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Medical imaging is a central part of clinical diagnosis and treatment guidance. Machine

learning has increasingly gained relevance because it captures features of disease and

treatment response that are relevant for therapeutic decision-making. In clinical practice, the

continuous progress of image acquisition technology or diagnostic procedures, the diversity

of scanners, and evolving imaging protocols hamper the utility of machine learning, as pre-

diction accuracy on new data deteriorates, or models become outdated due to these domain

shifts. We propose a continual learning approach to deal with such domain shifts occurring at

unknown time points. We adapt models to emerging variations in a continuous data stream

while counteracting catastrophic forgetting. A dynamic memory enables rehearsal on a

subset of diverse training data to mitigate forgetting while enabling models to expand to new

domains. The technique balances memory by detecting pseudo-domains, representing dif-

ferent style clusters within the data stream. Evaluation of two different tasks, cardiac seg-

mentation in magnetic resonance imaging and lung nodule detection in computed

tomography, demonstrate a consistent advantage of the method.

https://doi.org/10.1038/s41467-021-25858-z OPEN

1 Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria. 2 Department of Radiology, Massachusetts
General Hospital, Harvard Medical School, Boston, MA, USA. ✉email: georg.langs@meduniwien.ac.at

NATURE COMMUNICATIONS |         (2021) 12:5678 | https://doi.org/10.1038/s41467-021-25858-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25858-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25858-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25858-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25858-z&domain=pdf
http://orcid.org/0000-0002-9107-4755
http://orcid.org/0000-0002-9107-4755
http://orcid.org/0000-0002-9107-4755
http://orcid.org/0000-0002-9107-4755
http://orcid.org/0000-0002-9107-4755
http://orcid.org/0000-0002-9107-5432
http://orcid.org/0000-0002-9107-5432
http://orcid.org/0000-0002-9107-5432
http://orcid.org/0000-0002-9107-5432
http://orcid.org/0000-0002-9107-5432
http://orcid.org/0000-0002-5536-6873
http://orcid.org/0000-0002-5536-6873
http://orcid.org/0000-0002-5536-6873
http://orcid.org/0000-0002-5536-6873
http://orcid.org/0000-0002-5536-6873
mailto:georg.langs@meduniwien.ac.at
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Deep learning (DL) algorithms are rapidly gaining rele-
vance in medical imaging, enabling computational
segmentation1,2, classification or detection3 of anatomical

structures and anomalies4 relevant for diagnosis, prediction, or
prognosis. In some cases, their capabilities surpass even those of
human experts5,6, making them a central tool in the advancement
of using imaging data for diagnosis, and for supporting treatment
decisions.

However, clinical imaging technology, diagnostic workflows,
and even imaging markers of diseases are not static. Instead, they
are subject to an ever-evolving environment in which DL algo-
rithms have to adapt in order to remain relevant. Currently, DL
models are trained once, yielding an impressive performance on
images comparable to their training experience. Yet, their sus-
tainability is limited, as they become outdated while technology
advances7. This inability to adapt to new data that is different
from the training data in some aspect (dataset shifts) severely
hampers their utility and adoption in clinical practice.

Dataset shifts occur when the training data distribution differs
from the distribution of data at model inference8,9. One type of
such shift, domain shift (or acquisition shift) might occur due to
technical progress in scanner technology. In clinical practice, and
consequently, in studies involving medical imaging data, acquired
data frequently originate from different scanners, scanner gen-
erations, manufacturers, or imaging protocols. To successfully
adapt deployed deep learning models to the changing environ-
ment, it is crucial to develop and advance methods that consider
these domain shifts.

Here, we focus on accounting for domain shifts occurring at
unknown times in a continuous data stream, reflecting clinical
practice. A DL model is trained on a set of images acquired by a
single scanner (base training) and subsequently updated con-
tinuously to changes in image appearance that occur in a data
stream as new scanners are added. At the same time, knowledge
about previously seen domains should not be forgotten as new
domain information is incorporated in the model. Figure 1
illustrates the general setting of this work. The model is trained to
convergence on a base training set of domain A data; afterwards,
it is exposed to a continuous data stream in which, after some
time, domain B, C and D data appear. Without updating the
model after base training (static deep learning), accuracy on later
domains suffers, since they leave the distribution of the training
data. See below for an example, where the base model failed to
segment images from subsequent scanners. Continual learning
methods counter this effect.

The focus of continual learning (also referred to as lifelong
learning) are machine learning techniques for accumulating the
ability to handle new tasks (or, in the context of this work, new
domains) in a model10,11. A major undesired effect counteracted
by continual learning methods is catastrophic forgetting, when
updating a model to learn a new task would lead to a dete-
rioration of performance on previous tasks12. Ideally, continual
learning could yield improvements of performance on previous
tasks when training on subsequent tasks, a desirable effect known
as positive backward transfer resulting from the increased variety
of training examples the model is exposed to13.

