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The spatial organization of eukaryotic genomes plays crucial 
roles in regulation of transcription, replication and cell dif-
ferentiation, while malfunctions in chromatin structure is 

linked to disease, including cancer and premature aging disorders1,2. 
Advances in chromosome conformation capture (3C)-based3–10 
and ligation-free methods11–13 and, most recently, live-cell and 
super-resolution microscopy14–18, have shed light onto key elements 
of genome structure organization, including the genome-wide 
detection of chromatin loops19,20, topologically associating domains 
(TADs)21 that modulate long-range promoter–enhancer inter-
actions12,22 as well as the segregation of chromatin into nuclear 
compartments8,10,23–26. Each technology probes different aspects of 
genome architecture at different resolutions1,27–29.

These complementary methods provide a renewed opportu-
nity to generate quantitative, highly predictive structural mod-
els of the entire nuclear organization30. Embedding data into 
three-dimensional (3D) structures is beneficial for a variety of 
reasons. First, all data itself originate from (often a large popula-
tion of) 3D structures; so, reverse engineering that data and relat-
ing it back to an ensemble of representative 3D structures appears 
to be the natural way for integrating data from complementary 
methods via an appropriate representation of experimental errors 
and uncertainties. Second, generating structures consistent with 
multimodal data from heterogeneous and independent sources 
allows cross-validation of orthogonal data itself. Finally, 3D struc-
tures give access to features that are not immediately visible in the 
original input dataset, which can be compared with experimental 
data tailored to assess model predictivity. Yet, embedding data into 
3D structures is a challenging task: not only is there no established  

protocol for data interpretation and modeling, but genome struc-
tures are dynamic in nature and can substantially vary between 
individual cells. A probabilistic description is thus needed surpass-
ing traditional structural modeling that limits to a single equilib-
rium structure, or a small number of metastable structures.

There are several data-driven and mechanistic modeling strat-
egies, which differ in the functional interpretation of data and 
sampling strategies, for generating an ensemble of 3D genome 
structures statistically consistent with it23,25,26,31–50. These 3D struc-
tures are then examined to derive structure–function correlations 
and make quantitative predictions about structural features of 
genomic regions, study their cell-to-cell variabilities and link these 
to functional observations. Most strategies have relied primarily on 
Hi-C data, which is abundant and straightforward to interpret in 
terms of chromatin contacts. However, data from a single experi-
mental method cannot possibly capture all aspects of the spatial 
genome organization. Integrating data from a wide range of tech-
nologies, each with complementary strengths and limitations, will 
likely increase accuracy and coverage of genome structure models. 
Several methods were adapted to combine Hi-C with one other data 
source14,37,39,49,51,52; nevertheless, developing hybrid methods that can 
systematically integrate data from many different technologies to 
generate structural maps of entire diploid genomes remains a major 
challenge.

Here we present a population-based deconvolution method 
that provides a probabilistic framework for comprehensive and 
multimodal data integration. Our approach30,36,44 de-multiplexes 
ensemble data into a population of 3D structures, each governed by 
a unique pseudo-energy function, representing a subset of the data, 
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hence explicitly factoring in the heterogeneity of structural features 
across different cells. The method produces highly predictive mod-
els of the folded states of complete diploid genomes, which are sta-
tistically consistent with all input data, and is therefore distinct from 
resampling methods32,34,41,45,46.

Our generalized framework generates fully diploid genome 
models from integration of four orthogonal data types: ensemble 
Hi-C10, lamin B1 DamID24,53,54, large-scale HIPMap 3D fluorescence 
in situ hybridization (FISH) imaging55,56 and data from single-cell 
split-pool recognition of interactions by tag extension (SPRITE) 
experiments11. Such models are capable of successfully predicting 
with good accuracy orthogonal experimental data from a variety of 
other genomics-based and super-resolution imaging experiments, 
such as data from SON TSA-seq experiments57 and DNA-MERFISH 
imaging17. Specifically, our structures predict with good accuracy 
gene distances to nuclear speckles, gene distances to the nuclear 
lamina and therefore allow an in-depth analysis of the nuclear 
microenvironment of genes at a genome-wide scale.

We further demonstrate that integration of all data modalities 
produces structures of maximal accuracy and show that different 
combinations of data types can lead to structures of comparable 
accuracy. For a given available data type, we can therefore pro-
pose which additional data types would maximize the prediction 
accuracy of the resulting structures. Also, our results highlight that 
relatively low-frequency interchromosomal contacts are essential to 
correctly predict whole-genome structure organizations: indeed, a 
modified Hi-C dataset with artificially underrepresented interchro-
mosomal contacts severely fails at reproducing the correct global 
genome architecture. However, integrating additional data sources 
from other experiments can compensate for these biases and gener-
ate structure populations with still high predictivity accuracy. Our 
method is potentially applicable to other cell types and organisms, 
with different combinations of data as described here.

Our work represents the effort at integrating orthogonal data 
types from Hi-C, lamina DamID, 3D HIPMap FISH and DNA 
SPRITE experiments to produce highly predictive genome structure 
populations, which ultimately showcases the benefits of multimodal 
data integration in the context of whole-genome modeling. Due 
to its modular architecture, the method we propose can be easily 
adapted to incorporate other data types in the modeling pipeline, as 
we strive for even more realistic and predictive structures to dissect 
the genome structure–function relationship.

Results
Multimodal data-driven population modeling as an optimi-
zation problem. We expand our previous genome modeling 
framework36,37,44 and introduce a generalized formulation for the 
integration of a variety of orthogonal data to generate a popula-
tion of full genome structures that simultaneously recapitulate all 
the data. Our method incorporates data types that relate to single 
genomic regions, such as lamin B1 DamID or radial 3D HIPMap 
FISH, to two genomic regions, such as Hi-C or pairwise 3D HIPMap 
FISH and several genomic regions, such as single-cell SPRITE 
experiments (Fig. 1). Our method incorporates both ensemble and 
single-cell data by deconvoluting ensemble data into a population of 
distinct single-cell genome structures, which cumulatively recapitu-
late all input information. Our model is defined as a population of S 
diploid genome structures X = {X1,X2,…,XS}, where each struc-
ture Xs is represented by a set of 3D vectors representing the coor-
dinates of all diploid chromatin regions. Given a collection of input 
data Dk from K different data sources, D = {Dk|k = 1,…, K}, we 
aim to estimate the structure population X̂  such that the likelihood 
P(D|X) is maximized. Because most experiments, such as Hi-C 
and lamina DamID, provide data that are averaged over a large 
population of cells, and often produce unphased data, they do not 
reveal which contacts coexist in which structure of the population  

or between which homologous chromosome copies. To repre-
sent this missing information at single-cell and diploid levels, we 
introduce data indicator tensors D∗

k  for each of the data sources 
D

∗

= {D∗

k |k = 1,…, K} as latent variables that augment all miss-
ing information in Dk (Methods and Supplementary Table 1). Thus, 
the latent variables D∗ are a detailed expansion of D at the diploid 
and single-structure representation. To determine a population of 
genome structures consistent with all experimental data, we there-
fore formulate a so-called hard expectation–maximization (EM) 
problem, where we jointly optimize all genome structure coordi-
nates X and all latent variables.

