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Stem cells have attracted much attention due to their distinct features that support infinite self-renewal and differ-
entiation into the cellular derivatives of three lineages. Recent studies have suggested that many stem cells both embry-
onic and adult stem cells reside in a specialized niche defined by hypoxic condition. In this respect, distinguishing 
functional differences arising from the oxygen concentration is important in understanding the nature of stem cells 
and in controlling stem cell fate for therapeutic purposes. ROS act as cellular signaling molecules involved in the 
propagation of signaling and the translation of environmental cues into cellular responses to maintain cellular homeo-
stasis, which is mediated by the coordination of various cellular processes, and to adapt cellular activity to available 
bioenergetic sources. Thus, in this review, we describe the physiological role of ROS in stem cell fate and its effect 
on the metabolic regulation of stem cells.
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Introduction 

  Oxygen (O2), a critical factor for the survival of all aero-
bic organisms, is the final electron acceptor in mitochon-
drial oxidative respiration, and impairment of oxygen 
availability leads to the loss of cellular function or even 
cell death. Although 21% of ambient oxygen is used in 
the conventional stem cell culture protocol, stem cells in-
cluding embryonic and adult stem cells in the body have 
available a relatively low concentration of oxygen at 2∼

9% due to physiological reasons such as vascularization 
(1). In this respect, distinguishing the functional differ-
ences arising from the oxygen concentration is important 
in understanding the nature of stem cells and in control-
ling stem cell fate for therapeutic purposes. Reactive oxy-
gen species (ROS) are more reactive than free oxygen and 
are well known for their critical roles in the regulation of 
the developmental processes, such as the emergence of em-
bryonic blood stem cells or differentiation of embryonic 
cardiomyocytes (2, 3). ROS are also involved in many bio-
logical processes including gene transcription, protein 
translation, and protein-protein interactions (4). ROS may 
function as cellular signaling molecules involving the 
propagation of signaling and translation of environmental 
changes into cellular responses in order to maintain cel-
lular homeostasis. There is also increasing evidence about 
the various ways in which ROS coordinate various cellular 
processes and adapt cellular activity to bioenergetic sour-
ces (5). These previous reports implied that the changes 
in oxygen level and ROS might act as mediators for the 
communication between the mitochondria and the nucleus 
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(6, 7). Recent findings strongly indicate that ROS have 
important roles in both stem cell maintenance and their 
differentiation, which provide the possibility that the reg-
ulation of ROS in stem cells could be a valuable tool for 
developing stem cell-based therapeutics. This review ar-
ticle attempts to discuss the physiological role of ROS in 
stem cell fate decision and its effect on metabolic regu-
lation of stem cell. 

Physiologically relevant oxygen level for stem 
cells

  Recent advances in physiological relevance between oxy-
gen and stem cells have revealed that oxygen acts as an 
important signaling molecule as well as a critical factor 
in the stem cell niche. Although an oxygen concentration 
below atmospheric (containing 21% of oxygen) is consid-
ered as hypoxia, most types of cells among mammalian 
cells have available only approximately 2∼9% of oxygen, 
with this concentration of oxygen actually representing 
physiological normoxia (1). Tissue oxygen concentration 
is depended on the blood supply, and the blood oxygen 
concentration drops to about 5∼10% in venous blood (8). 
Vascular distribution and a decline in the oxygen concen-
tration of the blood make a difference in various tissues: 
bone marrow, 1∼7% (9, 10); brain, 0.5∼8% (11, 12); 
mammary gland, 1.7∼6.8% (13), and adipose tissue, 3∼
5% (14). The preimplanted embryo lacking a vascular sys-
tem encounters a low oxygen concentration of 2.3%, which 
rises up to 8% after implantation with access to maternal 
vasculature (15). Thus, the term hypoxia denoting an oxy-
gen level lower than the 21% of the atmosphere is revealed 
to be really a physiologically normoxic condition for the 
cells. For this reason, to express actual tissue normoxia, 
some authors suggest a new word ‘physioxic’ rather than 
hypoxia. In traditional in vitro cultivation conditions de-
veloped in cells with high growth rates such as fibroblasts 
or cancerous cell lines, cells are cultured with 5% CO2, 
with approximately 21% atmospheric oxygen. This culture 
condition is suitable for certain cell lines, but stem cells 
require a more specific microenvironment reflecting their 
in vivo niche. 
  It is still controversial whether the low oxygen concen-
tration supports stem cell maintenance and differentiation 
in vitro. However, the impact of physiological oxygen con-
centrations on embryonic stem cells and hematopoietic 
stem cell cultures is well established. Unlike adult stem 
cells, ESCs propagated for many passages in an in vitro 
condition of 20∼21%  O2 are well adapted to a high oxy-
gen concentration and result in a higher dependency on 

