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ABSTRACT

Intrinsic timescales of activity fluctuations vary hierarchically across the brain. This variation
reflects a broad gradient of functional specialization in information storage and processing,
with integrative association areas displaying slower timescales that are thought to reflect
longer temporal processing windows. The organization of timescales is associated with
cognitive function, distinctive between individuals, and disrupted in disease, but we do not
yet understand how the temporal properties of activity dynamics are shaped by the brain’s
underlying structural connectivity network. Using resting-state fMRI and diffusion MRI data
from 100 healthy individuals from the Human Connectome Project, here we show that the
timescale of resting-state fMRI dynamics increases with structural connectivity strength,
matching recent results in the mouse brain. Our results hold at the level of individuals,
are robust to parcellation schemes, and are conserved across a range of different timescale-
related statistics. We establish a comprehensive BOLD dynamical signature of structural
connectivity strength by comparing over 6,000 time series features, highlighting a range of
new temporal features for characterizing BOLD dynamics, including measures of stationarity
and symbolic motif frequencies. Our findings indicate a conserved property of mouse and
human brain organization in which a brain region’s spontaneous activity fluctuations are
closely related to their surrounding structural scaffold.

AUTHOR SUMMARY

Reflecting structural and functional differences across brain regions, the spontaneous
dynamics of neural activity vary correspondingly. Dynamical timescales are thought to be
organized hierarchically, with slower timescales in integrative association areas, consistent
with longer durations of information processing. In the mouse brain, this variation in BOLD
dynamical properties follows the variation in structural connectivity strength, with more
strongly connected regions exhibiting slower dynamics. Here we show a consistent variation
in human cortex that holds at the level of individuals, and characterize a range of BOLD
properties that vary strongly with structural connectivity strength. Our results indicate a
conserved property of mouse and human brain organization in which a brain area’s
spontaneous activity fluctuations are closely related to its structural connectivity strength.
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FMRI timescales relate to structural connectivity in the brain

INTRODUCTION

The brain’s complex spatiotemporal dynamics unfold on an intricate web of axonal connec-
tions: the connectome (Fornito, Zalesky, & Bullmore, 2016; Sporns, Tononi, & Kötter, 2005).
These pathways facilitate information transfer between brain regions, manifesting in a com-
plex relationship between connectome structure and neural dynamics. Reflecting the pairwise
(region–region) nature of structural connectivity, existing studies have overwhelmingly com-Structural connectivity:

The set of physical connections
between all pairs of neural elements
(e.g., brain regions).

pared pairwise measurements of anatomical connectivity to pairwise statistical relationships
between neural activity time series, or functional connectivity, often using simulations of net-
work dynamics to better understand how the observed relationships may arise (Abdelnour,
Dayan, Devinsky, Thesen & Raj, 2018; Abdelnour, Voss, & Raj, 2014; Deco & Jirsa, 2012;
Deco et al., 2014; Deco et al., 2013; Finger et al., 2016; Ghosh, Rho, McIntosh, Kötter, & Jirsa,
2008; Goñi et al., 2014; Hagmann et al., 2008; Hermundstad et al., 2013; Hinne, Ambrogioni,
Janssen, Heskes, & van Gerven, 2014; Honey, Kötter, Breakspear, & Sporns, 2007; Honey et al.,
2009; Mišić et al., 2016; Skudlarski, Jagannathan, & Calhoun, 2008; van Den Heuvel, Mandl,
Kahn, & Hulshoff Pol, 2009; Wang et al., 2019).

Structural connectivity is highly informative of functional connectivity, consistent with the
connectome as a physical substrate constraining interregional communication dynamics. How-
ever, our understanding of pairwise structure–function relationships remains disconnected
from our understanding of how a brain area’s structural connectivity properties shape its lo-
cal activity dynamics. The structural connectivity profile of a region’s incoming and outgoing
axonal connections characterizes its function (Passingham, Stephan, & Kötter, 2002). Further-
more, the activity dynamics of brain areas follow a functional hierarchy, with rapid dynamicsFunctional hierarchy:

The organization of brain regions by
the abstraction and complexity of
their function, from unimodal to
multimodal areas.

in “lower” sensory regions and slower fluctuations in “higher” regions associated with integra-
tive processes (Gao, van den Brink, Pfeffer, & Voytek, 2020; Hasson, Chen, & Honey, 2015;
Honey et al., 2012; Kiebel, Daunizeau, & Friston, 2008; Murray et al., 2014; Stephens, Honey,
& Hasson, 2013). The spatial variation of intrinsic timescales has been measured using ECoG
(Honey et al., 2012), MEG (Demirtaş et al., 2019; Keitel & Gross, 2016; Mahjoory, Schoffelen,
Keitel, & Gross, 2019), TMS–EEG (Rosanova et al., 2009), and fMRI (Baria, Baliki, Parrish, &
Apkarian, 2011; Baria et al., 2013; Cocchi et al., 2016; Huang, Liu, Mashour, & Hudetz, 2018;
Lee & Xue, 2017; Stephens et al., 2013; Watanabe, Rees, & Masuda, 2019), and may func-
tionally correspond to a variation in temporal receptive windows (timescales over which new
information can be actively integrated with recently received information [Hasson et al., 2015;
Hasson, Yang, Vallines, Heeger, & Rubin, 2008; Watanabe et al., 2019]). Spatial variation in
intrinsic activity fluctuations may form a key basis for the brain’s functional hierarchical organ-
ization, shaped by variation in the brain’s microcircuitry (Burt et al., 2018; Fulcher, Murray,
Zerbi, & Wang, 2019; García-Cabezas et al., 2017). This organization is thought to be im-
portant for behavior and cognition (Cavanagh, Wallis, Kennerley, & Hunt, 2016; Gollo, 2019;
Hasson et al., 2015; Runyan, Piasini, Panzeri, & Harvey, 2017) and its disruption has clini-
cal implications; for example, differences in intrinsic timescales are associated with symptom
severity in autism (Watanabe et al., 2019). While much is known about the structure–function
relationship at the level of pairs of brain regions, and how structural and functional connec-
tivity architecture shape cognitive function and are affected in disease (Fornito, Zalesky, &
Breakspear, 2015; Li et al., 2009; Penke et al., 2012; van den Heuvel & Sporns, 2019), rel-
atively little is known about how structural connectivity affects the information-processing
dynamics of individual brain areas. In particular, we do not yet understand the role structural
connections play in the organization of timescales.
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FMRI timescales relate to structural connectivity in the brain