We propose dynamic memory (DM) as a continual learning
method, to deal with the emergence of new data sources at
unknown time points in a continuous stream of medical images
(Fig. 1). DM is a rehearsal method, which keeps a small, diverse
subset of the data stream in memory to alleviate catastrophic
forgetting. DM diversifies the memory using a style metric to
maintain images with a variety of styles observed in the con-
tinuous data stream. As an optional module, we utilize a pseudo-
domain (PD) model to detect clusters of a similar style from the
continuous stream. Those pseudo-domains can be seen as proxies

for the unknown, real domains and are used to balance the
memory and training process (DM-PD). To demonstrate the
generalizability of our method, we apply it to two different tasks
with different imaging modalities. First, we perform cardiac
segmentation in magnetic resonance imaging (MRI), and second,
we apply our approach to lung nodule detection in computed
tomography (CT). We show that on both tasks, our method
outperforms continual learning baseline methods. Note that we
are not focusing on the development of a new single scanner
state-of-the-art method for either of the tasks, but rather we want
to show how a continual learning method can be applied to adapt
a model to a continuous stream of imaging data, including
domain shifts, without explicit domain knowledge.

Results
Data sets
Cardiac segmentation. Experiments were performed on data from
a multi-centre, multi-vendor challenge data set14. The data set
included data from four different vendors Siemens, General
Electric, Philips, and Canon. We considered each of those ven-
dors as one domain. We split the data into Base training, Con-
tinual training, validation and test set on a patient level. Table 1a
shows the number of individual slices for each domain in those
data set splits.

Lung nodule detection. For lung nodule detection we used data
extracted from the LIDC-database15, with the annotations as
provided for the LUNA16-challenge16. In addition, we used the
LNDb challenge data set17. For all lung nodule annotations, we
constructed bounding boxes around the annotated lesion and
extracted 2D slices with lesions. To demonstrate our continual
learning with shifting domains, we constructed a data set of the
three most common domains, in terms of scanner vendor and
reconstruction kernel, in LIDC and as a fourth domain, the LNDb
data set. For LIDC, the most commonly used settings including
lesions were GE Medical Systems with low-frequency recon-
struction algorithm (GE/L, n= 527), GE Medical Systems with
high-frequency reconstruction algorithm (GE/H, n= 215) and
Siemens with B30f kernel (Siemens, n= 130). The LNDb data set
used multiple Siemens scanners. To match the nodule definition
in the LIDC database we excluded nodules with a diameter < 3
mm, resulting in a total of 625 images. Those images were split
into base training, continual training, validation and test data set
according to Table 1b analogous to the cardiac segmentation
experiment.

Dynamic memory alleviates catastrophic forgetting for cardiac
segmentation. To evaluate the ability of dynamic memory to
achieve good performance while counteracting catastrophic for-
getting, we performed cardiac segmentation on 2D MRI slices as
multi-label segmentation with three labels: Left ventricle (LV),
right ventricle (RV) and left ventricular myocardium (MYO).
Images were acquired with scanners of four different vendors, in
order of their appearance in the data stream: Siemens (A), GE (B),
Philips (C), and Canon (D). We refer to them as Scanner A–D to
facilitate understanding of the order. Base training was done on
Scanner A data only; subsequently, the model was trained on a
continuous data stream in which the image domains gradually
changed from Scanner A to D (Fig. 1). We compared different
continual learning strategies: (1) the DM method, (2) the DM
method with pseudo-domain detection (DM-PD), (3) a random
memory replacement strategy, in which every new sample
replaced a randomly chosen sample currently in memory (Ran-
dom) and (4) a naive approach of learning on a data stream
without counteracting catastrophic forgetting (Naive). In
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addition, we compared results with state-of-the-art continual
learning methods: (5) Elastic Weight Consolidation (EWC)18,
and two methods that require domain knowledge (6) Gradient
Episodic Memory (GEM)19 and (7) experience replay with
Maximally Inferred Retrieval (ER-MIR)20. Note that DM and
DM-PD operate without domain knowledge, representing a more
realistic assumption in clinical practice. For comparison, we also
trained two baseline models: First, a joint model (JModel) with all
training data that treated the entire data set as a single hypo-
thetical static data set; and second, domain-specific models

(DSM) trained in a static training scheme on each of the domains,
separately. Finally, we report results for a static base model (Base)
trained on Scanner A, and applied to scanners A to D. All
methods used the same backbone convolutional neural network
(CNN) for segmentation, an FC-ResNet5021.

We compared the segmentation accuracy of all approaches on
a separate test set that contained data from all four scanners after
training had finished. Furthermore, we specifically assessed
whether model accuracy on one scanner benefits from model
training on other scanners by evaluating backward transfer
(BWT) and forward transfer (FWT)19.