X̂, D̂ = argmaxX,D∗ log P(D,D∗⌈X)

The solution of such a high-dimensional maximum likeli-
hood problem requires extensive exploration of the space of all 
genome structure populations, which we achieve by using a series 
of optimization strategies for efficient and scalable model estima-
tion (Methods, Supplementary Information and Extended Data  
Fig. 1)36,37,44. Convergence to an optimal solution (X̂, D̂∗

) is reached 
when the models statistically reproduce all the input data (details of 
the mathematical formulation of data types, likelihood P and opti-
mization strategy are provided in the Methods and Supplementary 
Information). The optimized structure population X̂ is then used 
to determine locations of nuclear bodies in each single-cell model, 
which in turn serve as reference points to calculate a host of struc-
tural features. These features allow a thorough characterization of 
the nuclear microenvironment of each gene30 (Fig. 1).

Comprehensive data-driven genome population structures of 
HFFc6 cell line. To showcase our data integration platform, we 
generated a population of 1,000 3D diploid genome structures of 
prolate ellipsoidal HFFc6 fibroblast cell nuclei (Extended Data  
Fig. 2a) at 200,000 base-pair resolution by integrating data from 
in situ Hi-C58, lamin B1 DamID59, HIPMap large-scale 3D FISH 
imaging55 and DNA SPRITE experiments11 (see Extended Data 
Fig. 2b–d for details of the optimization statistics). These struc-
tures are statistically consistent with all input data: (i) genome-wide 
Hi-C contact probabilities (genome-wide Pearson correlation: 0.98, 
average intra-chromosomal Pearson correlation: 0.98, average 
intra-chromosomal stratum-adjusted correlation coefficient60: 0.89; 
Fig. 2a,b and Supplementary Table 3); (ii) chromatin contact prob-
abilities to the nuclear envelope (NE) from lamin B1 DamID experi-
ments (Pearson correlation of 0.93; Fig. 2c,d); (iii) pairwise distance 
distributions for 51 pairs of loci from 3D HIPMap experiments 
(Pearson correlation of 1.0 of cross-Wasserstein distances Fig. 2e,f); 
and (iv) chromatin colocalizations for more than 6,600 chroma-
tin clusters from SPRITE experiments (Fig. 2g and Extended Data  
Fig. 2d). Agreement between input experiments and predic-
tions from optimized structures was further validated by χ2 
goodness-of-fit tests (Methods and Extended Data Fig. 3).

To evaluate the predictive value of our models, we must assess 
how well they predict independent experimental data, which 
were not used as input information. We first compared our chro-
mosome structures with those from multiplex FISH imaging in a 
related IMR90 cell type17. Individual chromosome structures from 
DNA-MERFISH imaging17 show large structural variability, with 
distinctly different folding patterns between single-cell and homol-
ogous copies (Fig. 3a and Extended Data Fig. 4). We found good 
agreement between chromosome structures from our calculations 
and experiment (Methods), with several single-cell chromosome 
conformations found in our models with very similar distance 
matrix patterns. The range of conformational variability for chro-
mosome 6 and chromosome 2 is nicely matched in our models for 
selected structures, as shown by the similarities for a range of dis-
tance matrices from the experiment and models (see Extended Data 
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Fig. 1 | Prediction of the nuclear microenvironments of genes from genome structures. Top, schematic of the data-driven modeling approach. Information 
provided by orthogonal data modalities (Hi-C, lamina DamID, radial and pairwise HIPMap 3D FISH and DNA SPRITE) is used as input to the Integrative 
Genome Modeling (IGM) platform to generate a population of S = 1,000 diploid genome structures. Structures can be used to predict locations of nuclear 
bodies and compartments (nuclear speckles and lamina compartment), which can serve as reference points to describe locations of genes and the 
genome architecture. Bottom, the predicted genome structure population gives access to a large number of structural features (left), which collectively 
describe the nuclear microenvironment of genes on a genome-wide scale.
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Fig. 2 | Input data are recapitulated in the genome structure population. a, Genome-wide correlation of Hi-C contact frequencies (interchromosomal 
and intra-chromosomal) between experiment58 and simulation (r = 0.98). b, Comparison between experimental (upper diagonal region) and simulated 
(lower diagonal region) contact frequency maps for chromosome 2 (left) and zoomed-in region (right). c,d, Correlation of lamin B1 DamID-derived contact 
probabilities between experiment59 and model genome wide (c) (r = 0.93) and visual comparison of both signals for chromosome 2 (d). e, Correlation 
of cross-Wasserstein distance (WD) between experimental FISH data and predictions (r = 1.00; Methods). f, Cumulative distributions of pairwise FISH 
distances for the set of 51 pairs of loci measured in 3D HIPMap FISH experiments55, plotted for both model (left) and experiment (right). Colors indicate 
the sequence separation in the chromosome between imaged loci pairs, with darker hues indicating larger sequence separations. g, Examples of single-cell 
SPRITE clusters from three different structures, showing colocalization of loci in a single-cell structure. Colors distinguish chromosomes, and homologs 
are shown in the same color. Loci in the same SPRITE cluster are also shown enlarged; left cluster: chr2: 150,927,500, chr3: 6,265,500, chr6: 93,928,500, 
chr10: 11,602,500; center cluster: chr2: 4,872,500, chr5: 23,208,500, chr11: 57,966,500, chr19: 51,314,500, chr22: 42,294,500; right cluster: chr4: 
42,821,500, chr5: 68,438,500, chr6: 106,123,500, chr8: 85,891,500, chr12: 99,185,500. Clusters assayed experimentally11, including those shown, are 
reproduced in our structures.
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Fig. 4 for a more comprehensive comparison). For example, 72% of 
chromosome 6 structures in our models match to a structure from 
DNA-MERFISH experiments with an average distance matrix cor-
relation of at least 0.5 or larger.

Next, we predicted the locations of nuclear speckles in each 
single-cell structure, following a previously described procedure30 
(Methods). Based on the chromatin structural features, we first 
identified those chromatin regions with high propensity to be asso-
ciated with nuclear speckles. We then determined in each model 
the highly connected spatial partitions formed by these chromatin 
regions. As we previously discovered, the geometric centers of each 
partition in a model serve as excellent approximations of nuclear 
speckle locations30.

The locations of predicted speckles together with the folded 
genome models were then used to predict experimental SON 
TSA-seq data (Methods and Fig. 1). SON TSA-seq is an experi-
mental mapping method that determines, on a genome-wide scale, 
the median distances between any chromatin region and nuclear 
speckles57. Predicted SON TSA-seq data from our models agree 
remarkably well with experimental data61 (Pearson correlation 0.83;  
Fig. 3b). Moreover, our models confirm the previously described 
relationship between a chromatin region’s experimental SON 
TSA-seq value and its mean distance to the nearest speckle57.

We then used the predicted speckle locations to determine a 
gene’s speckle association frequency (SAF), defined as the fraction 
of models in which a chromatin region is in spatial association to 
a speckle (Methods and Fig. 1). A recent super-resolution micros-
copy study detected the same quantity for approximately 1,000 loci 
by DNA-MERFISH imaging17. The SAF prediction for these loci 
from our models shows excellent agreement with the experiments 
(Pearson correlation 0.71; Fig. 3c).