Recent work has provided statistical evidence for a relationship between regional tract-
tracing estimates of anatomical connectivity and rs-fMRI dynamics in the mouse brain (Sethi,
Zerbi, Wenderoth, Fornito, & Fulcher, 2017). This work took a comprehensive, data-driven ap-
proach, comparing over 7,000 properties of regional BOLD dynamics (using the hctsa softwarehctsa:

A software package for highly
comparative time series analysis that
implements an interdisciplinary
library of thousands of time series
features.

package; Fulcher & Jones, 2017; Fulcher, Little, & Jones, 2013) with three key structural con-
nectivity properties—degree, betweenness, and clustering coefficient—measured in each of
184 brain areas. The tract-traced connectivity measurement available in mouse (Oh et al.,
2014) also allowed the role of directed and weighted connectivity information to be inves-
tigated. The weighted in-degree, kw

in
, showed the strongest correlation to BOLD dynamics,

Weighted in-degree:
The aggregate strength of axonal
inputs to a brain area.

particularly with its autocorrelation properties (including the Fourier spectral power in differ-
ent frequency bands). For example, relative high-frequency power ( f > 0.4Hz) was found to
be negatively correlated to weighted in-degree, kw

in
(ρV = −0.43, partial Spearman correlation

controlling for region volume). The results suggest that structural connectivity may play a role
in the spatial patterning of intrinsic timescales: Brain areas with a greater aggregate strength of
axonal input (highest kw

in) display slower timescales of spontaneous activity fluctuations, con-
sistent with the predictions of model simulations (Chaudhuri, Knoblauch, Gariel, Kennedy, &
Wang, 2015; Cocchi et al., 2016; Gollo, Zalesky, Hutchison, van den Heuvel, & Breakspear,
2015). Despite the low sampling rate of rs-fMRI, recent work has shown a strong correlation
between timescales estimated from EEG and fMRI (Watanabe et al., 2019), suggesting that a
similar trend may hold at much faster timescales. When ignoring edge directionality, Sethi et al.
(2017) found weaker but statistically significant relationships between (undirected) weighted
degree, kw, and rs-fMRI dynamics. This suggests that a similar relationship may hold in hu-
mans, where the directionality of connections cannot be measured through noninvasive MRI
methods like diffusion-weighted imaging.

We know of only two investigations into how structural connectivity properties relate to
BOLD dynamics in the human cortex, and both have reported weak relationships between
structural connectivity strength and (a) low-frequency rs-fMRI fluctuations, Pearson’s r = 0.12

(Lee & Xue, 2017); and (b) the log-linear slope of the Fourier power spectrum, r = 0.22 (Baria
et al., 2013). These weak correlations may be due to both studies measuring BOLD for a short
duration (less than 300 volumes at a sampling rate TR = 2.5 s) in a small sample of individuals:
30 (Baria et al., 2013) and 36 (Lee & Xue, 2017). However, neither study controlled for region
volume, which correlates strongly with the autocorrelation properties of the BOLD signal,
because of the averaging of more voxelwise signals in larger areas (Afyouni, Smith, & Nichols,
2019; Sethi et al., 2017). The Human Connectome Project (HCP) dataset alleviates many of
these issues, containing a large rs-fMRI dataset collected at a high sampling rate, TR = 0.72 s,
across 1,200 time points (Van Essen et al., 2013).

Here we characterize the rs-fMRI signature of structural connectivity in the human cortex
using data from the HCP. We aimed to investigate whether more strongly connected regions
are associated with slower timescales of BOLD activity in the human cortex, as they are in the
mouse brain (Sethi et al., 2017). Following the results in mouse, we use relative low-frequency
power (RLFP) to estimate the prominence of slow BOLD fluctuations ( f < 0.14Hz), and show
that this measure is strongly correlated with other measures of timescale obtained from the
decay of the autocorrelation function with time lag (Murray et al., 2014;Watanabe et al., 2019).
Consistent with predictions from mouse, RLFP increases with structural-connectivity strength
in human cortex, ρV = 0.53 (partial Spearman correlation adjusting for region volume, p = 2×

10−3). Our results hold at both the group and the individual level, and across different cortical
parcellations, reflecting a robust interspecies conservation of how structural connectivity and

Interspecies conservation:
Properties of brain organization that
are maintained across species are
likely to provide a functional
advantage. regional activity dynamics are related.
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RESULTS

Methods Summary

We investigated whether a brain area’s structural connectivity strength is related to its sponta-
neous BOLD dynamics, as illustrated schematically in Figure 1. Our methods are summarized
briefly here (and detailed in Methods). We used an HCP dataset of 100 healthy, unrelated
participants (54 male, 46 female; 22–35 years old; Van Essen et al., 2013). Our main anal-
ysis focuses on the left hemisphere of the 68-region Desikan-Killiany atlas (Desikan et al.,
2006; analysis of the right hemisphere yielded similar results; see below). Structural connec-
tivity was estimated from the diffusion data using MRtrix3 (Tournier, Calamante, & Connelly,
2012) and the FMRIB Software Library (Jenkinson, Beckmann, Behrens, Woolrich, & Smith,
2012), performing tractography with 10million streamlines using FACT, ACT, and SIFT-2, yield-
ing a 34 × 34 left-hemisphere connectome. Following work in mouse (Sethi et al., 2017), we
summarized the structural connectivity of each brain area as its node strength, s, estimated
as the total number of diffusion MRI-reconstructed streamlines attached to it (equivalent to
weighted degree, kw). rs-fMRI data were processed after regressing standard nuisance signals
(including the global signal) and were high-pass filtered at 8 × 10−3 Hz, yielding a 34 × 1200

(region × time) fMRI data matrix.

