while the Pearson correlation coefficient was used to
report correlations. Statistical significance (P value) was
reported using two-tailed unpaired Student’s t-test for con-
tinuous data, Fischer’s exact test was used for categorical
data, and Mann-Whitney U test was used for ordered data
in the adult HCW cohort (alpha¼ 0.05). One-way ANOVA
was used for continuous data and Chi-squared test was
used for categorical data in the pediatric patients hospital-
ized with illness (alpha¼ 0.05).

Study approval

These studies received Institutional Review Board approval
from Emory University; the pediatric study was also
reviewed and approved by CHOA. Electronic informed
consent was received from HCW participants prior to
inclusion in the study, while informed consent was
obtained from all parents/guardians and age-appropriate
assent was obtained for prospective enrollment into the
pediatric study. Residual samples were collected through
waiver of informed consent.

Results

Adult health-care worker cohort

Participant demographics and laboratory values for the
healthy adult health care worker (HCW) cohort are sum-
marized in Table 1. Fourteen healthy SARS-CoV-2 IgG-neg-
ative HCWs were matched by age and gender to 14
seropositive HCWs. No IgG-positive HCWs required hos-
pitalization, and all had been asymptomatic for >2weeks

prior to enrollment. The mean time from onset of viral
symptoms in the seropositive group reporting viral illness
(8/14, 57%) was 58� 31 days with a range of 29–120 days.
Samples therefore represented convalescent titers. Only 3/
14 (21%) seropositive HCWs had a history of a positive
SARS-CoV-2 PCR performed for clinical evaluation
during acute illness; 6/14 (43%) had been completely
asymptomatic since January 2020. No statistically signifi-
cant difference in sPLA2 was observed between the sero-
positive versus seronegative groups. There was no
correlation identified between sPLA2 levels and IgG titers
in seropositive patients. The prothrombinase fragment 1.2
(F1.2) levels and CRP were also similar between groups.

Hospitalized pediatric cohort

Patient demographics, laboratory values, and clinical
course of the pediatric cohort are summarized in Table 2.
A total of 24 children were assessed: 4 children hospitalized
with symptomatic COVID-19 confirmed by PCR; 3 PCRþ
children with subclinical infections who were hospitalized
for other reasons but tested positive for SARS-CoV-2 by
PCR (one patient with resolved upper respiratory symp-
toms who was admitted to the PICU for a suicide attempt,
one patient with appendicitis who was tested prior to sur-
gery, and one cardiac patient with presyncope who had no
fever or respiratory symptoms); 9 children diagnosed with
MIS-C, 3 children with KD not meeting the CDC criteria of
MIS-C, and 5 additional hospitalized control subjects with
fever, including 1 with Epstein-Barr virus–hemophagocytic
lymphohistiocytosis (EBV-HLH; sPLA2¼ 394 ng/mL), and
1 with Brucellosis (sPLA2¼ 102 ng/mL); the latter 2 were
not included in Table 2 analysis. Levels of sPLA2 varied
widely in our pediatric cohort, but were significantly
higher than values identified in the asymptomatic adult
HCW cohort regardless of seropositivity status (188� 307,
n¼ 24 vs. 9� 6, n¼ 28; P< 0.01); all pediatric versus adult
participants, respectively. Overall, sPLA2 levels were ele-
vated in children hospitalized with acute COVID-19, while
the highest values were identified in children with acute
MIS-C. Figure 1 illustrates sPLA2 levels in children with
acute COVID-19 and MIS-C, differentiated by date of ill-
ness that the sample was obtained and by disease severity;
all patients with either acute COVID-19 or acute MIS-C
evaluated early in the course of illness (<10 days from the
onset of symptoms; mean 6.2� 1.5 days, range 5–9days)
had significantly elevated sPLA2 levels compared with
those with samples obtained later during the disease

Table 1. Healthcare Worker Cohort demographics and laboratory values.

Variables All (N5 28) Seropositive (N514) Seronegative (N514) P value

Age range years, median 41–50 41–50 41–50 1

Gender, male (%) 29% 29% 29% 1

Laboratory values

CRP (mg/mL) 1.5� 1.8 2.0� 2.7 1.1� 0.7 0.33

F1þ 2 (pmol/mL) 0.45� 0.13 0.44� 0.16 0.45� 0.12 0.77

sPLA2 (ng/mL) 13� 21 9� 6 17� 28 0.26

CRP: C-reactive protein; F1.2: fragment 1.2; sPLA2: secretory phospholipase 2.