Moreover, we predicted for each chromatin region the median 
trans A/B ratio (Methods), defined as the ratio of A and B compart-
ment chromatin forming interchromosomal interactions with the 
target loci. Predicted trans A/B ratios show good agreement with 
those determined by DNA-MERFISH experiments (Pearson corre-
lation 0.66) and a strong correlation with the SAF (Pearson correla-
tion 0.92; Fig. 3d), again confirming previous findings17,30.

The lamina-associated repressive chromatin compartment is 
usually located at the NE; thus, we used the location of the NE as a 
reference point to simulate lamin B1 TSA-seq data (Methods), which 

measures the mean distances of genomic regions to the nuclear 
lamina57. Moreover, we also calculated the lamina association fre-
quency (LAF) for each genomic region (Fig. 1), which also shows 
excellent agreement with the LAF determined by super-resolution 
DNA-MERFISH imaging17 (Pearson correlation 0.84 for LAF; Fig. 
3e). We also observed an inverse correlation between LAF and SAF 
(Pearson −0.77), confirming previous experimental observations.

Overall, the accurate prediction of orthogonal observables 
assayed in independent experiments highlights the predictive power 
of our genome structures. We therefore can describe the nuclear 
microenvironment of each chromatin region by several structural 
features calculated from the models (Fig. 1 and Methods), namely: 
a chromatin region’s average radial position in the nucleus, the 
variability of its radial positions between single cells, the interior 
localization probability of a genomic region, the interchromosomal 
contact probability, the average local chromatin decompaction of the 
chromatin fiber and its variability across the population of models. 
Together with predicted SAF, LAF, trans A/B ratio and SON TSA-seq 
(Methods), we characterized each chromatin region by a total of 13 
structural features, which define the structural microenvironment of 
each genomic region in the nucleus (Fig. 1). All structural features 
and chromosome structures are highly reproducible in indepen-
dent replicate optimizations (Methods and Extended Data Fig. 5). 
For example, 80% of all structures of chromosome 6 in two replicate 
populations show almost identical structures with a correlation of 
at least 0.8 or larger between their corresponding distance matrices.

Studying the nuclear microenvironment of genomic regions 
(even at 200-kb resolution) provides useful information about 
the role of nuclear positions in gene function, information that is 
not otherwise easily accessible. For instance, we analyzed the link 
between a genomic region’s structural environment, in particular its 
nuclear location, with its gene expression propensity. We observed a 
significant correlation (Pearson 0.46, P value ~ 0) between the frac-
tion of models a genomic region is in direct proximity to a nuclear 
speckle (SAF) and the fraction of single cells that show nascent 
mRNA transcripts for the corresponding genes in RNA-MERFISH 
experiments17; that is, its transcription frequency (TRF; Fig. 3f). 
This observation points to a favorable transcriptional microenvi-
ronment in the vicinity of nuclear speckles, and thus, confirms pre-
vious observations that point to a role of nuclear speckles in gene 
expression11,57.

Fig. 3 | Genome structure population (from HDSF setup) correctly recapitulates imaging data, predicts a number of orthogonal quantities and provides 
interesting biological insights. a, Comparison of high scoring simulated structures of chromosome 6 and structures from the DNA-MERFISH dataset17. 
Each structure is plotted to the right of its normalized distance matrix; each row shows the corresponding structures in DNA-MERFISH experiments (top 
row) and IGM HDSF models (bottom row). Modeled structures at 200-kb base-pair resolution have a higher genomic coverage than the imaged genome 
structures. Genomic regions imaged in the experiment are shown in the models with opaque beads and are connected by opaque links, while genomic 
regions not imaged in the experiment are shown with translucent beads. b, Correlation between experimental61 and predicted SON TSA-seq data.  
c, Correlation between predicted and experimental SAF from DNA-MERFISH imaging; d, Experimentally observed correlation between SAF and trans A/B 
ratio from DNA-MERFISH imaging is nicely reproduced in our genome structures with high correlation. e, Correlation between experimental LAF from 
DNA-MERFISH imaging with predictions from our genome structure population. All scatterplots are colored according to the local density of points, and 
the Pearson correlation scores are annotated. TSA-seq correlations are genome wide, and DNA-MERFISH data correlations involve the 1,041 loci studied 
in the experiment by Su et al.17. f, Predicted SAFs of genomic regions show significant correlations (r = 0.49, P value ~ 0) with the transcription frequency 
(TRF) of genes from RNA-MERFISH imaging. TRF values are plotted in deciles. Error bars show mean values and standard deviations of predicted SAFs in 
each TRF range; number of SAF values used in the statistics (from left to right): 704, 79, 66, 61, 41, 27, 11, 10. g, Box plots of the cell-to-cell variability of 
radial positions for genomic regions containing actively transcribed genes with the 10% highest (T10) and 10% lowest (B10) transcription levels.  
h, Average radial positions of genomic regions containing actively transcribed genes with the 10% highest (T10) and 10% lowest (B10) transcription levels. 
Transcription levels for both g and h were taken from total RNA-sequencing experiments62. Comparison between T10 and B10 was performed using the 
Mann–Whitney two-sided tests, with P values ~ 0 for both g and h; the asterisks represent statistical significance of 0.0001. The box bounds indicate the 
interquartile range (Q3 − Q1) divided by the median, and Tukey-style whiskers extend to a maximum of 1.5 times the interquartile range beyond the box. 
Q3 and Q1 are the third and first quartiles of the distributions, respectively. Outliers are represented as dots. The number of B10 and T10 genomic regions 
used for the box plots is 1,253 and 1,296, respectively. i, Pearson correlation between experimental speckle distance cell-to-cell variability (Methods) from 
DNA-MERFISH imaging with predictions from our genome structure population, (r = 0.58, P value ~ 0). Error bars show standard deviations of speckle 
distance variability values in our models, in each experimental value decile. Number of values used in the statistics (from left to right): 99, 97, 103, 101, 94, 
105, 100, 98, 101 and 101.
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We can then relate cell-to-cell variabilities of these features 
to functional properties. We observed a connection between 
the cell-to-cell variability of a genomic region’s nuclear posi-
tion (Methods) with the expression level of genes located in  
these regions30. For instance, genomic regions containing the top 
10% most highly transcribed genes showed substantially lower 
structural variability than regions containing the bottom 10% 
of transcribed genes (Fig. 3g; Mann–Whitney two-sided test, 
P value ~ 0, transcription data from RNA sequencing62). Thus,  
the most highly transcribed genes are located in genomic regions 
with the most stable nuclear structure. These regions also showed 
notably lower (more interior) average radial positions than  
genes present at low expression levels (Fig. 3h). We also found a 
significant correlation (Pearson 0.58, P value ~ 0) between our  
predicted cell-to-cell variability of a genomic region’s distance  
to the nearest speckle with that observed in DNA-MERFISH experi-
ments (Fig. 3i).

Thus, structural features about nuclear locations of genomic 
regions can be directly linked to their functional potential in gene 
transcription. None of these structure-based findings would be pos-
sible through analysis of the input data alone.

Multimodal data integration improves predictive power. We next 
investigated how different combinations of data influence model 
accuracy. We generated four genome populations, each with differ-
ent combinations of experimental data, and assessed their accuracy 
by comparing predicted SON TSA-seq data, lamina DamID data, 
SAF, LAF and median trans A/B ratios with those available from 
experiments (Methods and Fig. 4). For reference, we also assessed 
a population of random chromosome territories constrained within 
the nuclear volume.

