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p53 is a vital transcriptional protein implicated in regulating diverse cellular processes, including cell cycle arrest, DNA repair,
mitochondrial metabolism, redox homeostasis, autophagy, senescence, and apoptosis. Recent studies have revealed that p53 levels
and activity are substantially increased in affected neurons in cellular and animal models of Parkinson’s disease (PD) as well as in
the brains of PD patients. p53 activation in response to neurodegenerative stress is closely associated with the degeneration of
dopaminergic neurons accompanied by mitochondrial dysfunction, reactive oxygen species (ROS) production, abnormal protein
aggregation, and impairment of autophagy, and these pathogenic events have been implicated in the pathogenesis of PD.
Pathogenic p53 integrates diverse cellular stresses and activate these downstream events to induce the degeneration of dopa-
minergic neurons; thus, it plays a crucial role in the pathogenesis of PD and appears to be a potential target for the treatment of the
disease. We reviewed the current knowledge concerning p53-dependent neurodegeneration to better understand the underlying
mechanisms and provide possible strategies for PD treatment by targeting p53.

1. Introduction

Parkinson’s disease (PD) is a common neurodegenerative
disorder caused by the selective and progressive loss of
dopaminergic neurons in the substantia nigra (SN) of the
midbrain and depletion of dopamine neurotransmitter in
the striatum [1]. ,e etiology responsible for the progressive
degeneration of dopaminergic neurons remains unclear.
However, multiple pathogenic events, including mito-
chondrial dysfunction, oxidative stress, abnormal protein
aggregation, and impairment of mitophagy, have been
documented to bemechanistically linked to the pathogenesis
of PD [2–5]. p53 is known to be an essential apoptotic
inducer and becomes activated in response to diverse cel-
lular stresses. Pathogenic p53 integrates the cellular stresses
to trigger the death of different cell types, including dopa-
minergic neurons [6, 7]. Studies in cellular models of PD
have demonstrated that p53 levels and activity are sub-
stantially increased, and these changes are closely associated
with dopaminergic neuron death in neurodegenerative
conditions. ,e high levels of p53 were also observed in the
brains of PD patients as well as PD animal models,

supporting the link between p53 activation and the de-
generation of dopaminergic neurons in PD [8]. ,e acti-
vation of p53 induces neurodegeneration through diverse
cell death pathways, including mitochondrial dysfunction,
mitochondrial Ca2+ overloading, reactive oxygen species
(ROS) production, abnormal protein aggregation, and im-
pairment of mitophagy [9, 10]. p53 brings together diverse
pathogenic signals to initiate downstream pathogenic events
and consequent neurodegeneration; thus, it plays a central
role in the pathogenesis of PD and provides a potential target
for therapeutic intervention of the disease. ,is article
reviewed the involvement of apoptotic mediator p53 in
pathogenic events associated with the loss of dopaminergic
neurons and the underlying mechanisms responsible for
p53-mediated neurodegeneration in PD.

2. Property of p53

p53 is a transcriptional protein encoded by the TP53 gene. It
was initially described as a tumor suppressor. However, later
studies revealed that p53 is a multifunctional protein in-
volved in regulating numerous cellular processes by
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activating diverse downstream signal cascades [11–15].
Structurally, p53 contains five highly conserved domains: a
central DNA-binding domain, an N-terminal trans-
activation domain, a proline-rich region, a tetramerization
domain, and a C-terminal basic domain, which are asso-
ciated with the transcriptional or posttranscriptional regu-
lating function of p53 [16]. ,e DNA-binding domain is a
primary functional domain of p53 that recognizes and binds
to specific DNA sequences in target genes, triggering the
transcription of sets of genes with diverse biological func-
tions [17–19]. ,e C-terminal basic domain stabilizes the
formation of p53-DNA complexes by inducing the con-
formational changes in the core DNA-binding domain. It is
also a specific site for p53 posttranslational modifications
including phosphorylation, acetylation, ubiquitination,
methylation, SUMOylation, and neddylation, and these
structural changes are closely associated with p53 stability
and functional activity [20–25]. ,e N-terminal domain and
the proline-rich region are correlated with p53 transcrip-
tional activation, while the oligomerization domain con-
tributes to the stability of p53-DNA complexes, thereby
promoting p53 transcriptional function. Normally, p53 is an
unstable protein that is continuously degraded by protea-
somes. ,e murine double minute-2 (Mdm2) protein is
known to be a major negative regulator that targets p53 for
proteasomal degradation and inhibits its subcellular trans-
location by ubiquitinating p53 [26]. Phosphorylation of p53
at ,r377 and Ser378 decreases its acetylation and activity
and facilitates its ubiquitination and degradation, while
Ser15, ,r18, or Ser20 phosphorylation increases its ability
to counteract ubiquitin-mediated protein degradation,
promotes C-terminal acetylation and nuclear transport, and
enhances its DNA binding and transcriptional activity
[27–30]. Phosphorylation at Ser46 of cytoplasmic p53 ac-
tivates its conformational change and mitochondrial
translocation [31, 32]. p53 is a response gene that regulates
the transactivation of many target genes involved in diverse
biological processes. p53 activation-associated degeneration
of dopaminergic neurons has been reported to be closely
associated with the development of PD [10, 33].