oxidative phosphorylation than that of glycolysis. Despite 
the adaptation to higher oxygen levels, these cells main-
tain a relationship between stemness and hypoxic 
condition. In general, hypoxic condition is needed for the 
pluripotency of ESCs. With conventional culture con-
ditions at higher oxygen levels, ESCs spontaneously lose 
undifferentiation marker gene expression such as OCT4 
and SSEA4 and differentiate into other types of cells 
(16, 17). In contrast, a hypoxic culture condition with an 
oxygen level below 5% supports the maintenance of ESC 
pluripotency and control embryonic stem cell develop-
ment, which is mediated by hypoxia inducible factors 
(HIFs) (1, 18-20). Furthermore, oxygen gradients act as 
guidance for placenta, trachea, and cardiovascular system 
development, which imply that low oxygen levels are re-
quired to control embryonic development (1).

Regulation of ROS production and deletion in 
stem cell

  A high concentration of oxygen in the atmosphere and 
its oxidative nature enables it to produce oxidized bio-
logical macromolecules and results in the generation of re-
active intermediates known as reactive oxygen species 
(ROS). ROS, chemically reactive molecules, are generated 
by the one-electron reduction of the oxygen molecule, a 
type of radical anion. There are three different forms of 
intracellular ROS: superoxide anions (O2

−), hydrogen per-
oxide (H2O2) and hydroxyl radicals (OH−). Historically, 
ROS were considered harmful byproducts that escaped 
during the metabolic process, but accumulating evidence 
has shown that ROS have an important role as a signaling 
mediator in cell fate decision (21, 22). Among ROS iso-
forms, H2O2 is known as the most potent ROS involved 
in intracellular signaling and acts as second messenger, in-
tegrating and delivering environmental stimuli to the 
downstream signal cascade. This is due mostly to the rap-
id reduction of superoxide anion to H2O2 by superoxide 
dismutase (SOD) (23), as well as its longer half-life and 
membrane permeability (Fig. 1) (4). 
  ROS are produced by conserved biochemical reactions 
in response to the cellular environment, which can largely 
be divided into intra- and extra-mitochondrial processes. 
During the generation of the proton motive force for 
ATP production by electron transport chain, approx-
imately 0.1∼0.2% of O2 consumed by the mitochondria 
is converted to ROS, which occurs mainly through com-
plexes I and III of the electron transport chain (24). 
Complex I elicits the proton motive force by passing the 
electrons through the membrane-bound enzymes of redox 
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Fig. 1. ROS generation in cell. There
are three different forms of intracel-
lular ROS: superoxide anions (O2

−),
hydrogen peroxide (H2O2), and hy-
droxyl radicals (OH−). O2

− can be 
produced by NADPH oxidase (NOX) 
and mitochondrial complex I & III,
as well as physical stimuli such as 
UV and radiation, which subsequently 
catalyzed by SOD to H2O2, the most
potent ROS [Modified from Bigarella
et al. (122). Copyright 2014 by the 
Company of Biologists Ltd. Adapted
with permission.].