Interestingly, models from Hi-C data alone (setup H) repro-
duce SON TSA-seq data and SAF already with high accuracy,  
while lamin B1 DamID and LAF show relatively poor performance 
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(Fig. 4), which is likely related to the flat ellipsoidal shape of the HFF 
nucleus. Our previous studies using GM12878 cells, with a spherical 
nucleus, could predict both lamina TSA-seq and lamin B1 DamID 
data with higher accuracy from Hi-C data alone30. When Hi-C and 
Lamina DamID data (setup HD) were combined, predictions of 
TSA-seq, DamID data, SAF and LAF greatly improve (Fig. 4).

Combining SPRITE colocalization clusters and 3D FISH dis-
tance distributions with Hi-C and lamin B1 DamID, input informa-
tion slightly improved correlation scores for TSA-seq and DamID 
data, even though the total number of spatial restraints from DNA 
SPRITE and FISH data were an order of magnitude smaller than 
those from Hi-C and lamina DamID (Extended Data Fig. 2d). 
Models HDS and HDSF recapitulated MERFISH imaging data 
well, recapitulated 3D FISH and SPRITE data, while also showing 
excellent predictability for TSA-seq and DamID data (Fig. 4 and 
Extended Data Fig. 6). Overall, the steady improvement of model 
accuracy with an increasing amount of input data highlights the 
benefits of multimodal over unimodal data integration in generat-
ing realistic and highly predictive structures.

Systematic assessment of comprehensive data integration using 
synthetic data. To perform a thorough assessment of multimodal 
data integration, we regarded a structural population as a ‘ground 
truth’ reference, from which a variety of synthetic data can be simu-
lated (Methods and Fig. 5a). Models were then generated from dif-
ferent combinations of synthetic data, to facilitate the comparison of 
their predictive power on 3D genome architecture. Note that model 
assessment depends on the structural features being explored, and a 

ground truth allows a more comprehensive model validation based 
on a larger number of structural observables that are accessible. 
Moreover, we can simulate different input data at variable levels of 
information content to better assess their influence on model quality.

We chose population H (Fig. 4) as the ground truth structure 
population, from which we generated the synthetic datasets, includ-
ing genome-wide contact frequencies (that is, Hi-C data), contact 
frequencies between loci and the NE (that is, lamin B1 DamID data), 
and a randomly chosen subset of 1,000 radial and 1,000 pairwise 
distance distributions (that is, HIPMap 3D FISH datasets; Methods 
and Fig. 5a). These datasets represent idealized data sources, and 
were combined into seven different input data setups. Models were 
then generated for all data setups, each containing different combi-
nations of synthetic data (Fig. 5b).

We quantitatively assessed model accuracy with the following 
structural properties (Fig. 5c): (i) the distribution of radial positions 
for each chromatin region, (ii) the distributions of pairwise dis-
tances between chromatin loci in cis and trans; (iii) the distribution 
of the radius of gyration for each chromosome; (iv) SON TSA-seq 
data; (v) lamin B1 TSA-seq data; and (vi) lamin B1 DamID data. 
We used the cross-Wasserstein distance to measure the similarity 
between two probability distributions (for features i–iii); quantities 
(iv–vi) were assessed by their Pearson correlations with the corre-
sponding ground truth features (Methods). Finally, for each setup, 
an overall performance rank (OPR) was determined as the total 
sum of ranks for all individual feature assessments (Fig. 5d).

Models generated from simulated contact frequencies naturally 
reproduce with high accuracy the ground truth features. To better 
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substantiate our assessment of data integration performance, we 
manipulated the simulated Hi-C data by scaling down the inter-
chromosomal contact probabilities by a factor of two and used the 
resulting ‘perturbed’ contact map (labelled Hi-C*) as input for all 
model populations instead.

Structures generated from perturbed Hi-C* data alone (setup 2) 
showed poor performance with low correlations of ground truth 
features, except for intra-chromosomal distance distributions 
(Pearson correlation 0.79; Fig. 5c). We then generated another per-
turbed Hi-C** dataset, in which interchromosomal interactions 
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remain untouched, while probabilities of intra-chromosomal inter-
actions were scaled down by a factor of 2 (setup 8). Models gen-
erated using this dataset predicted with good accuracy all ground 
truth features related to the global nuclear architecture, such as SON 
TSA-seq, lamin B1 TSA-seq and lamina DamID signals (Pearson 
correlations > 0.98) as well as radial distributions of chromatin 
regions with substantially higher accuracy than setup 2 Hi-C*  
(Fig. 5c). In contrast, setup 8 showed slightly higher accuracy than 
setup 2 for chromosomal properties, such as the radius of gyration. 
It is noteworthy that intra-chromosomal distance distributions were 
still well reproduced in comparison to setup 2, which indicates that 
scaling down intra-chromosomal contacts has a less detrimental 
effect than interchromosomal contacts. These results showcase 
the surprisingly dramatic loss of information when trans contact  

probabilities are underestimated in Hi-C data, which generally have 
very low contact probabilities to begin with. Reducing interchromo-
somal interactions further will lead to the loss of information about 
the global genome architecture. Reducing relatively high-frequency 
intra-chromosomal contact probabilities will have a smaller impact, 
as sufficient information about intra-chromosomal chromatin 
interactions is still retained in the dataset.

To further assess the relevance of interchromosomal interactions, 
we generated four structure populations from (unperturbed) Hi-C 
data that included interchromosomal contacts only if their contact 
probability was larger than a given cutoff θinter, which is gradually 
decreased (Methods). Interestingly, good predictive models can 
only be generated when interchromosomal contacts with very low 
probabilities are included (Fig. 6). For instance, radial profiles are 

c

0

0.5

1.0

SON TSA-seq Lamin B1 TSA-seq Lamin B1 DamID

P
ea

rs
on

 c
or

re
la

tio
n

0.
02

0
0.

01
5

0.
00

8
0.

00
2

0.
02

0
0.

01
5

0.
00

8
0.

00
2

0.
02

0
0.

01
5

0.
00

8
0.

00
2

P
ea

rs
on

 c
or

re
la

tio
n

0.
02

0
0.

01
5

0.
00

8
0.

00
2

0

0.5

1.0

Radius of gyration

0.
02

0
0.

01
5

0.
00

8
0.

00
2

Radial dist. distrib.

0.
02

0
0.

01
5

0.
00

8
0.

00
2

Intra. dist. distrib.

0.
02

0
0.

01
5

0.
00

8
0.

00
2

Intra. dist. distrib.

Interchromosomal probability θinter  

0.
02

0
0.

01
5

0.
00

8
0.