Based on our previous findings in mouse (Sethi et al., 2017), we summarized BOLD dy-
namics in a given brain region as the relative low-frequency power, RLFP ( f < 0.14Hz). Note
that frequencies f < 8 × 10−3 Hz were removed through high-pass filtering (see Methods). As
we used RLFP to understand how the frequencies, or timescales, underlying a given BOLD
time series are distributed, we verified that RLFP gives highly correlated results to other com-
mon estimates of timescales from time series data: (a) a fitted exponential decay timescale to
the autocorrelation function (Murray et al., 2014; Pearson’s r = 0.98 across all brain regions,Autocorrelation function:

The correlation between lagged
versions of a time series, as a
function of the time lag.

averaged across subjects, p = 5 × 10−26); and (b) the area under the autocorrelation function
before it passes zero (Watanabe et al., 2019; r = 0.995, p = 8 × 10−28). RLFP is also highly
correlated to the similarly constructed metric, fALFF (Yu-Feng et al., 2007; Zou et al., 2008;
relative power in the range 0.01 < f < 0.08Hz), which has been widely used to characterize
human fMRI (r = 0.997, p = 2 × 10−37). Thus, while we focus our main results on RLFP here,
very similar quantitative results were obtained using similar timescale-related statistics.

Figure 1. Schematic showing how we investigate the relationship between a region’s structural
connectivity properties to their resting-state dynamics. We summarize each cortical region as its
structural connectivity strength, s, and its relative low-frequency power, RLFP ( f < 0.14Hz). Note
that, for the purposes of schematic visualization, edge weights and node strength colors represent
relative strength, from low (blue) to high (red).
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Relationships between the structural properties of a cortical region and its univariate dynam-
ics were estimated as Spearman correlation coefficients, ρ. Region volume, which varies from
49 to 4,570 voxels in the Desikan-Killiany atlas (Desikan et al., 2006), is a major confound,
correlating strongly with RLFP, ρ = 0.61 (p = 2× 10−4; see Figure S1A), as in the mouse brain
(Sethi et al., 2017). To control for region volume, we computed partial Spearman correlation
coefficients, denoted here as ρV .

Node Strength Is Correlated With Power-Spectral Properties of Resting-State BOLD Dynamics

We first investigated the group-level relationship between connectivity strength, s, and relative
low-frequency power, RLFP, by summarizing each brain region as the mean of each quantity
across all 100 participants. As shown in Figure 2A, there is a strong correlation between s

Figure 2. Group-level connectivity strength, s, is positively correlated with relative low-frequency
power of BOLD dynamics, RLFP ( f < 0.14Hz) after correcting for region volume. (A) Rank residuals
of relative low-frequency power (RLFP) and node strength, s, across 34 left-hemisphere cortical
regions of the Desikan-Killiany atlas (Desikan et al., 2006), after regressing out region volume. The
plot reveals a positive relationship, partial Spearman’s ρV = 0.53 (p = 2 × 10−3). (B) The group-
averaged Fourier power spectra for three colored brain areas in A are plotted: medial orbitofrontal
area (low s, blue), pars triangularis (moderate s, red), and superior parietal (high s, green), shown up
to a maximum of 0.3Hz. RLFP corresponds to the shaded area under the curve below 0.14Hz. (C)
As A, but for 100 left-hemisphere cortical regions from a custom 200-region parcellation generated
by randomly dividing each hemisphere into 100 approximately equal-sized regions (Fornito et al.,
2011). (D) Spatial maps of node strength and low-frequency power across 180 left-hemisphere
cortical areas of the Glasser et al. (2016) parcellation, with the relative variation of each metric
shown using color, from low (blue) to high (red).
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and RLFP in the left hemisphere of the cortex, ρV = 0.53 (controlling for region volume, p =

2× 10−3). Similar results were observed in the right hemisphere, ρV = 0.57 (p = 6× 10−4; see
Figure S3). The positive correlation indicates that human cortical areas with greater aggregate
structural connectivity display stronger low-frequency fluctuations, matching the relationship
characterized in the mouse brain (Sethi et al., 2017). Note that RLFP is strongly correlated
with region volume, ρ = 0.61 (Figure S1A), and the s–RLFP relationship is stronger when
region volume is not controlled for, ρ = 0.74 (p < 2 × 10−6; see Figure S1B).

To better understand these findings, we selected three representative brain regions: the
medial orbitofrontal region (low s = 1.4 × 105), pars triangularis (moderate s = 4.6 × 105),
and superior parietal cortex (high s = 1.7 × 106), as annotated in Figure 2A. The Fourier
power spectrum for each of these brain areas is plotted in Figure 2B, with the RLFP region
shaded ( f < 0.14Hz). Differences in spectral power are clearest at low frequencies, especially
near the peak power around 0.02Hz. As the total power is normalized to unity, increased
relative power around 0.02Hz results in lower relative power at higher frequencies. Accord-
ingly, the relationship with s is not sensitive to the precise RLFP frequency range, but is re-
produced (with opposite sign) at higher frequency bands of the same extent: ρV = −0.53

(0.14–0.28Hz), ρV = −0.56 (0.28–0.41Hz), ρV = −0.53 (0.41–0.55Hz), and ρV = −0.53

(0.55–0.69Hz). The brain region that deviated most from the overall trend was the insula (cor-
responding to the point in bottom right of Figure 2A), which has surprisingly low RLFP given
its strong structural connectivity across the brain (after correcting for region volume), perhaps
because of its vicinity to large blood vessels making it more susceptible to physiological noise
(Di, Kannurpatti, Rypma, & Biswal, 2012). The common statistical summary of univariate
BOLD dynamics, fALFF (Zou et al., 2008), is algorithmically very similar to RLFP and is simi-
larly correlated with s: ρV = 0.54. Other common measures of timescales derived from the de-
cay of the autocorrelation function also yielded similar results, including the decay timescale
of Murray et al. (2014), ρV = 0.48, and the area-based measure of Watanabe et al. (2019),
ρV = 0.51.