centers, such as flavin mononucleotide (FMN) and 8-iron-
sulfur (FeS) clusters, produced by the oxidation of nic-
otinamide adenine dinucleotide (NADH) (25). Complex 
III also contributes to superoxide generation, which passes 
electrons from ubiquinol to cytochrome C (26). Although 
their contributions are less well characterized, Complex II 
is also involved in mitochondrial ROS generation. 
Although complex II mutations can generate ROS, the en-
zyme has limited capacity to produce superoxide com-
pared to complex I or III due to the suppression of flavin 
radical production (27). Complex IV also has catalytic ac-
tivity to reduce O2 to H2O, but this complex does not con-
tribute to mitochondrial ROS generation. Extra-mitochon-
drial ROS generation is associated with the mem-
brane-bound protein NADPH oxidase (NOX), which pro-
duces O2

− and, subsequently, H2O2 with NADP+ (28). In 
addition to NOX, xanthine oxidase, uncoupled endothelial 
NO synthase, cytochrome p450, heme oxygenase, perox-
isomes, myeloperoxidase, and lipoxygenase (28) are also 
involved in extra- mitochondrial ROS generation. Although 
the contributions are not characterized, metabolic enzymes 
and intermediate metabolites such as dihydroorotate de-
hydrogenase (29), α-ketoglutarate (30), and pyruvate de-
hydrogenases (31) are also associated with ROS generation 
(25). 
  To protect against oxidative damage from excessive ac-
cumulation of ROS, ROS removal is finely controlled 
through the ROS scavenging system, which maintains the 
redox balance of cells. Cells and body fluids contain anti-
oxidants that neutralize or scavenge ROS. Antioxidants in-
cluding superoxide dismutase (SOD), catalase, peroxir-
edoxins (PRX), thioredoxin (TRX), glutathione peroxidase 
(GPX) and glutathione reductase (GR) can directly react 
with ROS and take away the electrons. Among the anti-
oxidants, glutathione (GSH), one of the most abundant 

and potent antioxidants in the cell, reduces oxidized pro-
teins and H2O2 through the glutaredoxin and thioredoxin 
system. In addition, SOD and catalase are also involved in 
ROS removal through the reduction of O2

− and H2O2, 
respectively. Cellular redox homeostasis controlled by ROS 
production versus antioxidant defense is critical for the reg-
ulation of both physiological and pathophysiological cellular 
functions. 

Role of ROS on stem cell fate

  ROS can regulate the nutrient-sensing pathway through 
direct interaction with metabolic enzymes and proteins 
(32, 33), which could affect cellular processes such as cell 
cycle progression, apoptosis, quiescence, or differentiation 
(34, 35). The previous evidence suggests that ROS act as 
signaling mediators linking between metabolic alteration 
and stem cell fate. Therefore, the elucidation of ROS regu-
lation on stem cell proliferation and maintenance of 
self-renewal capacity will provide new insight into the op-
timization of in vitro stem cell culture systems, embryonic 
development, and the regulation of stem cell fate for ther-
apeutic applications of stem cells. Although excessive ROS 
accumulation induces oxidative damages including apop-
tosis, ESCs possess the ability to resist oxidative stress 
(36). Consistently, under the physiological normoxic con-
dition (2%) of their niche, the genomic integrity and plu-
ripotency of ESCs remain intact (37), but prolonged hypo-
xia exposure results in elevated intracellular ROS levels 
which subsequently induce apoptosis (38). Furthermore, 
hypoxia-induced alteration of metabolic flux such as an 
elevated dependency on glycolysis and the pentose phos-
phate pathway rather than oxidative phosphorylation con-
tributes to maintaining ESC self-renewal by shortening 
the G1 cell cycle phase (39-41). Rapid ATP generation and 
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increased nucleotide biosynthesis through glycolysis and 
the pentose phosphate pathway, respectively, are required 
for rapid proliferation and DNA synthesis (42). Similarly, 
previous reports have shown that the inhibition of un-
coupling protein 2 (UCP2)-induced oxidative phosphor-
ylation deteriorates stem cell properties and lead to differ-
entiation or apoptosis (41). However, metabolic shift from 
oxidative phosphorylation to glycolysis through HIF-1α 