00
2

Interchromosomal 
probability θinter 

2.2

2.4

2.6

C
om

pa
rt

m
en

ta
liz

at
io

n
sc

or
e 

b

0.6

0.8

0 100 200

N
or

m
al

iz
ed

ra
di

al
 p

os
iti

on
 

Chr1 genomic position (Mb)

0 100 2000 100 200

a
θinter = 0.02 θinter = 0.008 θinter = 0.002

Ground truth Models

Fig. 6 | Low-probability interchromosomal contacts greatly affect model predictivity. We compared the accuracy of a structure population generated 
from unperturbed Hi-C data as a function of the lowest interchromosomal contact probability value included in the modeling. The probabilities are labeled 
as θinter (Methods). a, Mean radial positions plotted for chromatin regions in chromosome 1 from structures in the ground truth reference population 
(dark blue) and structures calculated from three representative setups (red) that included interchromosomal contacts with gradually decreasing contact 
probabilities: θinter = 0.02, 0.008 and 0.002. Characteristic radial profiles seen in the ground truth (Fig. 1) were only correctly reproduced when contacts 
were included with probabilities of at least 0.2%. From left to right, θintra = 0.02, 0.008 and 0.002. b, The A/B compartmentalization score for each setup, 
with error bars representing the standard deviation of the underlying distribution (Methods): compartmentalization increased as more low-frequency 
interchromosomal contacts were included in the modeling. c, The Pearson correlation value between the ground truth and simulations of the same 
seven structural observables discussed in Fig. 5 for θinter = 0.020, 0.015, 0.008 and 0.002. Gray boxes indicate negative correlation values. Structural 
quantities experienced a substantial correlation increase when low-probability contacts were included, indicating that overall model predictivity increases 
dramatically. Error bars for each setup were estimated from three independent replicate calculations (Methods); data in b and c are presented as mean 
values ± standard deviation.

Nature Methods | VOL 19 | August 2022 | 938–949 | www.nature.com/naturemethods946

http://www.nature.com/naturemethods


ArticlesNAturE MEtHODS

only reproduced with low residual errors if relatively ‘rare’ contact 
events are included, that is, probabilities corresponding to only 2 
contact events per 1,000 structures (Fig. 6a). The chromatin com-
partmentalization score, which measures the spatial segregation 
between chromatin in the active A compartment from the inactive 
B compartment63 (Methods), also steadily increased when inter-
chromosomal contacts with low contact probabilities were added  
(Fig. 6b). Thus, the large number of low-probability interchromo-
somal interactions, which define relatively ‘rare’ contact events per 
chromatin region, are essential for accurate genome structure mod-
eling and for correct predictions of genome-wide SON TSA-seq, 
lamin B1 TSA-seq and lamin B1 DamID data (Fig. 6c). Overall, these 
results further underline the important role of trans interactions in 
predicting the correct global genome architecture in our models. 
Hi-C experimental conditions can influence fragment lengths, liga-
tion efficiencies and thus the amount of informative interchromo-
somal proximity information captured by ligations. Hi-C variants, 
such as MicroC6, capture local short-range chromatin interactions 
at higher resolution, while the fraction of long-range and interchro-
mosomal interactions is reduced. It is therefore of interest to test 
if additional orthogonal data sources can compensate for reduced 
levels of informative interchromosomal interactions.

Combining lamin B1 DamID as well as radial and pairwise 
distance distributions from 3D FISH experiments with the biased 
Hi-C* data (setup 7) produced models with high predictive power 
and similar accuracy for all structural features as models generated 
with unmodified original Hi-C data (Fig. 5c). The OPR increased 
monotonically with increasing amounts of added data (setups 
3–7; Fig. 5d). Therefore, orthogonal data modalities appear to 
compensate for systematic errors affecting one of the data types  
(here, underrepresentation of interchromosomal contacts; Extended 
Data Fig. 7).

The steady improvement in model accuracy with increasing 
data is not only due to those features being directly restrained 
by the added data (which is only a small portion of all degrees of 
freedom), but also due to cooperative effects acting on the entire 
genome: each newly added data modality makes already included 
data more informative. This is due to the specific nature of our itera-
tive optimization process, which reduces data ambiguity by select-
ing the best of a set of alternative restraints assignments, based on 
the current genome structures at a given iteration (Methods and 
Supplementary Information). For instance, if newly added infor-
mation about a gene’s radial position restricts its nuclear locations, 
it will also make certain non-native chromatin contacts less likely, 
which in turn will lower the change for that gene to be wrongly 
selected in non-native Hi-C contact-restraint assignments. An anal-
ogy is a crossword puzzle, where gradually filling in interconnected 
words reduces the ambiguity of missing word solutions. Adding a 
data modality to our modeling process reduces, in a similar way, 
the ambiguity of restraints assignments of all other data types, thus 
making these data more informative.

Our simulations showed that adding FISH radial distributions 
for 1,000 loci (setup 2 to setup 3) improved prediction accuracy 
of radial distributions for all genes (not only those being actively 
restrained), as well as genome-wide SON and lamin B1 TSA-seq 
signals, and even interchromosomal gene distance distributions, 
although the radial FISH data did not contain any bivariate infor-
mation (Fig. 5c).

Models generated from Hi-C* and simulated DamID data (setup 
5) outperformed models from Hi-C* data and FISH radial distribu-
tions of 1,000 loci (setup 3). However, adding information for 1,000 
pairwise FISH distance distributions (setup 4) produced models as 
accurate as those in setup 5.

The information equivalence of datasets depends naturally on 
the amount of data. For instance, using radial distributions of all 
chromatin loci would render lamina DamID data redundant. We 

therefore assessed (Hi-C* + radial FISH data) class models that con-
tain increasing numbers of FISH probes. Our results confirm that, 
at a critical number of probes, models from Hi-C* and radial FISH 
data become more informative than those from Hi-C* and lamina 
DamID data (setup 5; Extended Data Fig. 8). Of course, these obser-
vations are made in an idealized case, and only serve as a conceptual 
point. The true information content of data depends on systematic 
errors in the experimental data, such as potential distortions due to 
cell fixations and other treatments in FISH experiments, as well as 
the base-pair resolution of the chromatin fiber representation. Also, 
radial positions (instead of distance to the nuclear lamina) may be 
an inadequate description for highly irregular nuclear shapes that 
vary in size. In future, actual microcopy 3D images, instead of posi-
tional metadata, should be used in the modeling process to over-
come some of these issues.

Discussion
We introduced a robust pipeline for multimodal data integration to 
determine 3D structures of whole diploid genomes. These structures 
revealed a wealth of information about the structural organization 
of genomes over multiple length scales, along with dynamic vari-
abilities of structural features between individual cells. Collectively 
these features define the nuclear microenvironment of genes on a 
genome-wide scale, which can be directly linked to their functional 
potential in gene transcription and subnuclear compartmentaliza-
tion43. Our method therefore provides a useful analytical tool for 
comparative genome structure analysis, which could link changes in 
a gene’s structural organization between different cell types (or dur-
ing developmental processes) with underlying functional changes. 
Moreover, the structures generated by our method also predict a 
host of orthogonal experimental data, including SON TSA-seq data, 
speckle and lamina association frequencies and trans A/B ratios 
as determined by DNA-MERFISH experiments, and reproduce 
chromosomal structures from super-resolution imaging experi-
ments. These predictions could serve as first approximations to data 
otherwise only available through experiments with considerable  
added effort.