In Table 2, the approaches are compared in terms of average
Dice score over LV, RV, and MYO for a memory size ofM= 128.
An evaluation of LV, RV, and MYO segmentation separately
showed similar trends (see Supplementary Tables 1–3). DM and
DM-PD performed similarly and outperformed all other
continual learning strategies for which no information about
domain membership is required (Naive, Random and EWC). For
images of the last domain (Scanner D), EWC had the highest
mean Dice score (0.850 ± 0.003) but at the cost of a high negative
BWT value (− 0.014 ± 0.007), showing that catastrophic forget-
ting occurred. DM and DM-PD exhibited no forgetting, as
indicated by the neutral BWTs of 0.000 and 0.003, respectively.
GEM and ER-MIR showed a similar performance than DM-PD,
but needed information about domain membership of the
individual samples, which is not feasible in clinical practice.
Comparing a memory with a random replacement strategy to
DM and DM-PD showed that the style metric used for DM was
effective to choose samples to form a diverse memory. Random
replacement resulted in forgetting of previous domains during the

Fig. 1 Different model training and adaptation strategies. 1 Continual DL for image analysis adapts to new data properties and, at the same time, retains
the capability to work with older data. a Static DL: after training and deploying a DL model, technology changes and the accuracy of the model decreases. b
A naive continual learning approach to solve this limitation is to continue training a model on a stream of data. However, this leads to forgetting of old data
properties, and a corresponding decrease in performance on these data. c As a continual learning approach, dynamic memory recognizes new emerging
domains, and samples data in a continuous stream accordingly. The ML model adapts to new technology but stays accurate on the diverse set of scanners
previously seen. This is important to ensure backward compatibility of the model and to build a more stable model that adapts to new scanners faster. 2
Validation on a separate test set evaluates the DL model performance at the end of the period.

Table 1 Number of slices in data sets for both
experimental tasks.

(a) Cardiac segmentation
data set

Siemens GE Philips Canon

Base 1120 0 0 0
Continual 614 720 2206 758
Validation 234 248 220 258
Test 228 246 216 252

(b) Lung nodule detection
data set

GE/L GE/H Siemens LNDb

Base 253 0 0 0
Continual 136 166 102 479
Validation 53 23 10 55
Test 85 26 18 91
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course of continual training (BWT of −0.011), while DM and
DM-PD kept a good performance on all scanners.

On data from Scanner B, for which a relatively small sample
size of 720 images was used for training, DM and DM-PD were
able to achieve good performance without domain membership
information. Learning with random replacement, EWC and naive
training resulted in a significant performance drop for Scanner B.
This demonstrated that by using a Gram matrix-based style
metric, DM was less sensitive to the amount of samples per
scanner vendor than other continual learning strategies.

JModel was the upper bound of what the training can achieve,
especially for domains with few samples, i.e., for Scanner B, the
performance gap between continual learning and hypothetical
static batch training accessing all data was high (0.763 ± 0.004 vs.
0.798 ± 0.016). This was due to the fact that in continual learning,
underrepresented samples were less often seen than in static
training. In Supplementary Table 4, different memory sizes of
M=〈64, 128, 256, 512, 1024〉 for DM and DM-PD were
compared. Adding more memory resulted in better performance
but due to differences in the training dynamics (JModel trains
batch-wise and thus can see more batches than in continual
learning settings), the performance of JModel was not achievable.
DM with a smaller memory of M= 64 was not able to accurately
capture the diversity of the training data distribution and thus
resulted in forgetting (BWT=− 0.005).

Figure 2 shows how the mean DSC changed in the course of
continual training. For EWC and naive continual learning,
catastrophic forgetting was observed, and accuracy on previous
domains declined as new domains entered model training. For
DM and DM-PD, accuracy was more stable across all domains as
continual training proceeded.

Qualitative assessment of semantic segmentation in Fig. 3
showed comparable performance results for the different
continual learning approaches. However, while naive continual
learning showed better results for Scanner D, DM and DM-PD
performed well on all scanners including previously seen
domains. The comparison with the base model (trained on
Scanner A data only) showed that we need a continual learning
method to adapt the model to changing visual appearance. The
base model failed to perform accurate segmentation for scanners
B–D, resulting in a high number of false negatives.

Dynamic memory alleviates catastrophic forgetting for lung
nodule detection. Lung nodule detection was performed as
bounding box detection on 2D CT slices and measured in average

precision (AP), as defined in the ‘Evaluation’ section. Four image
domains were included in the data stream: GE with a low-
frequency reconstruction algorithm (GE/L); GE with a high-
frequency reconstruction algorithm (GE/H); Siemens; and LNDb
(see the ‘Data sets’ section for details), in the following Scanners
E–H. Base training was performed on data from Scanner E. Due
to the definition of EWC, a direct comparison was not possible
for detection tasks. DM and DM-PD were compared to a random
replacement memory and a naive continual learning approach.
Analogously to segmentation, two state-of-the-art methods
requiring domain labels (which is not required by DM and DM-
PD), GEM19 and ER-MIR20 were evaluated as reference. As
baseline models, a joint model (JModel) and domain-specific
models (DSM) were compared, and the results for the static base
model (Base) were evaluated analogously to the segmentation
experiment. As a task network, Faster R-CNN with a ResNet-50
backbone was used22.