The relationship between s and RLFP does not depend strongly on cortical parcellation. A
similar relationship was found when randomly dividing each hemisphere into approximately
100 equal-sized regions (Fornito et al., 2011), shown in Figure 2C for the left hemisphere,
ρV = 0.53 (p = 1 × 10−8). We also found a significant positive relationship when using the
180-region Glasser et al. (2016) parcellation of the left cortex, ρV = 0.43 (p = 3 × 10−9; see
Figure S2), and when resampling the same number of voxels from each brain region (circum-
venting the need to correct for variation in region volume), ρ = 0.43 (p = 0.01; see Figure S1D).
Spatial maps of both properties, at the higher spatial resolution of the Glasser et al. (2016) par-
cellation, are shown in Figure 2D.

Regional Structure–Function Relationships Extend Across Individuals

Having demonstrated a robust group-level relationship between node connectivity strength, s,
and Fourier spectral characteristics of rs-fMRI time series, we next investigated whether these
results could be detected at the level of individual subjects.Wemeasured the partial correlation
coefficient, ρV , between s and RLFP for each individual, plotted as a distribution across all 100
individuals in Figure 3. After false discovery rate multiple-hypothesis correction (Benjamini &
Hochberg, 1995), 43% of participants individually displayed a significant correlation (pcorr <
0.05: ρV > 0.40). The group-level s–RLFP relationship (annotated red in Figure 2) was stronger
than the individual correlation for 91% of participants, consistent with a concentration of
meaningful signal (and thus a reduction in measurement noise) through group averaging. To
investigate whether interindividual variation in s–RLFP correlation, ρV , is driven by in-scanner
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Figure 3. Many individuals exhibit a significant relationship between node strength, s, and rel-
ative low-frequency power, RLFP. The histogram of partial Spearman correlation coefficients, ρV ,
between RLFP and s (correcting for variations in region volume) computed separately for each of
100 individuals. The group-level result, ρV = 0.54, is shown as a vertical red line.

motion, we computed the Pearson correlation between ρV and mean framewise displacement
across individuals. We found a weak and nonsignificant relationship, r = 0.10 (p = 0.3),
suggesting that motion is not driving our results.

Diverse Properties of BOLD Dynamics Are Informative of Node Strength

Our results demonstrate that Fourier spectral properties of rs-fMRI, and related measures of au-
tocorrelation timescales (Murray et al., 2014; Watanabe et al., 2019), are strongly correlated
with connectivity strength, s. But the time series analysis literature is vast and interdisciplinary
(Fulcher, 2018); could other statistical summaries of BOLD time series exhibit stronger rela-
tionships to s? To investigate this possibility, we used the hctsa toolbox (Fulcher & Jones, 2017)
to perform a comprehensive data-driven comparison of the performance of 6,062 different
time series features. The performance of each feature was measured as ρV (computed for each
individual and then averaged across individuals). As we are interested in the magnitude of the
correlation (not the sign), we took |ρV | as the quantity of interest, plotting its distribution across
all 6,062 time series features in Figure 4. While 3,768 individual time series features exhibit a
statistically significant partial correlation to s (|ρV | > 0.39, pcorr < 0.05), RLFP is among those
with the highest |ρV | (in the top 16% of all hctsa features). However, the distribution reveals
a tail of alternative time series features with higher |ρV |. Interestingly, these high-performing
features recapitulate a familiar set of time series analysis methods that have previously been
used to analyze BOLD dynamics, as well as some unexpected new features. Here we sum-
marize some notable features, labeling them by their name in hctsa (Fulcher & Jones, 2017);
for further descriptions of these and other features, see the Supporting Information (and see
Supplementary File 1 for a full list).
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Figure 4. RLFP has amongst the strongest correlations to connectivity strength, s, in a compar-
ison to 6,062 time series features. We plot a histogram of absolute partial Spearman correlation
coefficients, |ρV |, between each of 6,062 rs-fMRI time-series features and connectivity strength s
(controlling for region volume). The features were computed using the hctsa toolbox (Fulcher &
Jones, 2017; Fulcher et al., 2013). RLFP (|ρV | = 0.53) is shown in red, and the 5% FDR-corrected
statistical-significance threshold (|ρV | > 0.39) is shown in green.

Neuroimaging time series havemost commonly been summarized as ameasure of timescale,
derived from the Fourier power spectrum or linear autocorrelation function (which are
related via a spectral decomposition, cf. the Wiener–Khinchin theorem; Baria et al., 2013;
Chaudhuri et al., 2015; Lee & Xue, 2017; Murray et al., 2014; Watanabe et al., 2019). Our

Wiener–Khinchin theorem:
The power spectrum of a stationary
random process is equivalent to the
Fourier transform of its
autocorrelation function.

highly comparative time-series analysis highlights many qualitatively similar features. One ex-
ample is SP_Summaries_fft_linfitloglog_mf_a2, ρV = −0.59, which estimates the
powerlaw exponent of the Fourier power spectrum (as a linear fit in a log-log plot, fitted af-
ter excluding the lower and upper quarter of frequencies), reminiscent of Hurst exponent es-
timation from neural time series (He, 2011). Another interesting high-performing feature is
an information-theoretic analogue of the first zero-crossing of the autocorrelation function:
the first minimum of the automutual information function (Kantz & Schreiber, 2004; Lizier,
2014) computed after differencing the time series: IN_AutoMutualInfoStats_diff_20_

Automutual information function:
The mutual information between
lagged versions of a time series,
as a function of the time lag.

kraskov1_4_fmmi, ρV = −0.63. This incremental differencing step, a common time-series
transformation used to stabilize the mean (Hyndman & Athanasopoulos, 2018), also emerged
in a range of symbolic motif features. Symbolic motifs count the frequency of a particular set of
consecutive symbols in a time series that has been converted to a symbolic string using a simpleSymbolic string:

An ordered set of symbols. coding rule, for example, coding stepwise increases as “U” (up) and decreases as “D” (down).
Motifs associated with small movements are consistent with slow fluctuations and showed
positive correlations with s (e.g., the “AABB” pattern: SB_MotifThree_ diffquant_aabb,
ρV = 0.62), whereas motifs associated with rapid changes exhibited strong negative correla-
tions (e.g., the “up-down-up-up” pattern: SB_MotifTwo_diff_uduu, ρV = −0.62). The
symbolization process may help to capture informative structure in noisy rs-fMRI time series.