activation under hypoxic condition stimulates stem cell 
proliferation and maintenance while suppressing differ-
entiation (43, 44). In mouse ESCs, SIRT1, which elevates 
intracellular ROS levels by inhibiting p53 antioxidant 
function, is involved in the expression of pluripotency 
marker (45). In addition, it has been reported that fork-
head box protein O1 (FoxO1) is associated in maintaining 
human ESC pluripotency (46) through interaction with 
transcription factors involving pluripotency regulation, 
such as OCT4 and NANOG. FoxO1 also promotes cell cy-
cle arrest and induces apoptosis by modulating the genes 
involved in DNA repair and oxidative stress defense (47). 
Furthermore, microRNAs are also involved in ROS-medi-
ated stem cell fate such as self-renewal and differentiation 
(48). Upregulation of miR10b and miR23b make MSC 
more susceptible to oxidative stress through inhibition of 
p38 MAPK or antioxidants genes such as TXNL2 and 
GPx3 (49). In contrast, miR210 alleviate oxidative stress 
through c-Met pathway repression (50). These results in-
dicate that pluripotency is maintained through a highly 
complex pathway, and it can be altered by manipulating 
the metabolic pathways through genetic approaches and 
drugs as well as the intracellular ROS levels.
  Despite much effort to develop the optimal differentia-
tion process, the current differentiation of pluripotent 
stem cells or induced pluripotent stem cells has depended 
on using factors or exogenous gene insertion associated 
with embryogenesis. In this respect, ROS could be an al-
ternative factor in the regulation of stem cell differ-
entiation, and the elucidation of the roles of ROS and 
their mechanism is needed. In the uterus, the pre-
implantation embryo is faced with a relatively hypoxic en-
vironment, and during initial implantation, to meet the 
increased demands for oxygen and substrates, vasculo-
genesis/angiogenesis occurs, which is coincident with a 
metabolic shift from glycolysis to oxidative phosphor-
ylation and a reflection of an evolutionarily optimized 
process (51). Similar to ESCs, elevated intracellular ROS 
levels in adult stem cells are required for differentiation 
into specific lineages, including osteogenesis (52, 53), sug-
gesting a critical role for ROS in the stem cell differ-
entiation process (54). Physiologically, ROS could accu-

mulate by the impairment of redox homeostasis, such as 
an increase in ROS generation and/or decrease in anti-
oxidant defenses. The capacity to resist the oxidative dam-
ages of ESCs and MSCs correlates with the constitutive 
expression of antioxidant enzymes. In previous reports 
showing the role of NOX in the differentiation of ESCs, 
high glucose in the culture medium increased the mi-
tochondrial ROS level and subsequently activated p38 
MAPK through NOX4, which stimulated differentiation 
toward the cardiomyocyte lineage (55, 56). These results 
suggest that ROS induced by high glucose are needed for 
efficient differentiation of ESCs toward cardiomyocytes 
(57). Similarly, the involvement of NOX4 in mouse ESC 
differentiation toward smooth muscle cell (SMC) lineage 
has also been reported (58). Transforming growth factor 
β1 (TGF-β1)-mediated NOX4 activation promotes SMC 
differentiation by generating H2O2, while inhibition of 
NOX4 significantly decreased intracellular ROS levels in 
differentiating ESCs. ROS also affected adipocyte differ-
entiation of MSCs by acting as an upstream regulator of 
CREB which induces C/EBPβ expression and sub-
sequently elicits adipocyte differentiation of MSCs. These 
ROS-induced differentiations of MSCs towards adipocytes 
were blocked by inhibiting NOX4 (59, 60). The differ-
entiation process is closely associated with mitochondrial 
biogenesis and maturation to fulfill the energy demand re-
quired for specialized functions during lineage-specific 
differentiation (39). To meet the energetic demands, the 
dependency of mitochondrial oxidative phosphorylation 
increases which subsequently increases intracellular ROS 
levels and could contribute to defining cellular fate. 
According to stem cell differentiation, mitochondrial ma-
turation (revealed as morphological changes from spher-
ical into tubular structures), mtDNA replication, and ex-
pression of key enzymes involved in the tricarboxylic acid 
cycle (TCA) and oxidative phosphorylation are accelerated 
to support the increasing mitochondrial functions (40, 
61-64). In addition, the alteration of metabolic phenotypes 
to oxidative phosphorylation according to elevated ROS 
levels from differentiation through the suppression of the 
ROS scavenging system and downregulation of NADPH 
generation, also suggest the role of ROS as a mediator be-
tween metabolism and differentiation. 