Mann-Whitney U test, Fischer’s exact test, or unpaired Student’s t-test; alpha¼ 0.05. Data are represented as median for ordinal data, N (%) for nominal data or

mean�SD for continuous data.
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course (mean 26.5� 10.9 days after initiation of symptoms,
range 11–35 days; P¼ 0.01). sPLA2 levels in patients with
subclinical SARS-CoV-2 infection or in patients during con-
valescent phase of MIS-C (�10days after onset of symp-
toms) were not elevated. Children hospitalized with
symptomatic acute COVID-19 had significantly elevated
sPLA2 compared with those with subclinical disease
(269� 137 vs. 2� 3 ng/mL, P¼ 0.01). Among children hos-
pitalized withMIS-C, all had severe disease requiring PICU
admission. However, sPLA2 levels were significantly
higher in those in early (<10days) versus late (�10 days)
disease (540� 510 vs. 2� 1, P¼ 0.04). White blood cell
count (WBC) was elevated in patients with symptomatic
COVID-19; however, the mean was skewed by two patients
who presented simultaneously with new onset leukemia

(WBC 176 and 118� 103 cells/mL). CRP and D-dimer
levels were significantly elevated above normal in all cate-
gories (Table 2). There were no correlations identified
between sPLA2 levels and WBC, CRP nor D-dimer,
although a trend towards a correlation was identified
between sPLA2 and CRP (r¼ 0.43, P¼ 0.06).

Discussion

This study provides preliminary data to suggest that chil-
dren with acute COVID-19 and MIS-C have significantly
elevated sPLA2 levels, with sPLA2 levels returning to
normal during convalescence, supporting a potential role
for sPLA2 in the COVID-19 inflammasome. This trend has
been reported in other acute illnesses including sickle cell-
ACS, pneumonia, acute asthma, and serious bacterial infec-
tions.9,11,12,31 Our anecdotal observation of very high sPLA2
levels in EBV-HLH is of interest given it is a syndrome of
severe, life-threatening hyperinflammation; high levels in
Brucellosis are also consistent with elevated sPLA2 in acute
bacterial infections.12 sPLA2may remain elevated in chron-
ic inflammatory conditions like rheumatoid arthritis.32

However regardless of the trigger, elevated sPLA2 levels
indicate a strong ongoing inflammatory signal and suggest
the role of this enzyme in cell damage and organ fail-
ure.2,5,8–11 Normal values found in our convalescent adult
HCWs also support the concept of normal sPLA2 levels
during convalescence, following acute illness. Given a
normal value for sPLA2 is <20 ng/mL,12 children with
MIS-C evaluated within less than 10days of illness demon-
strated a 10–60 fold increase in sPLA2 levels. Normal levels
observed in subclinical cases also support a link between
sPLA2 levels and COVID-19 disease severity. Together,
sPLA2 may represent an easily measured biomarker of
COVID-19 and MIS-C that merits further evaluation in
both children and adults. A recent report by Diorio et al.
demonstrates an elevation in cytokine profiles associated
with MIS-C,33 indicating that identifying inflammatory bio-
markers associated with disease severity is valuable.

Table 2. Pediatric patient demographics, laboratory values, and clinical course.

Variables

All

(N5 22)

COVID-19

(N57)

MIS-C

(N59)

Kawasaki

(N5 3)