Increased durations of rs-fMRI recording have allowed dynamic functional connectivity
analyses to characterize changes in functional connectivity across the recording period
(Hutchison et al., 2013). Our data-driven analysis highlighted a range of univariate analogues
of this concept, flagging a range of high-performing features measuring time series stationarity.
For example, SY_SlidingWindow_sampen_ent10_2, ρV = −0.65, measures how local
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estimates of the entropy metric, SampEn(2, 0.1) (Richman & Moorman, 2000), vary across theSampEn (sample entropy):
A measure of time series
predictability that measures the
tendency of temporal patterns to
repeat themselves.

time series. hctsa also highlighted novel features derived from visibility graphs, which represent
each fMRI time point as a node and constructing network edges using visibility rules (Lacasa,
Luque, Ballesteros, Luque, & Nuño, 2008; Sannino, Stramaglia, Lacasa, & Marinazzo, 2017).
For example, s is highly correlated to a simple outlier metric of the visibility graph degree
distribution, NW_VisibilityGraph_norm_ol90, ρV = 0.66.

Our results demonstrate the usefulness of hctsa in determining the most informative time
series analysis methods for a given problem in an automated, data-driven manner. hctsa pro-
vides new understanding of how rs-fMRI dynamics relate to structural connectivity strength by
flagging an ensemble of time-series features that both encapsulate conventional approaches
to analyzing BOLD dynamics and introduce novel ones.

DISCUSSION

In this work, we show that the variation of intrinsic fMRI timescales across human cortical ar-
eas is related to the variation of structural connectivity strength, matching a regional structure–
function relationship previously observed in the mouse brain. This interspecies consistency is
observed despite major differences in measurement between mouse (axonal tract tracing and
rs-fMRI in 18 anesthetized mice) and human (DWI and rs-fMRI in 100 awake participants).
In both species, brain areas with a greater aggregate strength of structural connectivity exhibit
slower rs-fMRI BOLDfluctuations, consistent with a hierarchical gradient of intrinsic timescales
(Hasson et al., 2015; Honey et al., 2012; Kiebel et al., 2008; Murray et al., 2014). Our results
are robust to cortical parcellation, hold at the level of individuals, and are not driven by mo-
tion. We also introduce a highly comparative time-series analysis approach to the problem
that, in a data-driven way, recapitulates conventional BOLD signal analysis approaches and
highlights a range of promising new temporal features, including symbolic and stationarity-
related measures, for characterizing BOLD dynamics. This study expands the investigation of
the brain’s structure–function relationship to the level of individual regions (rather than pairs of
regions), providing a more complete picture of how the brain’s intricate axonal scaffold shapes
spontaneous brain dynamics. Continuing investigations of the structure–function relationship
at the level of individual areas will allow us to better understand how the brain’s local circuits
shape its dynamics and relate these results to hypotheses about the principles governing the
brain’s spatiotemporal organization.

Our results in mouse and human indicate that areas that are more strongly connected to the
rest of the brain have slower average timescales. This relationship is consistent with a hierarchy
of timescales in which more highly connected areas (putatively high in the hierarchy) serve
a more integrative function, integrating diverse information over longer timescales than the
fast dynamics and behavioral responses associated with lower sensory areas (Chaudhuri et al.,
2015; Gollo et al., 2015; Honey et al., 2012; Kiebel et al., 2008;Murray et al., 2014; Sethi et al.,
2017; Stephens et al., 2013). While many previous studies have reported interareal variation in
intrinsic timescales (Baria et al., 2011; Baria et al., 2013; Cocchi et al., 2016; Demirtaş et al.,
2019; Honey et al., 2012; Huang et al., 2018; Stephens et al., 2013; Watanabe et al., 2019), to
our knowledge, only two prior human studies have related this variation to structural connec-
tivity (Baria et al., 2013; Lee & Xue, 2017). Both studies found weak relationships, r = 0.12

(Lee & Xue, 2017) and r = 0.22 (Baria et al., 2013), using hand-picked dynamical proper-
ties of rs-fMRI time series in small sample sizes, and without correcting for regional volume
variation. The much stronger correlation reported here, ρV = 0.53 (after correcting for region
volume), may be due to the high-quality imaging data (1,200 volumes at a sampling period of
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0.72 s) in a larger sample of 100 individuals. As we discuss later, the low temporal resolution
of fMRI is a major limitation of studying timescales, but on these fMRI data, we demonstrate
that RLFP, fALFF (Zou et al., 2008), and measures of the decay of the autocorrelation function
(Murray et al., 2014; Watanabe et al., 2019), are all highly intercorrelated. Given this connec-
tion, recent work indicates a significant and strong correlation between timescales estimated
from simultaneously recorded EEG and fMRI (γ band, adjusted r2 = 0.71) (Watanabe et al.,
2019), suggesting that our results may also reflect similar differences at faster timescales. Future
multimodal research could probe intrinsic processing timescales to provide a more complete
temporal picture of how timescales are structured across the cortex in different species, and
its implications for cognition and disease.