3. p53 with Mitochondria

Mitochondria are multifunctional subcellular organelles that
are essential for numerous cellular functions, including
generation of cellular energy, intracellular Ca2+ homeostasis,
ROS production, and activation of intrinsic cell death
pathways [34–36]. Mitochondrial dysfunction has been
implicated in a series of diverse diseases including PD and
has been reported to be a central event in PD pathogenesis
[37]. Activation of p53-mediated mitochondrial apoptotic
changes and the subsequent cell death of dopaminergic
neurons have been underlined in neurodegeneration [38].
Experimental and clinical studies have demonstrated that
the levels and activity of p53 are highly increased in PD
cellular and animal models as well as in the brains of PD
patients, and these changes are closely associated with the
dysfunction of mitochondria and the cell death of dopa-
minergic neurons [8]. p53 activation has a profound

influence on mitochondrial integrity and function through
transcription-dependent mechanisms and transcription-
independent actions.

3.1. p53 andMitochondrial ROS Production. Oxidative stress
is a pathogenic condition resulting from an imbalance be-
tween ROS production and cellular enzymatic and nonen-
zymatic antioxidative defenses. Oxidative damage to
dopaminergic neurons has been considered as an essential
pathogenic factor in the development of PD [39]. ,is is
supported by the findings that the brain tissues of PD pa-
tients express high levels of oxidative products, including
lipid peroxidation product 4-hydroxyl-2-nonenal (HNE),
carbonyl modifications of soluble proteins, and DNA and
RNA oxidation products 8-hydroxy-deoxyguanosine and 8-
hydroxyguanosine [40–43]. Oxidative damage of dopami-
nergic neurons has also been observed in PD animal and
cellular models, supporting the correlation of oxidative
stress with the degeneration of dopaminergic neurons in PD
[44–46]. Mitochondria are a primary intracellular source of
ROS production in the electron transport chain (ETC) of
oxidative phosphorylation. Respiratory chain complexes I
and III are the major sites of ROS generation in mito-
chondria [47–49]. During oxidative phosphorylation, the
respiratory chain complexes transfer electrons to oxygen,
mainly producing superoxide radicals and subsequently
hydrogen peroxide (H2O2) and hydroxyl radicals [49, 50].
,is production of ROS can be detoxified by cellular defense
systems, including mitochondrial superoxide dismutase,
manganese superoxide dismutase (MnSOD), glutathione
peroxidase, catalase, and glutathione (GSH) [51–53]. When
the balance of ROS production and antioxidant defense is
perturbed, ROS accumulate and result in oxidative damage
to the target cells. Cellular redox homeostasis is tightly
regulated by p53 through transcription and modification of
pro-oxidant and antioxidant protein [54, 55]. Various forms
of cellular stress activate p53 to inhibit ROS generation and
promote cell repair or to increase cellular oxidative damage
and induce senescence or apoptosis under conditions of
severe, irreversible stress [12]. Numerous studies have
revealed that the levels and activity of p53 are substantially
increased in various neurodegenerative conditions, ac-
companied by oxidative damage of macromolecule proteins
and DNA [56–58]. Overexpression of p53 transactivates a
series of pro-oxidative genes, including p53-inducible gene 3
(PIG3), p66shc, and proline oxidase gene associated with
ROS production [54, 59–62]. PIGs activation, for example,
causes oxidative damage of target cells through increased
ROS production via NADPH-quinone oxidoreductase and
inhibition of ROS scavenging by catalase [63, 64]. p53 affects
mitochondrial respiratory activity by regulating the syn-
thesis of cytochrome c oxidase 2 (SCO2). SCO2 is a nuclear
DNA-encoding subunit, which is essential for regulating the
cytochrome c oxidase (COX) complex, the major site of
oxygen utilization in eukaryotic cells. p53 transactivates the
expression of SCO2 by binding its promoter in nuclear
DNA, resulting in ROS production [65]. Moreover, p53
following cellular stress induces the expression of
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proapoptotic proteins including B-cell lymphoma 2 (Bcl-2)-
associated X-protein (Bax), p53 upregulated modulator of
apoptosis (PUMA), and nicotinamide adenine dinucleotide
phosphate oxidase activator (NOXA), which disturb mito-
chondrial function resulting in upregulation of ROS gen-
eration [66]. In addition, cytosolic p53 decreases the
ubiquitin-mediated degradation of α-synuclein protein [67].
α-Synuclein targets mitochondria to induce profound mi-
tochondrial alterations, including collapse of transmem-
brane potential, impairment of respiratory chain complexes,
disturbance of mitochondrial Ca2+ homeostasis, and, finally,
ROS production and oxidative stress [68–70]. Accumulation
of p53 in the mitochondrial matrix binds and inactivates
MnSOD, a critical mitochondrial enzyme, involved in cel-
lular defense against oxidative stress by scavenging ROS [71].
p53 overexpression also impairs mitochondrial morphology,
resulting in decreased mitochondrial Ca2+ transients, fol-
lowed by ROS production [72]. (Figure 1). ,e mitochon-
drial ETC is a primary cellular target of ROS-induced
oxidative stress, and oxidative damage leads to further in-
hibition of the ETC and excessive ROS production [73].
,us, a vicious pathogenic cycle develops between the de-
fects in ETC and ROS generation, which may be critical in
the progressive loss of dopaminergic neurons and the de-
velopment of PD [74]. p53 plays an essential role in these
processes and provides a potential target for therapeutic
intervention.