Overall, DM-PD and DM performed better in terms of AP
than the naive approach, as seen in Table 3. Both outperformed
the naive method and effectively counteracted catastrophic
forgetting. For all domains extracted from LIDC (Scanners E, F
and G), DM performed well. However, we observed a drop in
performance for Scanner H for all methods. This drop was caused
by a population shift in addition to the large domain shift. In
LIDC data, lung nodules had a mean diameter of 8.29 mm, while
Scanner H data (extracted from LNDb) included smaller lesions
with a mean diameter of 5.99 mm. By design, DM does not detect
population shifts (i.e., the change of lesion characteristics as
opposed to imaging characteristics), and thus, could not adapt to
Scanner H data quickly. The random replacement strategy
struggled with learning domains that were present less frequently
in the training (Scanner F and G) as they were replaced over time
by Scanner H data, resulting in forgetting on those scanners. This
effect was less severe for Scanner E data since the base training
was performed on data of this scanner. DM and DM-PD
counteracted this forgetting by using a style-based metric to
diversify the memory and thus kept samples of all scanners in
memory. DM-PD performed better than DM without pseudo-
domain detection, demonstrating that balancing the training
process was an important step for our continual learning method.
DM-PD showed the best performance in terms of AP and
outperformed the naive approach by around 0.05 AP for Scanners
E, F and G. Furthermore, the best backward and forward
transferability was observed for DM-PD/128. Thus, it was the
preferable model for lung nodule detection.

Table 2 Cardiac MR segmentation results after continual training measured as an average Dice score (DSC) over LV, RV and
MYO segmentation computed on the test set.

Meth. M Scanner A Scanner B Scanner C Scanner D BWT FWT

DM (Ours) 128 0.802 ± 0.005 0.762 ± 0.002 0.807 ± 0.004 0.840 ± 0.009 0.000 ± 0.002 0.032 ± 0.004
DM-
PD (Ours)

128 0.799 ± 0.010 0.763 ± 0.004 0.809 ± 0.005 0.844 ± 0.010 0.003 ± 0.004 0.031 ± 0.005

Random 128 0.786 ± 0.015 0.746 ± 0.008 0.797 ± 0.005 0.847 ± 0.005 −0.011 ± 0.007 0.033 ± 0.004
EWC18 0.786 ± 0.008 0.738 ± 0.014 0.792 ± 0.007 0.850 ± 0.003 −0.014 ± 0.007 0.032 ± 0.003
Naive 0.781 ± 0.013 0.726 ± 0.026 0.789 ± 0.011 0.848 ± 0.003 −0.018 ± 0.123 0.032 ± 0.002
GEM19 128 0.798 ± 0.005 0.761 ± 0.008 0.804 ± 0.003 0.846 ± 0.002 −0.005 ± 0.004 0.033 ± 0.003
ER-MIR20 128 0.798 ± 0.005 0.763 ± 0.007 0.808 ± 0.002 0.847 ± 0.001 −0.004 ± 0.003 0.036 ± 0.003
DSM 0.802 ± 0.017 0.748 ± 0.012 0.806 ± 0.014 0.835 ± 0.005 – –
JModel 0.822 ± 0.010 0.798 ± 0.016 0.823 ± 0.006 0.852 ± 0.007 – –
Base 0.797 0.763 0.792 0.763 – –

± indicates the interval over n= 5 independent runs with different seeds. Dynamic memory (DM) is compared to DM with a pseudo-domain module (DM-PD), random replacement strategy (Random),
elastic weight consolidation (EWC) and naive continual learning (Naive). Methods requiring domain membership knowledge are gradient episodic memory (GEM), and experience replay with maximally
inferred retrieval (ER-MIR). Domain-specific models (DSM), a joint model (JModel) and using base training only (Base) serve as a reference. For base training only one model was trained to avoid the
influence of base training results on subsequent continual training, therefore no standard deviations are indicated. For a visual presentation of the results, see Supplementary Fig. 1.
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Supplementary Table 5 shows results of comparing different
memory sizes M=〈64, 128, 256, 512, 883〉 (883 corresponds
to storing all samples of the continuous stream to memory). For
DM, a larger memory size was beneficial compared to a smaller
memory size. For DM-PD, the results showed that the smaller the
memory (M= 64 and M= 128) the more performance gain was
achieved by pseudo-domain (PD) detection compared to mere
DM. For larger memory sizes, the benefit of PDs vanished. Due to
differences in the training sequence, the performance DM with
M= 883 was different from those of JModel. While DM/883
performed better on Scanner E and F, JModel showed higher AP
values for Scanner G and H.

In Fig. 4, the change in validation performance during training
is depicted for DM and DM-PD with M= 128 compared to
random replacement memory and naive continual learning.
While the random replacement and naive strategy showed
forgetting, especially for Scanner G, DM and DM-PD kept the
performance high without catastrophic forgetting.

To analyse the performance of DM in lung nodule detection in
detail, precision–recall curves for DM and DM-PD with M= 128
were compared to naive continual learning and a base model
trained on data from the first scanner E only (Fig. 5a). The base
model performed worse than continual learning approaches for
all domains, even on test data from the domain which the model
was trained on. This showed that knowledge from subsequent
scanners can improve final model performance on Scanner E. As
expected, the base model’s performance deteriorated for the
subsequent scanners. The precision–recall curves of the
naive continual learning approach showed improvement over
the base model. Compared to DM and DM-PD, it exhibited a
worse performance for scanners E–G and a slightly better
performance for scanner H. This illustrates how naive continual

learning could adapt to new scanners but—in contrast to DM and
DM-PD—suffered from forgetting, while updating the model to
scanner H data.