Metabolic regulation of ROS in stem cells

Effect of ROS on glycolytic metabolism in stem cells
  Embryonic stem cells (ESCs), derived from the inner 
cell mass (ICM) of blastocysts, divide rapidly while main-
taining their pluripotency (65). In addition, ESCs have 
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immature mitochondria indicating reduced mitochondrial 
function, which mainly is due to low a membrane poten-
tial, low content of mtDNA, spherical morphology, and 
sparse density with predominantly perinuclear localization 
of the mitochondria (40, 52, 63, 64, 66, 67). Consistent 
with an immature mitochondrial structure, ESCs have low 
energy turnover and ATP production compared to differ-
entiated cells (40, 64, 66, 68). Thus, to meet their energetic 
demands and alleviate ROS-dependent DNA damage, 
ESCs have distinct mechanisms such as preferring gly-
colysis, elevated antioxidant defense, prevention of DNA 
damage, and apoptosis. ESCs largely depend on glycolysis 
rather than mitochondrial oxidative phosphorylation in 
glycolytic metabolism, in contrast to their differentiated 
counterparts (66, 69). Increasing metabolic flux through 
glycolysis and the pentose phosphate pathway enhances 
NADPH generation, which acts as a crucial cofactor for 
supporting the scavenging of ROS by maintaining thio-
redoxin and glutathione. The protection mechanisms from 
ROS through glycolysis-dependent metabolism are well 
known in mouse embryonic fibroblasts, in which the over-
expression of glycolytic enzymes such as phosphoglycerate 
mutase (PGM) and glucose-6-phosphate isomerase (GPI) 
increases glycolysis and reduces oxidative damages (70). 
Consistently, blockage of the pentose phosphate pathway 
by a glucose-6-phosphate dehydrogenase knock-out makes 
ESCs more susceptible to oxidative stress (71). Their uti-
lization of glycolysis over mitochondrial oxidative phos-
phorylation may thus have a role in the protective meta-
bolic mechanism and as an alternative energy source to 
meet the demands of pluripotent stem cells. 
  Although pluripotent stem cells can grow and survive 
in a wide range of oxygen concentrations from 3% to 20%, 
limiting oxygen availability under the circumstances of a 
preimplanted and implantated embryo requires a metabol-
ic shift to anaerobic glycolysis to produce sufficient ATP 
for embryo development and cellular homeostasis. This 
hypothesis is supported by the fact that hypoxic condition 
reflecting their niche environment stimulates glycolysis 
(72) and intensifies the maintenance of stemness and the 
self-renewal capacity (12, 16, 73). In addition, the hypoxic 
environment also can elevate the efficiency of nuclear re-
programming to produce induced-pluripotent stem cells 
(iPSCs) (74). As complementary protection against ROS-in-
duced damages through a nonoxidative metabolic pheno-
type, pluripotent stem cells possesses a strong ROS scav-
enging system than that of their differentiated counter-
parts, which is involved in the reduction of intracellular 
ROS through high expression of antioxidant enzymes in-
cluding thioredoxin-glutathione reductase, glutathione 