We tested the proficiency of our approach by studying the dip-
loid genome structures of human HFFc6 cells by integrating data 
from Hi-C, lamin B1 DamID, 3D HIPMap FISH and SPRITE 
experiments. We systematically assessed the accuracy of models 
generated from different combinations and amount of data types. 
Model accuracy steadily improves with increasing amounts of data 
and is maximal when data integration is multimodal, indicating that 
single data sources might not fully capture all information about 
a genome’s structural organization. Moreover, orthogonal data 
sources can compensate for systematic biases and missing informa-
tion in some data types. For instance, a biased Hi-C dataset with 
artificially reduced chromatin interaction frequencies shows sub-
stantially lowered accuracy. However, combining this biased data-
set with additional information from lamina DamID and 3D FISH 
experiments recovers structures with almost identical accuracy to 
those generated by the unbiased Hi-C data. The improvement of 
performance can partly be explained by cooperative effects. Adding 
a complementary data type to the input set can reduce ambiguity 
in other data, thus making already included data more informative.

Also, different combinations of orthogonal data sources can 
produce models with similar levels of high accuracy and thus share 
similar information content. For instance, the combination of Hi-C 
with lamina DamID data can produce similarly accurate structures 
than a combination of data from Hi-C and 3D FISH experiments, 
given that a critical number of FISH probes is considered. Therefore, 
the method does not rely on a specific combination of data to pro-
duce models with high predictive values.

Interestingly, our work also underlines the essential role of low- 
probability interchromosomal interactions for accurate data-driven 
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predictions of genome organizations. The multitude of relatively 
‘rare’ contact events are crucial for accurate predictions of radial 
gene positions and overall chromatin compartmentalization. It 
is not sufficient to consider only the most frequent interactions 
in the modeling process. However, if datasets are compromised 
by a lack of sufficient information about trans interactions, addi-
tional orthogonal data sources can compensate for a reduced level  
of information.

In future, our approach will be expanded to incorporate 3D 
imaging data into the modeling process also, which will consider 
variations in nuclear shapes between individual cells and exclude 
volumes for some nuclear bodies. We expect that these additions 
will further improve the quality of models. Due to its modular orga-
nization, our software platform is readily suited for incorporating 
new volumetric microscopy data

In summary, here we showed that our method provides a useful 
tool for multimodal data integration to produce genome structure 
models with high predictability. Our software implementation is 
publicly available, widely applicable to other cell types and can be 
tailored to include new experimental data types.
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Methods
Our population-based modeling approach uses a probabilistic framework to 
generate a large number of 3D genome structures (that is, the structure  
population) statistically consistent with all input data (that is, Hi-C, lamin B1 
DamID, 3D FISH and SPRITE). Structures are generated by a deconvolution 
of ensemble data (Hi-C, lamin DamID and 3D FISH) and incorporation of 
single-cell data (SPRITE) into a population of individual diploid genome structures 
that represent the most likely approximation of the true population of genome 
structures, given all the available data. The structure optimization problem is 
formulated as a maximum likelihood estimation problem using an iterative 
optimization scheme.

Genome representation. Chromosomes are segmented into genomic regions 
of 200-kb DNA sequence length, each represented by chromatin domains with 
spherical volume. Each chromatin domain is defined by an excluded volume 
with a sphere radius r0 = 118 nm, which guarantees a 40% volume occupancy of 
the diploid genome in the nucleus. In a diploid genome, each autosome genomic 
region has two homologous chromatin domain copies. Overall, the diploid 
genome is represented by a total of N = 29,838 chromatin domains. The nuclear 
shape is modeled as a prolate ellipsoid of semiaxes (a, b, c) = (7,840 nm; 6,470 nm; 
2,450 nm); Extended Data Fig. 2a). The semiaxes’ lengths are based on the 
estimates from Seaman et al.64.

Our model, the structure population, is defined as a set of S diploid 
genome structures X = {X1,…,XS}; a genome structure XS is a set of 3D 
vectors representing the center coordinates of each chromatin domain 
Xs = {⃗xis : x⃗is ∈ R

3, i = 1, 2, …, N}, with N as the total number of all chromatin 
domains in the diploid genome. The variable H indicates the total number of 
genomic regions, that is, the number of domains when homologous copies are not 
distinguished.

Note that capital letter indices, such as I and J, relate to domains without 
distinguishing between two homologous copies, while lowercase indices i, i’ and j, j’ 
distinguish between the two copies, when applicable (sex chromosomes only come 
in one copy).

Data source representation. We integrate data from four experimental methods, 
namely in situ Hi-C58 and lamin B1 DamID59, high-throughput HIPMap 3D FISH55 
and SPRITE11.

Data types are categorized into three classes depending on the number of 
genomic loci involved. For instance, data that inform on the coordinates of only 
a single genomic locus will be univariate, such as the radial distance of a locus 
from radial FISH data or a normal distance to the nuclear lamina from lamina 
DamID data. Bivariate data inform on pairs of genomic loci, for instance, distances 
between pairs of loci from 3D FISH experiments or contacts between pairs of loci 
from Hi-C experiments. Multivariate data define relationships between more than 
two loci, for example, knowledge about colocalization of a set of loci in single cells 
from SPRITE experiments.

Most experiments, such as Hi-C and Lamina DamID, provide data 
that are averaged over a large population of cells, and so they cannot reveal 
which contacts coexist in which single-cell structure. Moreover, unphased 
data cannot discriminate between homologous chromosome copies. To 
represent the missing information at single-cell level and to distinguish 
homologous chromatin domain copies, we introduce indicator tensors 
D

∗

= {D∗

k |k = 1, …, K} = {B,V, F,W,R} as latent variables that augment 
missing information in data variables D = {Dk|k = 1, …, K} = {U, E,M,A,T}, 
respectively (Supplementary Table 1).

Chromosome conformation capture. Hi-C data are expressed as a contact probability 
matrix A = (aIJ)H×H where 0 ≤ aIJ ≤ 1 is the contact probability between the genomic 
regions I and J44. The contact probability matrix A is incomplete and does not 
contain the detailed information about which of the homologous domain copies 
(i and i′ for genomic region I, and j and j' for J) are in contact, nor does it provide 
information about structures of the population in which a contact is present. To 
complement every cell’s contact information, we introduce the contact indicator 
tensor W = (wijs)N×N×S, which is a latent binary-valued third-order tensor specifying 
the contacts between chromatin domains i and j for each homologous copy in each 
structure of the population. wijs = 1 indicates that a contact between chromatin loci 
i and j is present in structure s, while wijs = 0 indicates that such a contact is not 
present. W is a detailed expansion of A at the diploid representation and single-cell 
level with a dependence relationship X → W → A.

Lamina DamID. Lamina DamID data are expressed by the tensor E = (eI)H, where 
0 ≤ eI ≤ 1 is the probability that genomic region I is in contact with the lamina at the 
NE, which is derived from lamin B1 DamID data, following a similar notation as 
used by Li et al.37.

To complement information about homologous domains in single structures, 
we introduce the binary-valued latent tensor V = (vis)N×S, which indicates whether 
the i-th chromatin domain is in contact with nuclear lamina in the s-th structure 
(vis = 1) or not (vis = 0). V is a detailed expansion of E at the diploid representation 
and single-cell level with a dependence relationship X → V → E.