Fevera

(N5 3) P valueb

Age, years, mean�SD 9.9� 5.9 15.6� 5.8 8.8� 3.3 4.3� 3.2 5.7� 4.7 0.004

Gender: male, N (%) 13 (59%) 3 (43%) 5 (56%) 2 (67%) 3 (100%) 0.398

LOS (days), mean�SD 14.0� 17.1 24.3� 27.2 12.0� 6.7 5.7� 2.1 4.0� 1.0 0.225

PICU: yes, N (%) 14 (64%) 4 (57%) 9 (100%) 1 (33%) 0 (0%) 0.008

Laboratory valuesc

PCRþ, N (%) 9 (41%) 7 (100%) 2 (22%) 0 (0%) 0 (0%) 0.001

IgGþ, N (%) 9/14 (64%) 1 (50%) 8 (89%) 0 (0%) 0 (0%) 0.008

WBCd �103 (cells/mL) 24.2� 42.2 59.1� 70.6 9.3� 4.7 14.7� 2.2 8.5� 6.3 0.004

CRP (mg/mL) 14.5� 8.7 12.0� 13.0 15.7� 7.9 19.3� 1.4 8.8� 2.3 0.448

D-dimers (ng/mL) 2401� 1679 1530� 530 3056� 1793 2792� 0 563� 393 0.204

sPLA2 (ng/mL) 190� 306 155� 172 301� 459 49� 67 33� 22 0.506

CRP: C-reactive protein; IgG: Immunoglobulin G; LOS: length of stay; MIS-C: multisystem inflammatory syndrome in children; PCR: polymerase chain reaction;

PICU: pediatric intensive care unit; sPLA2: secretory phospholipase 2; WBC: white blood cell.
aExcluded febrile patients with Epstein-Barr virus/hemophagocytic lymphohistiocytosis and Brucellosis.
bOne-way ANOVA for continuous variables or Chi-square test for categorical variables, alpha¼ 0.05. Data are represented as mean�SD for continuous data or N

(%) for nominal data.
cDenominators represent the number of patients in each group for whom testing was performed.
dTwo patients with COVID-19 had new diagnoses acute myelogenous leukemia (AML) and highly elevated WBC.

Figure 1. Secretory phospholipase A2 (sPLA2) levels in hospitalized children.

Plasma sPLA2 levels (ng/mL) in symptomatic children diagnosed with acute

COVID-19 infection (filled circles, n¼4) or multiorgan inflammatory syndrome in

children (MIS-C) tested within 10 days of initiation of illness (filled circles, N¼ 5),

subclinical children found to be RT-PCR positive for SARS-CoV-2 infection,

screened due to hospitalization for other causes (unfilled triangle, N¼ 3) and

those with MIS-C where blood sample was drawn during convalescences (>10

days after initiation of symptoms, with a range of 11–35 days, N¼ 4). Plasma

sPLA2 levels are high in children with acute COVID-19 infection compared with a

normal value <20 ng/mL, with highest sPLA2 levels identified in patients with

MIS-C within 10 days of onset of symptoms. sPLA2 levels were significantly

higher in patients with symptomatic COVID-19 infection or MIS-C within 10 days

of onset of symptoms, compared with subclinical and convalescent patient

samples (P¼ 0.01). A two-sided unpaired Student’s t-test was used to determine

significant differences between acute and convalescent samples.
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Despite early reports suggesting rare COVID-19 disease
in children, more recent studies have found a considerable
number of hospitalized and critically ill pediatric
patients34,35 with many requiring pediatric intensive care
unit (PICU) admission.36 Children with underlying medi-
cal conditions, including immune compromise and cardio-
respiratory comorbidities appear to be at increased risk of
severe COVID-19 disease.37 However, the newly described
MIS-C associated with COVID-19 often affects previously
healthy children with no underlying comorbidities.38 MIS-
C is thought to be a postinfectious hyperinflammatory
response to SARS-CoV-2 infection based on its temporal
association with SARS-CoV-2, and detection of SARS-
CoV-2 antibodies in affected children. MIS-C is defined
by the CDC as 1) “an individual age< 21 years presenting
with fever, laboratory evidence of inflammation, and evi-
dence of clinically severe illness requiring hospitalization,
with multisystem (�2) organ involvement (cardiac, renal,
respiratory, hematologic, gastrointestinal, dermatologic or
neurologic); and 2) no alternative plausible diagnosis; and
3) positive for current or recent SARS-CoV-2 infection by
RT-PCR, serology or antigen test; or exposure to a sus-
pected or confirmed COVID-19 case within the 4weeks
prior to the onset of symptoms.”39

Children withMIS-C have high rates of PICU admission,
mechanical ventilation, and vasopressor requirements.40,41

Complications include myocarditis, cardiorespiratory fail-
ure, and even death.42 The emergence of MIS-C as a novel
and serious pediatric condition highlights the importance
of studying the impact of SARS-CoV-2 infection in children
as well as adults. Ultimately, a biomarker of pediatric
COVID-19 and MIS-C disease severity would be highly
valuable to stratify risk and to guide patient management.