In Fig. 5b bounding box detections for all four domains are
shown. Overall, a higher number of false positives occurred for
the naive approach compared to DM and DM-PD. Given the fact
that we performed detection on 2D slices only, DM and DM-PD
showed a good overall performance. For lung nodule detection,
we showed a clear benefit using rehearsal with our DM method in
continual learning settings with unknown domain shifts.

Pseudo-domain detection maintains a more balanced memory.
For lung nodule detection, we analysed differences between
training DM with the pseudo-domain module versus training
without the pseudo-domain module for M= 128. First, we eval-
uated how the samples in memory at the end of training were
distributed compared to the whole training corpus by embedding
the Gram matrices of all training samples to an embedding space
using t-distributed stochastic neighbour embedding (TSNE)23.
Figure 6a shows a clear distinction between the domains of
Scanner F, Scanner H, and Scanners E and G. Scanners E and G
were close according to their style due to the similar recon-
struction kernel used for those domains. The markers in the
figure indicate the samples in memory at the end of continual
training. For DM-PD, those were more equally distributed over
the whole training set.

This observation was confirmed by data depicted in Fig. 6c
where we observed a clear over-representation of the first
domain (Scanner E) over all subsequent domains for training
with DM only, compared to balancing with pseudo-domains
(DM-PD).

Fig. 2 Cardiac MR segmentation. Dice score (DSC) on the validation set during training for M= 128 for DM and DM-PD, compared to random
replacement and naive continual learning. The timeline at the bottom represents a continuous data stream and the change of domains in the stream. a A
drop of DSC for Scanner A can be observed when Scanner B occurs in the stream, DM and DM-PD were able to recover from this drop using the memory;
b all methods are stable during training with Scanner C, and c as soon as Scanner D data flows in, we see a quick rise of DSC for Scanner D validation
samples. Naive and random replacement lose some DSC points during that period, while DM remains stable. This significant and rapid change shows that
Scanner D is different compared to the others and not as closely related as Scanner B and C.
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Figure 6b shows an analysis of the amount of domain elements
assigned to pseudo-domains. For the example of a single training
run, five pseudo-domains were detected. PD-1 represented the

real domain of Scanner E. PD-4 and PD-5 represented samples
from two scanners, F and G. In PD-2 and PD-3, no clear
distinction of domains were represented. Overall, we observed

Table 3 CT Lung nodule detection results after continual training measured in average precision (AP) computed on the test set.

Meth. M Scanner E Scanner F Scanner G Scanner H BWT FWT

DM (Ours) 128 0.722 ± 0.020 0.526 ± 0.021 0.592 ± 0.041 0.330 ± 0.015 0.030 ± 0.018 0.063 ± 0.016
DM-
PD (Ours)

128 0.750 ± 0.006 0.565 ± 0.067 0.624 ± 0.024 0.355 ± 0.038 0.028 ± 0.019 0.066 ± 0.030

Random 128 0.752 ± 0.019 0.514 ± 0.021 0.600 ± 0.021 0.394 ± 0.013 0.007 ± 0.016 0.084 ± 0.026
Naive 0.682 ± 0.014 0.506 ± 0.017 0.561 ± 0.020 0.369 ± 0.008 0.000 ± 0.008 0.091 ± 0.027
GEM19 128 0.754 ± 0.012 0.568 ± 0.022 0.622 ± 0.038 0.366 ± 0.024 0.034 ± 0.016 0.067 ± 0.018
ER-MIR20 128 0.754 ± 0.012 0.588 ± 0.038 0.611 ± 0.039 0.363 ± 0.027 0.031 ± 0.016 0.075 ± 0.016
DSM 0.653 ± 0.047 0.441 ± 0.074 0.643 ± 0.067 0.454 ± 0.096 – –
JModel 0.716 ± 0.063 0.522 ± 0.114 0.711 ± 0.058 0.419 ± 0.087 – –
Base 0.645 0.372 0.509 0.136 – –

± indicates the interval over n= 5 independent runs with different seeds. Dynamic memory (DM) is compared to DM with a pseudo-domain module (DM-PD), naive continual learning, random
replacement strategy (Random), domain-specific models (DSM), a joint model (JModel) and using base training only (Base). In addition, GEM and ER-MIR are shown for reference, noting that they
require information about domain membership. For base training only one model was trained to avoid influence of base training results on subsequent continual training, therefore no standard deviations
are indicated. For a visual presentation of the results, see Supplementary Fig. 2.

Fig. 3 Qualitative examples for cardiac segmentation. Results for DM and DM-PD with M= 128 compared to naive continual learning and random
memory replacement. Mislabelled refers to pixels that were labelled, but the class membership was confused by the model. The base model was trained in
a static training approach on data from Scanner A only.
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that using the pseudo-domain module was beneficial to maintain
a balanced memory, which was representative of the whole
training set distribution.