3D FISH HIPMap. Data from 3D FISH HIPMap experiments are divided into two 
sets of data: (i) univariate data about the radial positions of genomic loci, and (ii) 
bivariate data providing information about the distributions of distances between 
pairs of genomic loci. Large-scale FISH data provide the probability distributions 
of pairwise distances between genomic loci and probability distributions of radial 
positions of genomic loci in the nucleus. Probability distributions of both radial 
and pairwise distances are discretized into Q bins, which equally span the nuclear 
dimension. For convenience, we can assume bins are disjoint and that any distance 
can be assigned to only one bin.

3D FISH radial positions. We express radial 3D FISH data with the tensor 
U = (uIq)H×Q, with H as the number of genomic regions and Q as the total number of 
distance bins. uIq is the probability that the radial position of genomic locus I falls 
into the range defined by Bq =

[

dq, dq+1
)

, with dq as the lower bound and dq+1 as 
the upper bound for radial positions in bin q.

To complement missing information about single-cell structures and 
homologous domain copies, we introduce the binary-valued latent tensor 
B = (biqs)N×Q×S, which indicates whether the i-th chromatin domain in structure s 
has a radial position in the range defined by bin Bq =

[

dq, dq+1
)

(biqs = 1) or not 
(biqs = 0). B is a detailed expansion of U at the diploid representation and single-cell 
level with a dependence relationship X → B → U.

3D FISH distance distributions. We express 3D FISH pairwise distance data by the 
tensor M = (mIJq)H×H×Q, where mIJq is the probability that genomic loci I and J have 
a distance in the range defined by bin Bq = [dq, dq+1). The binary-valued tensor 
F = (fijqs)N×N×Q×S complements the missing information about homologous domain 
copies and single cells and thus indicates whether the spatial distance between the 
i-th and j-th chromatin domains in structure s falls in the range of Bq =

[

dq, dq+1
)

 
(fijqs = 1) or not (fijqs = 0). F is a detailed expansion of M at the diploid representation 
and single-cell level with a dependence relationship X → F → M.

SPRITE. The SPRITE data provide information about the number and identity 
of genomic regions colocalized in a single-cell structure. We expressed these 
SPRITE clusters by a collection of tensors {Tn} = (tI1 ,…,In )Hn, where n is the 
number of genomic regions in a SPRITE cluster. Each tensor entry tI1 ,…,In, derived 
from single-cell SPRITE data is the probability of genomic regions I1,…,In to be 
colocalized in a single structure of the population tI1 ,…,In = 1 or not tI1 ,…,In = 0. All 
clusters of n regions are described by the multidimensional tensor Tn, and we will 
use the notation Cn to indicate any of those clusters n genomic loci. Summing all 
the clusters of any size is indicated then by the notation 

∑

n
∑

Cn.
The latent indicator tensor Rn = (ri1 ,…,in ,s)Nn

×S, where ri1 ,…,in ,s distinguishes 
homologous domain copies, complements the information by indicating whether 
chromatin domains (different copies are distinguished) {i1,…,in} are colocalized 
in structure s ri1 ,…,in ,s = 1 or not ri1 ,…,in ,s = 0. Rn is a detailed expansion of Tn at 
the diploid representation and single-cell level with a dependence relationship 
X → Rn → Tn

In the following, we will collectively indicate the family of Tn and Rn tensors 
with T and R, respectively, as T = {Tn} and R = {Rn}.

Probabilistic formulation of maximum likelihood problem. We 
introduced a set of data variables {Dk|k = 1, …5} = {U, E,M,A,T} and 
a set of indicator tensors {D∗

k |k = 1, …, 5} = {B,V, F,W,R} as latent 
variables that augment missing information in data variables to distinguish 
homologous chromatin domain copies and in single cells. Given {Dk}, we 
aimed to estimate the structure population model X such that the likelihood 
P ({Dk} , {D∗

k } |X) = P (U, E,M,A,T,B,V, F,W,R|X) is maximized. The 
statistical dependence relationship between data sources and latent variables in an 
optimized structure population is X → D

∗

k → Dk, ∀k, because {D∗

k } is a detailed 
expansion of {Dk} at the diploid and single-structure representation of the data 
and X is the structure population consistent with {D∗

k }. Therefore, the likelihood 
P ({Dk} , {D∗

k } |X) can be expanded to P ({Dk} | {D∗

k } ,X) P ({D∗

k } |X ) and 
therefore

P (U, E,M,A,T,B,V, F,W,R|X) = P(U, E,M,A,T|B,V, F,W,R,X)

P(B,V, F,W,R|X)

We assumed, as a first approximation, that 
P ({Dk} | {D∗

k } ,X) P ({D∗

k } |X ) =

∏

k
P (Dk|D

∗

k ,X) ·
∏

k
P(D∗

k |X) with k as  

the data source index, and Dk and D∗

k  as the data source k (Supplementary  
Table 1) and its associated latent variable, respectively. Subsequently, the 
conditional probability function is given according to equation (1):

P (U, E,M,A,T,B,V, F,W,R|X) = P (U|B,X) P (E|V,X)

P (M|F,X) P (A|W,X) P (T|R,X) P (B,V, F,W,R|X)
(1)

We aimed to maximize the conditional probability function equation (1): 
namely, we wanted to find the optimal structures and the optimal latent variables 
that satisfy:
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ˆX, ˆD∗

= arg max
X,D∗

P
(

D,D∗

|X
)

ˆX, ˆB, ˆV, ˆF, ˆW, ˆR = arg max
X,V,B,W,F,R

P (U, E,M,A,T,B,V, F,W,R|X)

and thus

ˆX, ˆB, ˆV, ˆF, ˆW, ˆR = arg max
X,B,V,F,W,R

P (U|B,X) P (E|V,X) P (M|F,X)

P (A|W,X) P (T|R,X) P (B,V, F,W,R|X)

= arg max
X,D∗

∏

k
P (Dk|D

∗

k ,X) ·
∏

k
P(D∗

k |X)

In addition to the five data sources from four experimental methods 
(Supplementary Table 1), we also included a set of spatial constraints based on 
additional information about the genome organization. These data were included 
in the form of general spatial constraints acting on N chromatin domains: (i) 
a nuclear volume confinement restraint that forces all chromatin domains 
to be inside the nuclear volume, (ii) excluded volume restraints that prevent 
‘hard-core’ overlap between any two chromatin domains and (iii) a polymer chain 
connectivity restraint between chromatin domain neighbors in a chromosome, 
which guarantees the structural integrity of the chromosomal chains. Additional 
information about these restraints is available in the Supplementary Information.

In summary, the maximum likelihood problem is formally expressed by 
equation (2):

ˆX, ˆB, ˆV, ˆF, ˆW, ˆR = arg max
X,V,B,W,F,R

{log P (U, E,M,A,T,B,V, F,W,R|X)} (2)

Subject to















nuclear volume constraint

excluded volume constraint

chain connectivity restraint

Optimization procedure. We adapted our previously developed iterative 
optimization procedure to solve this maximum likelihood estimation problem 
for determining a population of genome structures consistent with all data 
modalities36,37,44. Because there is no closed-form solution to this optimization 
problem (equation (2)), we developed a variant of the EM method to iteratively 
optimize local approximations of the log likelihood function37,44,65. We use an 
iterative solver to alternately optimize the latent variables and model parameters 
in a sequence of so-called modeling (M) and assignment (A) steps until joint 
convergence was reached.
•	 Initialization step: an initial model estimate X0 is needed to start the first itera-

tion. X0 is generated by using random chromatin domain positions that satisfy 
the three spatial constraints in equation (2), that is, nuclear volume, excluded 
volume and chain connectivity. Chromatin regions are randomly placed in a 
bounding sphere proportional to its chromosome territory size and randomly 
placed within the nucleus followed by a short optimization to eliminate 
excluded volume steric clashes in the structures. 
Each iteration consists of two steps:

•	 (1) Assignment step (A-step): given the current estimated population of 
genome structures X(t), which resulted from the previous A/M optimization 
iteration at step t, the optimal latent variables Bt + 1, Vt + 1, Ft + 1, Wt + 1, Rt + 1  
are determined by solving the following log likelihood. We use an  
efficient heuristic strategy to estimate all latent variables (Supplementary 
Information).