While fMRI is most frequently characterized in terms of pairwise correlations (functional
connectivity), our results highlight the utility of characterizing local brain dynamics. BOLD
dynamics are distinctive to individuals (Keitel & Gross, 2016), play a role in cognitive func-
tion (Hasson et al., 2015), and are disrupted in disease (Watanabe et al., 2019). They are also
involved in brain organization, being related to the functional and structural connections of
an area, and may provide an indirect measure of its information-processing capabilities (Baria
et al., 2011; Baria et al., 2013). Summarizing the activity dynamics of individual brain ar-
eas also yields spatial maps that can be related to other datasets straightforwardly, such as
macroscale maps of microstructural variation (Fulcher et al., 2019; Huntenburg, Bazin, Bazin,
& Margulies, 2017). While univariate analysis of the BOLD signal is promising, a common
problem in analyzing univariate time series is selecting an appropriate analysis method or
summary statistic to compute (Fulcher, 2018). The neuroimaging literature has most commonly
focused on linear autocorrelation properties, measured directly from either the autocorrelation
function or the Fourier power spectrum. hctsa circumvents the need for subjectivity or manual
exploration across a vast time series analysis literature (Fulcher & Jones, 2017; Fulcher et al.,
2013), providing a data-driven means of selecting themost relevant types of time-series features
for a given problem. By comparing the behavior of thousands of diverse time-series analysis
methods, hctsa finds interpretable features that vary most strongly with structural connectiv-
ity strength, s. These features recapitulate conventional timescale-based metrics commonly
used in the literature, and also include a range of novel features related to symbolic motifs,
stationarity, and visibility graphs. The common theme of applying incremental differencing,
a transformation commonly used to stabilize the mean (Hyndman & Athanasopoulos, 2018),
suggests that applying this transformation to BOLD data could enhance the informative signal
that can be extracted from it. We also note the prominent performance of time-series station-
arity properties, suggesting a fruitful avenue in further characterizing this property, which may
loosely be considered a univariate analogue of dynamical functional connectivity (Hutchison
et al., 2013). Given the large number of time series analysis methods suited to long, low-noise
recordings, we expect that hctsawill be especially useful in discovering informative time-series
features from data streams with higher sampling rates than fMRI, such as those measured using
ECoG, MEG, and EEG.

This study highlights the ability of direct interspecies comparisons to accumulate evidence
for common properties of brain organization. Organizational properties that are shared across
scales and species (van den Heuvel, Bullmore, & Sporns, 2016) are strong candidates for being
under evolutionary selection pressure for serving an important functional advantage. These
range from the properties of networks abstracted from the brain’s physical structure—like rich-
club connectivity and modularity—through to hierarchical gradients (Burt et al., 2018; Fulcher
et al., 2019) and the patterning of gene expression with structural connectivity (Arnatkeviciūtė,
Fulcher, Pocock, & Fornito, 2018; Fornito, Arnatkeviciūtė, & Fulcher, 2019; Fulcher & Fornito,
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2016). The current study adds a regional relationship between structure and function to this set
of conserved relationships; future work is needed to establish whether a similar pattern holds
across other species, such as C. elegans and nonhuman primates (Shen et al., 2019), where
both structural connectivity and large-scale brain dynamics have been measured.

Relative to rapidly sampled electrophysiological recordings, it can be harder to interpret
changes in the power spectrum of a sparsely sampled and noisy fMRI signal in terms of relative
timescales. Timescales can be quantified in terms of a natural intrinsic frequency of oscillation,
estimated from prominent peaks in the power spectrum in EEG (Chiang, Rennie, Robinson,
Van Albada, & Kerr, 2011), MEG (Mahjoory et al., 2019), and ECoG (Zhang, Watrous, Patel, &
Jacobs, 2018). Our coarser estimate of timescale, in terms of power in frequency bands, does
not correspond to variations in the power spectrum peak position (see Figure 2), but rather the
relative contribution of low-frequency (relative to high-frequency) fluctuations ( f ∼ 0.14Hz) to
signal variance. Our analysis of frequency bands across the full power spectrum is motivated
by evidence of meaningful neural signal in fMRI at frequencies f > 0.1Hz (Kalcher et al.,
2014; Liao et al., 2013; Niazy, Xie, Miller, Beckmann, & Smith, 2011). Given the strong cor-
respondence between RLFP and measures of how the autocorrelation decays with time lag on
the fMRI data analyzed here, we are encouraged by recent work demonstrating a close cor-
respondence between autocorrelation-based timescale measurements made in EEG and fMRI
(Watanabe et al., 2019), suggesting that fMRI signals may be informative of neural dynamics
at faster timescales.

Understanding how time-series properties vary across cortical areas has important practi-
cal implications for how functional connectivity is estimated and interpreted. We first draw
attention to the strong variation of time-series properties with region volume (as more voxel-
wise time series are averaged into a region-level time series), and the strong conservation of
this relationship between mouse and human (Sethi et al., 2017). This confound of parcella-
tion is not typically acknowledged or addressed, but is crucial to account for by performing
partial correlations using region volume as a regressor, or using parcellations containing re-
gions of equal volume. Our results also suggest that different brain areas may have different
intrinsic Fourier spectral properties (and hence distinctive autocorrelation functions). As these
differences affect the estimation of functional connectivity, future work should leverage recent
statistical developments (Afyouni et al., 2019; Cliff, Novelli, Fulcher, Shine, & Lizier, 2020;
James, Park, & Kim, 2019) to better account for regional variations in BOLD autocorrelation
when estimating and performing inference on functional connectivity.