peroxidases, glutathione-S-transferase, and superoxide dis-
mutase 2 (SOD2). In addition, stress response mechanisms 
working through verapamil-sensitive multidrug efflux 
pump, heat shock protein expression, and DNA strand- 
break repair processes enhance the physiological protective 
capacity against oxidative damages (75, 76). Similar to 
pluripotent stem cells with distinct differences in glyco-
lytic metabolism and ROS generation, iPSCs derived from 
nuclear reprogramming also have an immature mitochon-
dria structure and a reduction in mtDNA (40, 52), as well 
as transcriptional regulation of nuclear genes involved in 
oxidative phosphorylation and glycolysis. Indeed, these 
metabolic differences could be anticipated based on the 
induction of pluripotent markers and the efficiency of 
iPSC production, suggesting that the dependence on gly-
colysis may also affect the progression of nuclear re-
programming (66, 77).
  Adult stem cells have a limited cell-cycle progression 
and are maintained in a quiescent state within a niche of 
differentiated tissue where the O2 is maintained at 1∼8% 
(78). Among the niches of adult stem cells in various tis-
sues, the hematopoietic stem cell niche is best charac-
terized. This niche is comprised of the bone marrow mi-
croenvironment, and stromal and progenitor cells, which 
can affect the oxygen gradient within the common space 
and compete for oxygen (79). Under hypoxic condition, 
quiescent hematopoietic stem cells resist damage accumu-
lation from oxidative stress and maintain a more robust 
ability to repopulate. Hypoxia-induced inhibition of ubiq-
uitination and proteasomal degradation results in the ac-
cumulation hypoxia-inducible factor-1α (HIF-1α), en-
abling the binding and activation of hypoxia response ele-
ments in target genes (79). HIF-1α, which is highly ex-
pressed in hematopoietic stem cells, should be regulated 
within a narrow range. In HIF-1α inhibition, the HIF-1α 

pathway deteriorates hematopoiesis making cells suscep-
tible to stress resistance, and subsequently eliciting embry-
onic lethality or cellular apoptosis; however, excessive ex-
pression or accumulation HIF-1α simulates destabiliza-
tion and premature exhaustion of hematopoietic stem 
cells. HIF-1α promotes metabolic shift from oxidative 
phosphorylation to glycolysis by regulating gene transcription 
involved in glycolytic metabolism, including glucose trans-
porter 1 (GLUT1), lactate dehydrogenase A (LDHA), and 
pyruvate dehydrogenase kinase (PDK1) (Fig. 2) (79). In 
addition, Meis1-mediated increase of HIF-1α tran-
scription is also involved in the maintenance of hema-
topoietic stem cells metabolic phenotypes such as gly-
colysis dependency and the potential suppression of ROS 
production (80, 81). Similar with hematopoietic stem cell 
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Fig. 2. Role of ROS-induced HIF-1α in regulation of glycolytic 
metabolism. ROS stabilize HIF-1α by inhibition of ubiquitination
and proteasomal degradation and accumulated HIF-1α promotes 
expression of glucose transporter 1 (GLUT1), lactate dehydrogenase
A (LDHA), and pyruvate dehydrogenase kinase (PDK1). These gly-
colytic metabolism-related gene expressions elicit the metabolism 
flux shift from oxidative phosphorylation to glycolysis and sub-
sequently regulate the stem cell fate.

niche, neural stem cell niche is under hypoxic condition, 
which is required for the maintenance of the undifferen-
tiated state (82). Taken together, hypoxic signaling has a 
critical role in the maintenance and glycolytic metabolism 
regulation of adult stem cells in their niche, which suggest 
the possibility that the regulation of glycolytic metabolism 
through ROS could be applicable to various types of stem 
cells because hypoxia extends lifespan by increasing pro-
liferation capacity and reduces differentiation of addi-
tional stem cell populations (12, 16, 74, 83). 

Effect of ROS on amino acid metabolism in stem cells
  Although glucose is generally regarded as a major sub-
strate for mammalian cells, other nutrients, including 
amino acids and fatty acids are also metabolized into the 
intermediates of the metabolic pathway and therefore may 
drive energy production. In addition, it is clear that glyco-
lytic metabolism closely interacts with that of other nu-
trients which indicates that stem cells have distinct amino 
acid metabolic profiles as seen in glycolytic metabolism, 
and this metabolic pathway could be a critical factor in 
determining stem cell fate (84-87). Among the amino 
acids, a relationship between glutamine (Gln) and oxida-
tive stress in the regulation of stem cell function has been 
reported. Gln is the most abundant amino acid in the 
blood and acts as a secondary energy source for the ana-