,e NS dopaminergic neurons are vulnerable to oxi-
dative stress. Increased iron levels have been detected in the
SN of PD patients compared to healthy controls [75]. Iron
promotes the generation of highly reactive oxygen species,
resulting in further oxidative damage. DNA oxidative
damage in vulnerable dopaminergic neurons is a hallmark of
PD [76, 77]. Proliferating cell nuclear antigen (PCNA) is an
essential protein that protects DNA from oxidative damage
by regulating a wide range of enzymes and regulatory
proteins [78, 79]. p53 is an upstream regulator of PCNA, and
high concentration of p53 reduces the expression levels of
PCNA by inhibiting its promoter, which diminishes its
ability to protect DNA from oxidative damage [80,81].
Consistent with these reports, our previous studies inMPP+-
induced neuronal PC12 cells suggested that PCNA down-
regulation caused by p53 activation contributed to the DNA
oxidative damage in dopaminergic neurons [74]. ,is evi-
dence supports the conclusion that p53 functioning as a
converging signal for the generation of ROS plays a crucial
role in PD pathogenesis.

3.2. p53 and Mitochondrial mPTP. p53 in response to cel-
lular stress undergoes posttranscriptional modifications that
increase its stabilization and subcellular translocation [29].
Nuclear translocated p53 binds to specific response se-
quences in the target genes and induces the expression of
many proapoptotic proteins, such as Bax, PUMA, NOXA
[82–84]. ,ese proteins are essential for forming the mi-
tochondrial permeability transition pore (mPTP) and in-
ducing mitochondria-mediated intrinsic cell death under
pathological conditions [38, 74]. Bax and Bcl-2 antagonist/

killer (Bak) are proapoptotic proteins involved in mPTP
formation.,e antiapoptotic Bcl-2 family proteins Bcl-2 and
B-cell lymphoma-extra large (Bcl-xL) combine with Bak to
counter their proapoptotic function under normal condi-
tions. Activation of p53 following cellular stress interacts
with Bcl-2/Bcl-xL and releases Bax/Bak to open mPTP,
leading to the release of cytochrome c from the mito-
chondria into the cytosol [85]. Mitochondrial translocation
of p53 can directly bind Bax/Bak to disrupt the protein
complex and activate the intrinsic apoptotic pathway
[86,87].

p53 transcriptionally activates the proapoptotic protein
PUMA [88]. Activation of PUMAbinds all of the antiapoptotic
BCL-2 members and facilitates Bax/Bak-mediated per-
meabilization of the outer mitochondrial membrane (OMM),
resulting in the release of cytochrome c and activation of the
caspase cascade [14]. PUMA also induces the release of cy-
tosolic p53 from BCL-xL to activate Bax and Bak [89].