Discussion
Machine learning is expanding the use of medical imaging data
for diagnosis and prognosis. Advances in deep learning enable the
computational detection, segmentation, and classification of
entities associated with disease, thus informing individual treat-
ment decisions. After the first iteration of static DL, models has
been proven to be effective, the challenge is now to make them
sustainable in an environment of continuous advances in image
acquisition technology, protocols, or even treatment options.
Here, we show that an approach that maintains a diverse dynamic
memory could adapt models to changing imaging technology, as
it coped with domain shifts. Importantly, while the model learned
from new data, it retained the diversity of a rehearsal memory, to
remain accurate and reliable across the entire repertoire of ima-
ging sources it had seen. Furthermore, we observed that model
knowledge was successfully transferred across scanners. Including
training data from other scanners yielded benefits for model
accuracy on an individual scanner.

Domain shifts due to scanner variability and their detrimental
effects on machine learning (ML) algorithms have been observed

in different image modalities, such as computed tomography
(CT) and magnetic resonance imaging (MRI). For CT, the
influence of scanners and reconstruction parameters on ML
predictions as well as on human annotations, have been studied
for chest CT examinations. Demonstrating that scanner varia-
bility has a negative influence on radiomics24,25 and other ima-
ging features26, this needs to be considered when designing ML
models. In ref. 27, the effect of using multiple MRI scanners on
ML algorithms for brain MRI was empirically evaluated. To
reduce the effect of scanner variability in longitudinal, multi-
scanner MRI studies, harmonization28,29 has been applied.
However, different from our work, those methods assume that all
data is available at once, which is not the case for a model
deployed in clinical practice.

Previously, various methods have been proposed to alleviate cat-
astrophic forgetting10,11 in continual learning settings. These
approaches can be divided broadly into three categories: rehearsal
and pseudo-rehearsal methods19,30–33, regularization-based
approaches18,34,35 and parameter isolation methods36,37. For a
detailed review, see refs. 10,11. The majority of those approaches are
incremental task learning methods. They focus on learning new tasks
incrementally without forgetting the knowledge required for previous
tasks. Lately, methods that have focused on accounting for domain
shifts have been proposed38–40. Domain adaptation (DA) is a related
area of research dealing with domain shifts41–43. DA focuses on

Fig. 4 Lung nodule detection. Average precision (AP) measured on the validation set during training for DM and DM-PD with M= 128 as well as a
random replacement memory and naive continual learning approach. The timeline at the bottom represents the changes of domains in the data stream. a
As soon as Scanner F data occurred in the stream, the validation performed on the Scanner F (and also Scanner G) domain increased for all approaches. b
A clear drop in performance (AP) occurred for the naive and random replacement approach for Scanner E, F and G, after some steps of training on Scanner
H data, which marked catastrophic forgetting. For DM, the performance first dropped slightly, but recovered after some training steps, because samples
from the memory are used for training. The DM-PD performance remained stable for Scanners E, F and G. c At the end of continual training, a better
performance was achieved for Scanner E, F and G, when dynamic memory was utilized. For Scanner H, the performance for all three approaches was
similar. d The performance for Scanner E was stable during the entire continual training process for all approaches, showing a base training that was
saturated for scanner E.
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adapting the knowledge learned on one or multiple source domains
to a target domain. In medical imaging, DA is used to adapt between
different imaging modalities or different image acquisition settings44.
It assumes access to the source and target domain at once, which is
not applicable to a setting using a continuous data stream. Further-
more, DA require the knowledge of a domain- or task membership
for each sample. This assumption is not realistic in real-world
medical imaging. There the variability of metadata encoding image
acquisition information, does not directly map to comparability of
imaging characteristics13. Since we do not assume to have access to
this knowledge, these methods are not applicable for continual
learning in the clinical routine. Hence, to date, they have not been
adopted in practice. A third related area is transfer learning45. Here,
an existing model is transferred to a new task or domain by fine-
tuning on new data. The sole aim is a model performing well there,

regardless of its capability to work well on the initial domain. During
fine-tuning no data from the initial domain is necessary.

Our results show that the capacity of static models to segment
and detect is limited when data is acquired with image acquisition
machines outside the initial training distribution. At the same
time, naive approaches that continuously train on new scanners
forget old imaging characteristics, losing their ability to process
data with previous acquisition characteristics. By continuously
including new training data, while maintaining a diverse rehearsal
set, dynamic memory yields good performance across the entire
set of observed scanners. The detection of pseudo-domains,
representing sub-cohorts that exhibit similar style or imaging
characteristics, yields groups of images that correspond to scan-
ners, or groups of scanners that share similar appearance prop-
erties. Their detection and injection into the training process for

Fig. 5 Quantitative and qualitative results for lung nodule detection. a Precision–recall curves of the final naive, DM and DM-PD trained model compared
to a base model trained on only scanner E data. Shaded areas represent confidence intervals for n= 5 independent training runs. b Samples of lung nodule
detection of the final naive, DM and DM-PD trained model compared to a base model trained on only scanner E data on all four domains. Green boxes
indicate true-positives, yellow boxes false-negatives and red boxes false-positives.
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DM further improve model performance. Importantly, these
pseudo-domains can span multiple scanners if they share imaging
characteristics. The usage of a style-based metric alleviates the
need for domain membership knowledge, and demonstrates
similar performance as state-of-the-art continual learning meth-
ods that use this information.