We quantified connection weights in our connectomes using streamline count for consis-
tency with many other studies in the human connectomics literature. This measure is concep-
tually closer to the normalized connection weight measure used in our prior study of the mouse
(Sethi et al., 2017). It is well known that streamline count and other tensor-based metrics, such
as mean tract fractional anisotropy, are only indirect proxies for the actual number (or integrity)
of axons connecting two regions (Jones, Knösche, & Turner, 2013). Exploring how regional
dynamics relate to other properties of axonal connectivity measured with more biologically
informative metrics would be a fruitful avenue for future work. While fMRI data-processing
pipelines have been shown to have a large impact on resulting functional connectivity esti-
mates (Parkes, Fulcher, Yücel, & Fornito, 2018), it will be important for future work to take
similar care in understanding how preprocessing steps affect the univariate properties of fMRI
data.
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Our findings suggest that the brain may exploit timescales to efficiently store, process, and
transfer information, with these timescales coupled to the underlying structural connectivity
properties of a brain area (Baria et al., 2011) in the sameway in themouse brain and human cor-
tex. An intriguing possibility is that the relationship reported here reflects a causal role of long-
range structural connectivity in shaping the intrinsic activity timescales of a brain area, as has
been demonstrated in simulations of network-coupled dynamical systems (Chaudhuri et al.,
2015; Cocchi et al., 2016; Gollo et al., 2015). This is consistent, for example, with greater ag-
gregate inputs to a brain region pushing it towards its critical point where dynamical timescalesCritical point:

A point in parameter space about
which the dynamical repertoire of a
system changes qualitatively.

are slower (Cocchi, Gollo, Zalesky, & Breakspear, 2017). Our results could also be explained
by a hierarchical gradient of microstructural variation (Burt et al., 2018; Fulcher et al., 2019),
along which both structural connectivity strength and spontaneous dynamics vary (Demirtaş
et al., 2019; Mahjoory et al., 2019; Wang et al., 2019). In this view, timescales vary hierar-
chically (because of variations in cortical microstructure or subcortical inputs), but may not
be causally modulated by cortico-cortical structural connections. Regional variations in per-
fusion, perhaps to support the increased metabolic demands of highly connected hub areas
(Liang, Zou, He, & Yang, 2013), could also manifest in corresponding spatial differences in
BOLD dynamics (Aso, Urayama, Fukuyama, & Murai, 2019; Di et al., 2012). In the absence
of experiments that can causally manipulate structural connectivity, computational modeling
will continue to play a crucial role in distinguishing between possible mechanistic explana-
tions of the statistical relationships characterized here, towards an understanding of the general
and specific mechanisms through which intrinsic timescales may be shaped. Given the cog-
nitive importance of how differences in local neural dynamics, including their timescales, are
organized across the cortex (Huang et al., 2018; Watanabe et al., 2019), understanding the
physical mechanisms shaping variations in BOLD dynamics could lead to novel new treat-
ments that aim to rectify abnormal timescales in the brain, for example, using a transcranial
magnetic stimulation (TMS) protocol (Gollo, 2019) tailored to an individual’s structural con-
nectivity profile. Integrating data across species and scales to elucidate common relationships,
and using theoretical modeling approaches to propose possible mechanisms underlying those
patterns, will be key to understanding how the brain’s organization allows it to efficiently pro-
cess and integrate information.

DATA AND METHODS

Code for reproducingour analyses isat https://github.com/NeuralSystemsAndSignals/
humanStructureFunction (Fallon, 2020). Data to support the findings of this study are
available from the HCP at https://db.humanconnectome.org.

Data Acquisition and Preprocessing

MRI data were downloaded from the Human Connectome Project (HCP, Van Essen et al.,
2013). We selected the HCP 100 unrelated participants dataset (54 males, 46 females) for de-
tailed analysis (Van Essen et al., 2013), as in previous work (Parkes, Fulcher, Yücel, & Fornito,
2017). All participants were healthy and aged between 22 and 35 years and provided written
informed consent; ethics was approved by the Institutional Review Board of Washington Uni-
versity. We used the minimally preprocessed data of which full details can be found elsewhere
(Glasser et al., 2013); a broad overview is provided here.

Diffusion-weighted imaging. A3T Siemens Skyra scanner with a customizedheadcoil (100mT/m
maximum gradient strength and a 32-channel head coil) located at Washington University,
St. Louis, was used to acquire all neuroimaging data. Diffusion data were acquired using a
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spin-echo EPI sequence with the following parameters: TR/TE = 5,520/89.5ms, slice thick-
ness = 1.25mm, 111 slices, 1.25mm isotropic voxels. Three gradient shells of 90 diffusion-
weighted directions and six b0 images were collected with right-to-left and left-to-right phase
encoding polarities for each of the three diffusion weightings (1,000, 2,000, and 3,000 s/mm2).
For additional imaging parameters see Glasser et al. (2013). The diffusion data had been prepro-
cessed using the HCP diffusion pipeline (Glasser et al., 2013), which included normalization
of b0 image intensity across runs, correction for EPI susceptibility, and eddy-current-induced
distortions, gradient-nonlinearities, subject motion, and application of a brain mask.

Subsequent processing of the diffusion data used MRtrix3 (Tournier et al., 2012) and FM-
RIB Software Library (Jenkinson et al., 2012). Tractography was conducted using Fibre As-
signment by Continuous Tracking (FACT), a deterministic measure (Mori, Crain, Chacko, &
Van Zijl, 1999; Mori & Van Zijl, 2002). This deterministic measure was selected over proba-
bilistic methods because it is less prone to false positive connections (Thomas et al., 2014),
which have been shown to be more detrimental to network construction than false negative
connections (Zalesky et al., 2016). A total of 10 million streamlines were generated with a
step size of 0.125mm. Streamlines terminated when the curvature exceeded 45°, when the
fractional anisotropy value was less than 0.1, or if the length was greater than 250mm.

In order to further improve the biological accuracy of the structural networks, Anatomically
Constrained Tractography (ACT) and Spherically Informed Filtering of Tractograms (SIFT-2)
were applied to the tractography data. ACT delineates the brain into different tissue types (e.g.,
cortical gray matter, subcortical gray matter, white matter, CSF). This information is then used
while tractography is being conducted to ensure streamlines are beginning, traversing, and
terminating in anatomically correct locations (R. E. Smith, Tournier, Calamante, & Connelly,
2012). Another issue hampering tractography is that the density of reconstructed connections
does not reflect the underlying diffusion data (R. E. Smith, Tournier, Calamante, & Connelly,
2013). SIFT-2 addresses this limitation by modeling the expected density of connections as cal-
culated from the diffusion signal before comparing this prediction to the connection densities
obtained in tractography. Streamlines are then weighted by a cross-sectional area multiplier
determined by this model fit (R. E. Smith, Tournier, Calamante, & Connelly, 2015). This same
model of diffusion density was also used to dynamically choose streamline seeding points
during tractography (R. E. Smith et al., 2015).