New evidence is emerging daily that COVID-19 is more
than a respiratory disease; it can also result in multiorgan
failure and coagulopathy in severely ill patients. While
viremia obviously triggers the pathology observed, clinical
data suggest that the immune system plays an important
role in the morbidity and mortality of COVID-19. This in
turn has generated interest in treatments such as cortico-
steroids and immunomodulatory agents that mitigate the
immune response. However, treatments that act broadly to
suppress the immune system have the potential to impede
the body’s ability to control the viral infection. While cor-
ticosteroids reduce the formation of sPLA2 andmay benefit
severe cases of COVID-19,43–47 their use has also been relat-
ed to adverse events,48 as shown among relatively healthy
recipients in a large study from Taiwan.49 More focused
treatments that address specific inflammatory pathways,
including blocking the effect of specific inflammatory fac-
tors may be advantageous. Since levels of sPLA2 in blood of
pediatric patients appear to correlate with severity, we pro-
pose that elevated levels of sPLA2, together with apoptotic
changes in cellular membranes, lead to vascular dysfunc-
tion. Apoptosis is a normal and continuous process in
tissue remodeling. A primary signal that makes the cell
recognizable as apoptotic is the loss of phospholipid asym-
metry and exposure of PS on its surface. Apoptotic cells are
removed in a highly orchestrated way by macrophages,
before the cell membrane viability is lost and the cell will

lose its content. Viral infection leads to apoptosis, PS expo-
sure, and is related to the macrophage removal of
virus-infected cells.50–54 Endothelial cell infection and
endothelitis have been reported in COVID-19.55 Whereas
this report focused on ACE2 receptors expressed by endo-
thelial cells, the data showed apoptosis of endothelial cells
and mononuclear cells. Similarly, as observed for lung
damage in SCD patients during ACS, endothelial damage
and vascular dysfunction in COVID-19 will affect the vas-
cular health in all organs including the brain. Figure 2
shows a working model to illustrate our proposed link
between the COVID-19 inflammasome, upregulated
sPLA2 levels, and cellular damage. Clinical severity of
COVID-19 appears related to the degree of viremia, and it
is logical to assume that the number of apoptotic cells
formed is also related to the viral dose. We hypothesized
that under these conditions PS exposing cells are not effi-
ciently removed, and sPLA2 will break down cells that
expose PS.8 Lipolysis of these damaged cells by sPLA2
will generate non-esterified fatty acids (NEFA) and lyso-
phospholipids (LPLs) and lead to release of cellular content
in the environment. Increased levels of NEFA and LPL
were found in plasma of sickle cell patients diagnosed
with ACS.56 These sPLA2-induced cellular breakdown
products will affect other cells in the circulation when not
properly buffered or removed. CRP, similarly upregulated
by inflammatory cytokines as sPLA2, provides a binding
site for LPL, and we found a clear correlation between
levels of CRP and sPLA2 in patients with SCD that develop
ACS.57 Recent data have shown a possible correlation
between levels of CRP and severity in subsets of COVID-
19 patients.58–60 However, the correlation between upregu-
lated CRP and severity is not always clear, and extensive
formation of LPL and FAwill overwhelm the normal buff-
ering by CRP as well as albumin or lipoproteins.

Our findings that link sPLA2 to clinical disease severity
provide a rationale for therapies to stabilize the endotheli-
um while tackling viral replication, including specific anti-
inflammatory drugs, specific inhibitors of sPLA2 formation
or activity, as well as compounds that “cloak” its target, PS
exposing cells. Compounds that affect the formation of
sPLA2 include IL-6 inhibitors such as tocilizumab, as well
as potential IL-6 blockers including sarilumab, ALX-0061,
sirukumab, MEDI5117, clazakizumab, and olokizumab.61