A further benefit of the approach compared to the training of
scanner-specific models, is that model performance on a parti-
cular scanner typically benefits from training on other scanners.
Feature representations of the model obtain better generalizability
from training on related but different data. This leads to the
processing of new scanner data that profits from training on older
scanners (forward transfer), and vice versa (backward transfer).
Results were consistent across different imaging modalities (MRI,
CT) and image analysis tasks (segmentation, detection).

Results from our cardiac MRI segmentation proved that DM is
beneficial compared to naive continual learning, exhibiting less
catastrophic forgetting and reaching results comparable to models
trained on a static training set which consisted of data from all
domains. Similar effects occurred in lung nodule detection in CT,
and results showed that using pseudo-domains (DM-PD) led to
fewer false-positive detections, than standard dynamic memory.

Our approach is a step toward the design of a strategy to learn
on a continuous data stream of medical images that can poten-
tially be deployed in clinical practice. Nevertheless, the method
has several limitations. First, more research is needed to
demonstrate that we can design systems that guarantee that there
is no catastrophic forgetting in the future when the number of
scanner is scaled up substantially. Proving that the performance
of DL models will not decline with future domains is challenging.
Second, DM requires storing a subset of the images for rehearsal
during training. While this rehearsal set is substantially smaller
than the entire data set, privacy concerns or storage limitations
may become relevant. Finally, we do not take the cost of anno-
tating cases into account, assuming that there are target labels or

bounding boxes for training available for each sample in the data
stream. In clinical practice, this assumption does not hold, and a
human-in-the-loop concept7 such as active learning46 is needed
to collect new annotations for unknown domains economically.

Methods
Dynamic memory. The goal of our method33 is to continuously update the parameters
θ of a task model, already trained on a base training set of one domain, on a continuous
data stream with multiple but unknown imaging domains. Training data to update the
θ is composed to capture novel data characteristics while sustaining the diversity of the
overall training corpus. At each step, examples from previously seen data sampled from
memory M and new examples (input-mini-batch B) form the training data (training-
mini-batch T ) for updating the θ. The dynamic memory (DM) M ¼
hm1; n1i; ¼ ; hmM ; nMi

�
is holding image-target pairs〈m, n〉 of a fixed-sizeM that

are stored and updated during continual training. The DM approach is used to keepM
diverse and representative of the visual variations across all domains. The important
step in this procedure is to decide which image-target pairs to keep in memory, without
explicit domain knowledge. This procedure is depicted in Fig. 7. We apply two simple
rules to update M: (1) every novel image-target pair is stored to M. (2) the image
replaced in memory is close to the novel image according to a high-level style metric.
The high-level metric in rule 2 is critical, as it ensures that the memory is representative
and diverse. To evaluate the style of an image, following neural style transfer as pro-
posed in ref. 47, we define a metric based on the Gram matrix Gl 2 RNl ´Nl where Nl is
the number of feature maps in layer l of a pre-trained style model. This style model is
pre-trained on ImageNet and its weights remain fixed during continual training. Given
an input image x, Gl

ijðxÞ is defined as the inner product between the vectorized acti-
vations fil(x) and fjl(x) of two feature maps i and j in a layer l:

Gl
ijðxÞ ¼

1
NlMl

f ilðxÞ>f jlðxÞ; ð1Þ

where Ml denotes the number of elements in the vectorized feature map (width ×
height). With the Grammatrix, we define a Gram distance δ(x, y) between two images x
and y for a set of convolutional layers L as:

δðx; yÞ ¼ ∑
l2L

1

N2
l

∑
Nl

i¼1
∑
Nl

j¼1
ðGl

ijðxÞ � Gl
ijðyÞÞ

2
: ð2Þ

During continual training, at each step an input-mini-batch B ¼
fhb1; c1i; ¼ ; hbB; cBig of B cases (image b and target c) is taken from the data
stream. Sequentially, each element of B replaces the (according to Eq. (2)) closest

Fig. 6 Enhancing memory diversity. Comparison of memory composition for DM vs. DM-PD for M= 128. a TSNE over the Gram matrices of the training
set shows a distinction of the domains. Markers show positions of memory elements at the end of training for one run. DM-PD shows a more equal
distribution over the whole training set. b Five pseudo-domains detected were detected for a single training run of DM-PD; bars show the amount of
domain elements assigned to the pseudo-domains. c Amount of domain elements in memory after training for DM and DM-PD. Error bars represent
standard deviation and mean (middle line), n= 5 independent runs.
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element of M. Formally: given an input image-target pair 〈bi, ci〉, the sample
will replace the element in M with index

ξðiÞ ¼ argmin
j

δðbi;mjÞ j j 2 f1; ¼ ;Mg: ð3Þ
This replacement strategy is applied after an initial phase of continual training

in which the memory is filled with elements of the data stream. After the memory
is updated, a training-mini-batch T ¼ fht1; u1i; ¼ ; htT ; uT ig of size T is
assembled. Each element of B for which the current task model performs poorly
according to the task metric is added to T and additional cases are randomly
drawn from M until jT j ¼ T . Finally, the parameters of the task model are
updated using the training-mini-batch T to perform forward and backward pass.