bolic process. Gln was also identified as being essential for 
fuelling mitochondrial metabolism in rapidly dividing 
cancer cells (88-90). Furthermore, human newborns with 
a congenital Gln synthetase deficiency presented with de-
velopmental disorders such as brain malformation, multi-
ple organ failure, and infant death (91, 92), which in-
dicates that Gln has an important role in embryo 
development. Gln is divided into glutamate and ammonia 
through glutaminolysis which is initiated by deamination 
of Gln by glutaminase. And then, glutamate is further con-
verted through a second deamination step into a TCA cycle 
intermediate, α-ketoglutarate (α-KG) by glutamate de-
hydrogenase (93). α-KG can be oxidized to succinate 
(standard TCA cycle reaction) or reductively carboxylated 
to isocitrate (reverse TCA cycle) through α-KG dehydrogen-
ase (α-KGDH), respectively. This reductive cycle of gluta-
mine metabolism has been shown to be favored in cells 
where HIF-1α is stabilized (94, 95). In neuronal progeni-
tor cells, FoxO3-regulated enzymes involved in central 
carbon metabolism act as regulator of ROS by controlling 
the flow of glucose and Gln carbon in a defined metabolic 
pathway. FoxO3 has an indispensable role in metabolic 
adaptation under stress conditions by inhibiting hypoxia-in-
duced ROS production and the subsequent HIF-1α stabi-
lization by antagonizing c-Myc function (96, 97). In addi-
tion, Gln metabolism also regulates cellular oxidative stress 
through antioxidant synthesis. The availability of amino 
acids such as Gln, glutamate, and cysteine are involved in 
the biosynthesis of cellular GSH, but the NADP＋/NADPH 
levels control the oxidative state of GSH (Fig. 3) (89, 95, 
98). More recently, mouse ESCs were cultured in 2i me-
dium (containing GSK3β and MAPK inhibitors) which 
maintained the naïve pluripotency and proliferation even 
without Gln and represented the high α-KG to succinate 
ratio. In addition, direct manipulation of the intracellular 
aKG/succinate ratio is enough to regulate pluripotency- 
associated gene expression through histone modification 
and Tet-dependent DNA demethylation (87). These pre-
vious results suggest that Gln metabolism contributes to 
the prevention of oxidative stress and the regulation of 
stem cell fate through antioxidant synthesis and alteration 
of the metabolic pathway in a FoxO3-dependent manner 
(99). As well as glutamine, high glucose-induced ROS 
stimulates leucine and proline uptake in mouse ESCs, 
which suggest that these amino acids are also implicated 
in the regulation of ROS-mediated stem cell function 
(100). Furthermore, glutamine-derived citrate can be 
transported to the cytoplasm to generate acetyl CoA for 
anabolic processes such as fatty acid synthesis (94, 101), 
which indicates that nutrient metabolisms are closely asso-
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Fig. 3. Crosstalk between ROS and Gln metabolism. ROS is involve
in control of α-ketoglutarate (α-KG) and succinate ratio through 
regulation of the glutamine (Gln) metabolism, which catalyzed to 
glutamate (Glu) by glutaminase and resulted in increase of α-KG 
level. In addition, availability of Gln, Glu, and cysteine (Cys) are 
involved in maintenance of redox homeostasis through biosyn-
thesis of cellular glutathione (GSH).

Fig. 4. Role of ROS in regulation of lipid metabolism. ROS in-
creased HIF-1α along with sterol regulatory-element binding pro-
tein 1 (SREBP) and SREBP cleavage activating protein (SCAP1) 
expression. SREBP stimulates expression of lipogenic genes includ-
ing the FAS gene. FAS stimulate lipogenesis with spending NADPH
and resulted in increase of NADP＋/NADPH ratio, which is in-
volved in alteration of the redox balance and metabolic shift to 
compensate for the shortage of oxygen.

ciated with each other; therefore, the regulation of the 
metabolic pathway could be important in controlling stem 
cell fate.