In addition, p53 induces the expression of the apoptotic
regulating factor NOXA, which facilitates the opening of
mPTP and release of cytochrome c to trigger cell death [90].
Besides OMM permeabilization, p53 mitochondrial
translocation also induces the opening of the permeability
transition pore in the inner mitochondrial membrane
(IMM) by activating the translocation of cyclophilin D
(CypD) from the mitochondrial matrix to the IMM. ,e
translocated CypD interacts with the IMM protein adenine
nucleotide translocator (ANT) to induce its morphological
changes and subsequent formation of the ANT channel
[91]. ,e permeabilization of outer mitochondrial mem-
branes together with the channel formed by ANT in inner
mitochondrial membranes constitutes a tunnel-like
structure that causes the release of apoptotic mediators
from the mitochondria into the cytosol to trigger caspase
activation and eventual cell death (Figure 2). p53 has been
implicated in the regulation of mitochondrial Ca2+ ho-
meostasis in numerous ways. Nuclear p53 transrepresses
the expression of Pten-induced kinase 1(PINK1) through
binding and inactivating its promotor [9]. PINK1 physi-
ologically regulates calcium efflux from the mitochondria
via the ion exchanger, and its deficiency causes impaired
Ca2+ efflux resulting in mitochondrial Ca2+ overloading
[92]. Mitochondrial translocation of p53 reduces mito-
chondrial Ca2+ transients and facilitates Ca2+ release into
the mitochondrial matrix [72]. Ca2+ is an essential ion for
the activation of numerous mitochondrial enzymes that are
necessary for mitochondrial metabolism [93]. Mitochon-
drial Ca2+ overloading has profound consequences for the
cell, including defective synthesis of adenosine triphos-
phate (ATP), the collapse of the mitochondrial trans-
membrane potential, ROS production, and activation of
mitochondrial mediated cell death [94]. Ca2+ overloading
and excessive ROS production, in turn, facilitate the mPTP
opening by inducing the translocation of the mitochondrial
matrix CypD to the inner membrane and activating the
mPTP regulator ANT [95]. ,us, p53 overexpression and
subcellular translocation play a crucial role in mitochon-
drial apoptotic changes and subsequent
neurodegeneration.
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4. p53 with Autophagy and Protein Aggregation

Neurodegenerative disorders are characterized by the ac-
cumulation of abnormal protein and damagedmitochondria
that are associated with dysregulation of either proteasomal
and/or autophagic quality control systems [96]. p53 has been
known to be a key regulator in autophagic response, and
activation following neurodegenerative stress leads to
autophagic failure and subsequent neurodegeneration [97].

4.1. p53 and Autophagy. Autophagy is a major intracellular
process for the elimination of deleterious proteins and
damaged mitochondria; dysfunctional autophagy has been
linked to the pathogenesis of numerous neurodegenerative
disorders, including Alzheimer’s disease (AD), Huntington’s
disease (HD), amyotrophic lateral sclerosis (ALS), and PD
[96, 98]. p53 has been increasingly recognized to be a key
autophagic regulator that functions primarily through
transcriptional effects on a wide range of downstream target
genes, as well as regulation of the mTOR pathway in a
transcription-dependent manner [99, 100].,e differential
regulation of autophagy by p53 following cellular stress is
dependent on its subcellular localization, targeting genes,
and stress conditions.,e accumulation of p53 in the cytosol
has been suggested to inhibit autophagic clearance of

abnormally aggregated proteins in pathogenic conditions
[67, 101, 102]. p53-associated dysfunction of autophagy is
increasingly considered as a potential mechanism respon-
sible for the degeneration of dopaminergic neurons in PD
pathogenesis [9, 67, 103]. Neurodegenerative conditions
induce high levels of p53 that are closely associated with the
abnormal accumulation of α-synuclein and dysfunctional
mitophagy [9].