Pseudo-domain module. As an optional element of the method, we develop a
pseudo-domain module that identifies pseudo-domains, serving as a proxy for the
unknown, real-world domains. Those pseudo-domains are used to balance the
memory M and T during continual training.

We define the set of pseudo-domains as D ¼ fi1 ¼ iDg. Where ij is a trained
Isolation Forest (IF)48 used as one-class anomaly detection for the pseudo-domain
j∈ {1,…,D}. We use IFs, because of their simplicity and the good performance on
small sample sizes. In order to use IF a dimensionality reduction of the Gram
matrix is needed, we define a Gram embedding e(x) as a reduced version of the
Gram matrix (Eq. (1)) using Sparse Random Projection (SRP)49 fitted to the base
training set. An image x is assigned the pseudo-domain maximizing the decision
function of id:

pðxÞ ¼
argmax

d
idðeðxÞÞ if max

d
½idðeðxÞÞ� > 0j d 2 f1; ¼ ;Dg

�1 otherwise.

(
ð4Þ

If p(x)=− 1 the image-target pair is added to the outlier memory O. Within O we
identify new pseudo-domains to add to D.

Discovery of pseudo-domains in O: O holds training pairs that do not fit an
already identified domain and might form a new domain. Examples are stored until
they are assigned a new pseudo-domain or if a fixed number of training steps is
reached. If no new pseudo-domain is discovered for an image it is considered a
‘real’ outlier and removed from the outlier memory. The discovery process is
started when jOj ¼ o, where o is a fixed threshold. A check if a dense region is
present in the memory is done by calculating the pairwise Euclidean distances of all
elements in O. If there is a group of images where the distances are below a
threshold t a new IF in is fitted to the Gram embeddings of the dense region and the
set of pseudo-domains D is updated. Samples belonging to the new pseudo-domain
are transferred from O to M, balancing the memory M such that each domain
d 2 D occupies at least M

jDj positions.
Memory update with pseudo-domains: To use the pseudo-domain module to

balance training we define Md ¼ fhm; ni 2 MjpðmÞ ¼ dg as the subset of M
where the pseudo-domain is d. And extend the rules to update M outlined in the
previous section as follows, a new image-target pair 〈x, y〉 is inserted into
memory: If jMdj< M

jDj where d= p(x) we replace a random element with a different

pseudo-domain for which jMr j> M
jDj. Otherwise, we replace an element according

to Eq. (3) using only Md instead of the whole memory M.

Experimental setup. All networks used are implemented in Python 3.6 with
PyTorch 1.6.050 using the implementation within the torchvision package. As a
style network, we utilize ResNet-5051 pre-trained on ImageNet for all experiments.
For cardiac segmentation, the task network is a fully-convolutional network model
with a ResNet-50 backbone21. For lung nodule detection we use a Faster-RNN with
ResNet-50 backbone22.

Evaluation. We evaluate the ability of continual learning to improve performance
on previously seen domains by adding new domains backward transfer (BWT),
and the contribution of previous domains in the training data to improving the

accuracy on subsequent domains forward transfer (FWT) following the definitions
in ref. 19. BWT measure how learning a new domain influences the performance on
previous tasks, FWT quantifies the influence on future tasks. Negative BWT values
indicate catastrophic forgetting, thus avoiding negative BWT is especially impor-
tant for continual learning.

Dice coefficient. For cardiac segmentation Dice coefficient or Dice score (DSC) is
used as a performance metric. The DSC measures the overlap as:

DðX;YÞ ¼ 2jXT
Yj

jXj þ jYj ; ð5Þ

where X and Y are segmentation maps, such as predicted and ground-truth cardiac
segmentation.

Average precision. For lung nodule detection we use average precision (AP) as the
performance metric, to judge the performance of the models with a single metric.
We follow the AP definition in ref. 52. The intersect over union between boxes of
ground truth and prediction has to be over 0.3 to be counted as a true positive,
otherwise, the prediction will be regarded as a false positive. The precision is then
averaged at eleven equally spaced recall levels:

AP ¼ 1
11

∑
r2f0;0:1;¼ ;1g

piðrÞ; ð6Þ

where pi is defined as:

piðrÞ ¼ maxr�:r�≥ rpðr�Þ; ð7Þ
the maximum precision for which the corresponding recall exceeds the threshold.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The cardiac MRI data that support the findings of this work are part of the Multi-Centre,
Multi-Vendor & Multi-Disease Cardiac Image Segmentation Challenge (M&Ms)14 and
are publicly available (https://www.ub.edu/mnms/). The CT data that support the
findings is provided as Lung Image Database Consortium image collection (LIDC-IDRI)
as part of the cancer imaging archive and are publicly available (https://
wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI); and as LNDb Challenge17

data (https://lndb.grand-challenge.org/).

Code availability
The custom code that supports the findings of this study is publicly available at Github
(https://github.com/cirmuw/dynamicmemory)53.
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