Infliximab, a chimeric monoclonal TNF-alpha antibody, is
used to treat a number of autoimmune diseases including
Crohn’s disease, ulcerative colitis, rheumatoid arthritis,
ankylosing spondylitis, psoriasis, psoriatic arthritis, and
Behçet’s disease. Its action has been related to a decrease
in the formation of sPLA2.62 Compounds like Varespladib,
a sPLA2 inhibitor,63 and other specific inhibitors of sPLA2
may warrant further investigation as therapeutic agents in
COVID-19 and MIS-C. The use of a sPLA2 inhibitor in
sepsis demonstrated improved survival in a subgroup of
patients who received the drug within 24 h of sepsis-
induced organ failure. Results in a larger group with
severe organ failure were not significant,64 confirming
that the administration of these compounds is needed
before major organ damage has occurred.
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As has been demonstrated with corticosteroids, modify-
ing the inflammatory response carries a risk. However,
lowering cellular damage invoked by the attack of sPLA2
may provide an additional tool to address unchecked
inflammation. Cloaking PS surfaces may also represent a
strategy to mitigate the prothrombotic state observed in
COVID-19 patients. Unwanted presence of PS exposing
cells will dysregulate hemostasis. The assembly of the pro-
thrombinase complex on the PS exposing surface of activat-
ed platelets, and formation of thrombin and F1.2 starts the
coagulation process. PS exposure on other cells will lead to
a prothrombotic state, and PS exposing sickle-erythrocytes
are related to F1.2 levels in plasma. Early reports of abnor-
mal coagulation parameters in COVID-19 patients from
Wuhan65 were confirmed with additional studies.66,67

Elevation of D-dimer and thrombus formation was
reported in COVID19,68 and low molecular weight heparin
treatment appeared to associate with outcomes.69 We sug-
gest therefore that “cloaking” of the PS exposing surface
may lower both sPLA2-induced damage as well as the for-
mation of thrombin.

Annexin is a common name for a group of cellular pro-
teins that bind to PS exposingmembranes in the presence of
calcium. As a fluorescent derivative annexin is widely used
to visualize apoptotic cells by microscopy or flow cytome-
try.70 We developed di-annexin as a compound with a

longer lifetime in the circulation to “cloak” PS exposing
surfaces.71 This compound has proven to be effective in
modulation ischemia reperfusion injury in animals,72–77

and has been used in solid organ transplants.74,78,79 We
speculate that this compound could lower both the
damage invoked by sPLA2 as well as the onset of throm-
botic events.

Ultimately, treatment options for COVID-19 will rely on
a combination of the inhibition of viral replication, anticy-
tokine, and anti-inflammatory agents. We additionally pro-
pose an approach that specifically target sPLA2 and PS
exposing cells.

Our small sample size of children with acute COVID-19
and MIS-C at a single center is a limitation, and the data
may not be generalizable. Future work with a larger sample
size and multicenter collaboration is necessary to broaden
our understanding of the virus and its consequences in
children. However, our data provide a proof-of-concept
regarding a correlate of sPLA2 in COVID-19 and MIS-C,
justifying further investigation. Variable timing of blood
sampling is another limitation; measurements earlier in
the course of illness and longitudinal analysis of sPLA2
would provide further insight. In SCD, for instance, daily
assessment of sPLA2 levels predicted the onset of
ACS.9,10,31 Additionally, we did not control for anti-
inflammatory interventions that may have impacted

Figure 2. Secretory phospholipase A2 (sPLA2)-related COVID-19 inflammasome. Simplified scheme of processes that will lead to vascular damage and multiorgan

failure in COVID-19 patients. Cytokines initiate the production of sPLA2. Invasion by the virus renders the cell apoptotic, a process that activates phosphatidylserine

(PS) exposure, a signal for cell removal. Overwhelming numbers of PS exposing cells are targets for sPLA2, generating lysophospholipids and fatty acids, powerful

detergents that will damage additional cells if not properly buffered. PS exposure will also activate the prothrombinase complex, starting the coagulation process.
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sPLA2 levels. Future studies will be necessary to further
understand how this enzyme correlates with COVID-19
disease severity and pathogenesis in adults. Data from
our asymptomatic HCW cohort confirm that sPLA2 is
normal in adults with a history of COVID-19 in convales-
cence; however, sPLA2 levels were not available during
acute illness, and none of our adult participants qualified
as having had “severe” disease based on the need for inpa-
tient hospital admission, in contrast to our hospitalized
pediatric cohort.

Together, our data indicate that high levels of sPLA2
predict clinical disease severity in children, both in the
acute phase of COVID-19 and in those who develop MIS-
C. These results can inform hypotheses for future studies.
The assay to measure sPLA2 can easily be introduced as a
routine assay in the acute care setting, added to the meas-
urements provided by a clinical lab. The sPLA2 results may
provide a tool for the clinician to decide on a course of
action to benefit the patient, and may avoid delayed diag-
nosis of COVID-19-related pathology.80 We suggest that
therapeutic compounds targeting sPLA2, as well as those
specifically aimed at lowering vascular damage of PS
exposing cells, warrant consideration.
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