4.2. p53 and α-Synuclein Aggregation.
Neuropathologically, PD is characterized by the presence of
protein inclusions termed Lewy bodies (LBs) in the vul-
nerable neurons of the SN [104]. ,e synaptic protein
α-synuclein has been identified as the primary component
of LBs [105, 106]. α-Synuclein is an intracellular protein
normally localized in the presynaptic terminals, and ag-
gregation and dimer formation of α-synuclein are caused
by dysfunctional cellular proteostasis [107–109]. Aberrant
α-synuclein accumulation and formation of LBs in dopa-
minergic neurons have implicated the neurodegeneration
[107]. Protein aggregation disrupts cellular function,
leading to the activation of cell death signals and subse-
quent neuron injury and death [107]. p53 is a stress re-
sponse gene involved in the regulation of autophagy via
diverse pathways [101, 110].
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Figure 1: p53 activation in ROS production under irreversible stress conditions. p53 regulates cellular redox homeostasis through
transcriptional action and modified expression of pro-oxidant and antioxidant proteins. p53 activation induces the expression of many
proapoptotic proteins, such as Bax, PUMA, and NOXA, and facilitates Bax/Bak-mediated permeabilization of the outer mitochondrial
membrane leading to the discharge of the membrane potential and ETC impairment followed by excessive ROS production. p53 also
activates pro-oxidative genes including PIG3, proline oxidase, and p66shc to induce elevated levels of oxidative stress. ,e pro-oxidative
activities of p53 also include the activation of expression of SCO2 gene, which is essential for regulating COX complex, the major site of
oxygen utilization in the eukaryotic cells. ,e accumulation of cytosolic p53 protects α-synuclein from ubiquitin-mediated degradation
inducing ROS generation and oxidative stress. α-Synuclein, in respone to cellular stress specifically targets mitochondria causing their
profound alterations, including collapse of transmembrane potential, impairment of respiratory chain complexes, disturbance of mito-
chondrial Ca2+ homeostasis, and subsequent excessive ROS production. Accumulation of p53 in the mitochondrial matrix also contributes
to oxidative damage to target cells by binding and inactivating the antioxidant MnSOD.
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Chaperone and cochaperone systems are essential for
protein folding or refolding and degradation of aggregated
protein; thus, they prevent the cytotoxicity caused by aberrant
protein accumulation [111, 112]. p53 regulates the functional
activity of HSP70 and HSP90 chaperone and cochaperone
systems in neurodegenerative conditions [67, 113]. Studies in
PD cellular and animal models have shown that p53 activation
increases the aggregation of α-synuclein in vulnerable neurons
through inhibiting HSP70-mediated protein folding activity,
accompanied by BAG5 protein overexpression [113]. BAG5 is
an important stress-induced backup nucleotide exchange
factor of HSP70 associated with the protein activation. High
levels of BAG5, however, inhibit the folding activity of the
HSP70 chaperone, resulting in dysfunction of protein folding
and refolding and subsequent abnormal protein aggregation.
BAG5 expression is transcriptionally regulated by the p53 gene
under stress conditions [113]. ,e gene silence of p53 causes a
substantial decrease in BAG5 mRNA and protein levels in the
stressed cells. Mechanism studies reveal that p53 can directly
bind to the promoter and activate BAG5 transcription, leading
to elevated levels of BAG5 under irreversible stress conditions
[113]. p53 activation induces overexpression of BAG5 to in-
hibit the protein folding activity of HSP70, leading to the
aggregation and accumulation of α-synuclein and subsequently
cell toxicity and death.

c-Abl is a critical tyrosine kinase associated with the
accumulation of pathogenic α-synuclein and neuro-
degeneration in PD [114–116]. c-Ab1 is activated in response
to cellular stress, including oxidative stress and DNA
damage [67]. Activation of c-Ab1 directly phosphorylates
α-synuclein or decreases its autophagic degradation
[116, 117]. Pharmacological inhibition of c-Ab1 has been
shown to reduce α-synuclein levels or its aggregation via the
activation of autophagy in PD cellular and animal models
[115]. Several lines of evidence have suggested that c-Abl-
dependent inhibition of autophagy also involves p53 acti-
vation and p53-dependent mTOR signal pathway [67]. c-Abl
directly phosphorylates Mdm2, decreasing its ligase activity
[118]. Mdm2 is a key E3 ligase that ubiquitinates p53 for
proteasomal degradation and prevents p53 transcription by
binding to its N-terminal domain [119]. Decreased levels
and activity of Mdm2 cause the accumulation of p53 under
stress conditions [120]. Studies in PD cellular and animal
models have demonstrated that pharmacological inhibition
of p53 can block α-synuclein aggregation and autophagy
defects caused by c-Ab1 activation. ,ese results support the
conclusion that c-Ab1 mediates the accumulation and ag-
gregation of α-synuclein, which at least in part occurs
through the p53-dependent pathway under neurodegener-
ative conditions.
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5. p53 and Mitophagy