Effect of ROS on fatty acid metabolism in stem cells
  Fatty acids with long chains of lipid-carboxylic acid act 
as energy source and membrane components, such as 
phospholipids and glycolipids. They also have critical 
roles in the maintenance of normal cellular function and 
homeostasis as well as acting as signal molecules in the 
regulation of proliferation and differentiation (102). Fatty 
acid synthase (FAS), a key enzyme in de novo lipogenesis, 
condenses acetyl-CoA and malonyl-CoA to produce pal-
mitic acid with NADPH as a cofactor (103). FAS pathway 
regulates redox homeostasis through its ability to consume 
reducing equivalents such as NADPH (104). A previous 
report provided evidence that hypoxia regulates lipid me-
tabolism, and its metabolites are associated with determin-
ing stem cell fate. In that study, hypoxia increased HIF-1α 

along with SREBP cleavage activating protein (SCAP1) 
and sterol regulatory-element binding protein 1 (SREBP1) 
expression. SREBP has been known to be a key tran-
scription factor in regulating lipogenic genes including 
the FAS gene (105). Hypoxia-induced FAS expression 
subsequently increased palmitic acid production, which 
stimulated human mesenchymal stem cell (hMSC) mo-
tility and increased the therapeutic effect of stem cells in 
a mouse wound healing model (106). In addition, hypoxia 
was shown to cause an increase of the NADH＋/NADPH 
ratio due to altered metabolic flux from oxidative phos-

phorylation to glycolysis, which appears to have a role in 
adipogenic differentiation of MSCs (107). Activation of 
FAS stimulates lipogenesis which uses more NADPH and 
alters the redox balance to compensate for the shortage of 
oxygen. Recently, many reports have shown that oxidative 
stress induced FoxOs expression (108, 109) is involved in 
the control of adipogenic differentiation (Fig. 4) (110, 111). 
Consistently, during adipogenesis, the cells are likely to 
increase antioxidant enzyme expression, which supports 
the resistance to oxidative stress and subsequently helps 
to avoid cellular damage or apoptosis (112, 113). In addition, 
peroxisome proliferator-activated receptor α (PPARα), a 
member of the nuclear receptor protein group, could be 
activated by ligands including several fatty acids (114). 
PPARα has crucial roles in the regulation of many phys-
iological functions such as vascular tone, inflammation 
and glucose homoeostasis (115). In addition, it has been 
reported that the activation of PPARα is needed for car-
diogenesis of stem cells, which is associated with ROS-de-
pendent metabolism (56). Similarly, a previous study has 
shown that PPARα negatively regulates ROS derived by 
NOX expression, particularly regulatory subunit p47phox, 
which affects the number of BM-resident EPCs and the 
differentiation state of monocytic progenitor cells (116). 
Moreover, increasing oxygen utility to generate energy 
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from metabolites to support the energy demand according 
to the specialized functions of differentiated progeny implies 
the generation of more reduced metabolites. Interestingly, it 
has been reported that saturated metabolites from differ-
entiation medium promotes differentiation, while un-
saturated fatty acid impairs lineage specification through 
the inhibition of the eicosanoid pathway (117). Among the 
lipid oxidation products of ROS-dependent reactivity, 
there are molecules generated by the oxidation of choles-
terol, polyunsaturated fatty acids and phospholipids, such 
as lysophospholipids, platelet activating factor-like lipids, 
isoprostanes, sphingolipids and ceramides (118). These 
ROS-dependent oxidized lipids and lysophosphatidic 
acids suggest the possibility that bioactive lipids such as 
oxycholesterol, sphingosine-1-phosphate, and lysophos-
phatidic acid could be associated with the regulation of 
stem cell functions in their hypoxic niche (119-121). 

Conclusion

  Currently, stem cells have attracted much attention due 
to their distinct features that support infinite self-renewal 
and differentiation into cellular derivatives of three 
lineages. These features suggest that stem cells have the 
potential to provide effective treatments for a wide range 
of human diseases. Recent studies have suggested that 
many stem cells both embryonic and adult stem cells re-
side in specialized niches defined by hypoxic condition. 
Moreover, metabolic changes accompany stem main-
tenance and self-renewal, which might be brought about 
by signals that influence stem cell fate. To deliver on the 
promise of stem-cell therapy, there is a need to increase 
our fundamental understanding of how ROS generation is 
regulated in stem cells and what are the exact mechanisms 
in which ROS determine stem cell fate through metabolic 
pathway alteration. Our current understanding shows that 
the regulation of ROS has a vital role in maintaining the 
stemness and differentiation of stem cells through meta-
bolic pathway alteration. 
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