Our main cortical parcellation was the 68-region Desikan–Killiany atlas (Desikan et al.,
2006; 34 regions per hemisphere). To demonstrate robustness of our results, we also compared
two additional parcellations: (a) Glasser et al.’s 360-region HCP parcellation (180 regions per
hemisphere; Glasser et al., 2016), and (b) a custom built 200-node parcellation (100 regions
per hemisphere), which was formed by randomly dividing each hemisphere into 100 approx-
imately equal-sized cortical regions (Fornito et al., 2011). These parcellations were generated
on the FreeSurfer-extracted surfaces for each subject and then projected to volumetric space.

As in the mouse (Sethi et al., 2017), we focused our analysis on a single hemisphere. An-
alyzing ipsilateral connectivity also has the advantage of avoiding errors associated with re-
constructing long-range contralateral connections using diffusion tractography (Reveley et al.,
2015). Ipsilateral structural connectivity within the left hemisphere was represented as a
weighted, undirected 34 × 34 adjacency matrix, Aij, where each entry captures the number
of streamlines with termination points within 5mm of either regions i or j. A group-weighted
structural connectome, Gij, was constructed by retaining interregional connections that were
present in more than 75% of participants (van den Heuvel & Sporns, 2011), and setting edge
weights to the average value across participants (where zero entries were not included in the
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average). The resulting adjacency matrix had an edge density of 25%, and edge weights vary-
ing from 322 to 7.6 × 104. Following Sethi et al. (2017), each brain region was summarized as
its connectivity strength, s, calculated by summing all streamlines connected to a region (after
applying ACT and SIFT-2).

Resting-state fMRI. Resting-state fMRI (rs-fMRI) data were downloaded from theHCP database
(Van Essen et al., 2013). Images were obtained using a gradient-echo, echo planar image (EPI)
sequence with the following parameters: TR/TE = 720/33.1ms, slice thickness = 2.0mm, 72
slices, 2.0mm isotropic voxels, frames per run = 1,200. We used the volumetric EPI data from
the first rs-fMRI session (left-right phase encoding), processed and denoised using ICA-FIX
(S. M. Smith et al., 2013).

Subsequent processing of the rs-fMRI data was performed. First, the rs-fMRI time series were
linearly detrended. Then, to provide more stringent control over nuisance signals we regressed
the rs-fMRI data against mean white matter (WM) and mean cerebrospinal fluid (CSF) as well
as the global signal (GS) using fsl_regfilt. Specifically, gray matter (GM), WM, and CSF
probability masks were generated using SPM8’s New Segment routine. TheWM and CSF masks
were thresholded and binarized, retaining only voxels with > 99% probability. The GM mask
was thresholded and binarized to retain only voxels with > 50% probability. The binary GM
mask was then subtracted from the binary WM and CSF masks to ensure no gray matter voxels
were present in the estimation of the WM and CSF nuisance signals. Estimating the GS was
done by taking the union of two whole-brain masks created using FSL’s bet function applied
to the spatially normalized EPI and T1-weighted images (Parkes et al., 2018). All nuisance
time series were extracted by taking the mean over all voxels in the respective masks. Finally,
we removed low-frequency ( f < 8 × 10−3 Hz) fluctuations using a high-pass filter as a hard
threshold at 8 × 10−3 Hz, applied to the EPI data via a fast Fourier transform. Once processed,
EPI time series were summarized at the level of brain regions by averaging voxel time series
over all voxels within each parcel.

BOLD Time-Series Analysis

For each brain region (34 left-hemisphere regions for our default parcellation) in each subject,
we extracted a BOLD time series. Following Sethi et al. (2017), we focused our main analysis
on the power across frequency bands of the discrete Fourier transform of each BOLD time
series. BOLD time series were linearly detrended and normalized to unit variance using a z-
score before applying a fast Fourier transform. Variance normalization ensures that the total
power in the Fourier power spectrum is unity; the power in a given frequency band represents
relative power and is unitless. In this work, we refer to relative low-frequency power (RLFP) as
the proportion of power contained in the lowest 20% of frequencies ( f < 0.14Hz), as in Sethi
et al. (2017).

For initial comparison to some commonly used time series metrics, we took an imple-
mentation of fALFF based on the REST toolkit (Song et al., 2011; see SP_fALFF in the code
repository), and our implementations of the autocorrelation function decay timescale and area
are taken from CO_AutoCorrShape from the hctsa toolbox, available at https://github.com/
benfulcher/hctsa (Fulcher & Jones, 2017; Fulcher et al., 2013). To more comprehensively in-
vestigate how the power in specific frequency bands of the Fourier power spectrum com-
pares to alternative univariate time series properties, we compared across the full set of time
series features in hctsa (v0.96; Fulcher & Jones, 2017). This software was used to extract
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over 7,000 features from each rs-fMRI time series. Following standard procedures (Fulcher &
Jones, 2017), we filtered features that returned special values (features that are inappropriate
for these data) or were approximately constant across all brain regions (features that provide
no meaningful information). We then restricted our analysis to 6,062 well-behaved features
that were not filtered from any participant.

To investigate the dependence of our results to variations in region volume (Sethi et al.,
2017), we estimated the volume of each region in our parcellation by summing the number
of 0.7-mm isotropic voxels in a region using the T1-weighted image. Region volume was con-
trolled for by computing a partial Spearman correlation. We used Spearman rank correlations
because of the frequently nonnormally distributed nodal properties, particularly region volume
and node strength.
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