Mitophagy is a protective mechanism for mitochondria to
maintain their homeostasis through clearance of damaged
mitochondria or fission-fragmented mitochondria via ly-
sosomal degradation [121]. ,is protective function is
crucial for neuronal cells due to the sensitivity of neurons to
toxic aggregation. Mitophagy impairment causes the accu-
mulation of defective mitochondria resulting in toxicity to
the vulnerable neurons and eventually neuronal degenera-
tion, and this cell death pathway has been underlined in the
pathogenesis of neurodegenerative disorders, including PD
[122, 123]. PINK1 and Parkin have been suggested to play a
crucial role in the process of mitophagy [121]. PINK1 is a
serine/threonine kinase possessing a mitochondrial target-
ing sequence, which allows the kinase to enter into the
mitochondria and translocate to the IMM. ,e mitochon-
drial translocated PINK1 is normally cleaved and inactivated
by the IMM protease presenilin-associated rhomboid-like
protein (PARL) and subsequently degraded through the
N-end rule pathways, resulting in low levels of PINK1 in the
healthy mitochondria [124, 125]. However, mitochondrial
depolarization inhibits PINK1 translocation to the IMM and
subsequent degradation by PARL, which contribute to the
accumulation of PINK1 on the OMM and the subsequent
recruitment of Parkin from the cytoplasm into the damaged
mitochondria. Parkin is an E3 ubiquitin ligase that ubiq-
uitinates mitochondrial membrane proteins to trigger the
elimination of defective mitochondria by lysosomes. ,e
PINK1/Parkin-mediated mitophagy is crucial for mito-
chondrial quality control and to clean damaged mito-
chondria. ,is functional activity of PINK1/Parkin can be
disturbed by p53 activation, leading to impaired mitophagy.
p53 transrepresses the expression of PINK1 under normal as
well as pathogenic conditions. ,is is supported by the
finding that pharmacological phosphorylation of p53 leads
to the decreased expression of PINK1 in SH-SY5Y neuro-
blastoma cells and inhibition of p53 activity increases both
PINK1 protein expression and mRNA levels in the cell
treated with pifithrin-α (PFT), a well-known p53 inhibitor.
p53 adenoviral overexpression in mouse striatal neurons
causes the decrease in PINK1 and mRNA levels, while
depletion of endogenous p53 promotes its expression and
mRNA levels, supporting p53 as a transcriptional inhibitor
of PINK1 transcription [9]. p53 also directly interacts with
Parkin to inhibit its translocation to the damaged mito-
chondria, resulting in the impairment of mitophagy [126].
Parkin is shown to repress the transcription of p53, which in
turn transactivates the expression of Parkin [127, 128]. ,is
interplay could increase the expression of PINK1 since its
transcription is tightly controlled by p53 and p53 repression
by Parkin results in PINK1 transactivation. ,e interplay
among p53, PINK1, and Parkin creates an intricate regu-
lating network for elimination of defective mitochondria by
mitophagy, while overexpression of p53 during neurode-
generative stress decreases PINK1 levels and inactivates
mitophagic activity of Parkin, resulting in impairment of
mitophagy and consequent neurodegeneration.

6. Conclusion and Future Perspectives

p53 is a multifunctional protein that regulates numerous
diverse cellular processes through transcription-depen-
dent mechanisms and transcription-independent actions.
p53-dependent neuronal death has been mechanistically
linked to the pathogenesis of many neurodegenerative
disorders including PD. Activation of p53 in response to
neurodegenerative stress facilitates mitochondrial dys-
function, oxidative stress, aberrant protein aggregation,
and autophagy impairment. ,ese are central events
associated with the degeneration of dopaminergic neu-
rons and fundamental processes in the pathogenesis of
PD. p53 plays a significant role in neurodegeneration
through the integration of various neurodegenerative
signals triggering neuronal death, making it a potential
target for the treatment of PD. Strategies to inhibit the
high levels and activity of p53 could inhibit the pro-
gression of pathological changes and alleviate the pro-
gressive degeneration of dopaminergic neurons in PD. In
particular, Mdm2 binds to the transactivation domain of
p53, inhibits its transcriptional activity, and mediates p53
ubiquitination and degradation via proteasomes. Phar-
macological stimulation of Mdm2 has been shown to
decrease p53 activity and levels and promote neuronal
survival under neurodegenerative conditions. ,erefore,
Mdm2 appears to be a potential therapeutic target that
could be used in the development of novel neuro-
protective strategies for PD. In conclusion, p53-depen-
dent therapeutic intervention is needed.
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