Bt+1,Vt+1, Ft+1,Wt+1,Rt+1
= argmaxB,V,F,W,R

log
[ P

(

U|B,Xt) P
(

E|V,Xt) P
(

M|F,Xt) P
(

A|W,Xt)

P
(

T|R,Xt) P
(

B,V, F,W,R|Xt)

]

•	 (2) Modeling step (M-step): given the current latent variables Bt + 1,Vt + 1,Ft + 1, 
Wt + 1,Rt + 1, determined in the A-step, find the genome structure population  
Xt + 1 that maximizes the log likelihood of all data. A new structure population 
Xt + 1 is generated in which data assignments in latent variables will be physi-
cally present in the structure population X. Optimization is performed in an 
efficient parallel platform (Supplementary Information).

Xt+1
= argmax

x
log

[ P
(

U|Bt+1,X
)

P
(

E|Vt+1,X
)

P
(

M|Ft+1,X
)

P
(

A|Wt+1,X
)

P
(

T|Rt+1,X
)

P
(

Bt+1,Vt+1, Ft+1,Wt+1,Rt+1|X
)

]

•	 Iterate A/M steps until convergence is reached (see Supplementary Informa-
tion for convergence criteria). This iterative procedure ensures that all data 
allocations are re-evaluated using the current structure population.

Stepwise optimization strategy. We used a stepwise optimization strategy to 
gradually increase the optimization hardness (Extended Data Fig. 1). An initial 
model that already fits a portion of the data {Dk} can guide a more efficient search 
for the optimum latent variables 

{

D′

k
}

 than a random structure population. Thus, 
gradually fitting an increasing number of data points starting from the highest to 
the lowest data probabilities (that is, domain contacts and domain distances from 
Hi-C and DamID data), or starting from largest to lowest distance tolerances (for 
SPRITE and 3D FISH data; Supplementary Information) will effectively guide the 
search of the optimal solution. In the initial step, we first calculated a structure 
population Xstep1 that integrates only data with the highest probabilities (for Hi-C 
and DamID data) and performed several rounds of iterative A/M optimizations 
until convergence is reached. At each following step, we added further data batches 
with gradually lower probabilities (for Hi-C and lamina DamID), and decreasing 
tolerances (for SPRITE and FISH data), and performed iterative rounds of A/M 
optimizations each time until full convergence for all data was reached (that is, all 
data are reproduced in the models; Extended Data Fig. 2b,c).

How the data are added to the optimization at each step and at what accuracy 
is controlled by a sequence of nonzero threshold values, and each data type is 
associated with its own sequence.
•	 θ1≥…≥θfinal indicates the list of gradually decreasing Hi-C probability thresh-

olds, such that the k-th step incorporates only those chromatin contacts in Aθk 
with higher probability than aIJ≥θk, thus Aθk = [A ≥ θk].

•	 λ1≥…≥λfinal indicates the list of gradually decreasing DamID contact prob-
ability thresholds, such that the k-th step incorporates those chromatin–NE 
contacts in Eλk with higher probabilities than eI ≥ λk, thus Eλk = E [E ≥ λk].

•	 t1≥…≥tfinal indicates the list of gradually decreasing FISH distance thresholds, 
such that the k-th step in the optimization enforces distance values with a 
tolerance tk. All FISH distances are incorporated from the first optimiza-
tion steps on, but their tolerances are gradually reduced with the number of 
optimization steps.

•	 ρ1≤…≤ρfinal indicates the SPRITE thresholds, such that the k-th step enforces 
clusters with a volume density ρk. The volume density is related to the cluster 
radius, as detailed in the (Supplementary Information). All SPRITE clusters 
are incorporated from the beginning of the optimization, while their effective 
co-location density is gradually increased with each optimization step (from 
ρ1 to ρfinal).

We used a nonzero final bound for each data type (that is, θfinal, λfinal, tfinal, 
ρfinal > 0) to reduce the chances of including experimental noise in the calculations 
(that is, data errors are expected to have very low probabilities). To reach 
convergence, multiple A/M iterations are typically required at a given optimization 
step, which is defined by a given combination of threshold values (Extended 
Data Fig. 2b,c). Only if the optimization in a given step is fully converged 
will the optimization proceed to the next step. All data sources are integrated 
simultaneously.

The IGM software, as introduced here, automatically performs the sequence of 
A/M iterations until full convergence is reached and a genome structure population 
is calculated that recapitulates all the input data (at a given tolerance; Extended 
Data Fig. 1).

Convergence. The optimization progress is monitored by tracking the agreement 
between model and target distances. As detailed in the Supplementary 
Information, each energy term introduced in the M-step to model the effect of 
genomic data is associated with a residual error η that monitors whether the 
corresponding target distance is satisfied or not: η > 0.05 indicates a discrepancy 
between target and model distances larger than 5%, and is considered a violation. A 
round of A/M iterations (for a given combination of threshold values) is successful 
when the cumulative fraction of all violations (from all data types) is smaller than 
0.01%. Only then does the optimization move to the next step, and optimization 
thresholds are lowered and more data are added. Extended Data Fig. 2d shows the 
histogram of residual errors in population HDSF for the different data categories 
used as input (polymer and volume, Hi-C, lamina DamID, SPRITE and FISH).

IGM software. The IGM requires one input file for each data type and a 
configuration file, which lists all parameters controlling the pipeline, including 
nuclear shape, genome segmentation/base-pair resolution, nuclear radius, semiaxes 
and MD time step. The software automatically performs a preliminary statistical 
analysis of genome structures, including a report of the model quality using the 
correlation between prediction and experiments, and radial features such as the 
radial positions of individual chromatin domains in the nucleus.

We refer the interested reader to the documentation for implementation details. 
Here, we would like to discuss the design guidelines that were cornerstones to the 
development: flexibility, modularity and user-friendliness.

As for flexibility, the software is able to handle different types of genomes 
confined to either spherical or ellipsoidal nuclei and can use any combination 
of ensemble Hi-C, lamin B1 DamID, 3D FISH and SPRITE data points as input. 
Due to IGM’s modularity, the different parts of the code communicate in such a 
way that any data type can be added with minimal changes, as long as the data 
can be cast into an energy term, thus allowing for any data customization that 
users may require. Parallel computing can be deployed on different schedulers in 
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a straightforward manner. Simulation and optimization setups can be adjusted by 
editing a text file, which lists all the configuration parameters.

A Python wrapper is available for interfacing the different building blocks and 
keeping track of the optimization status.

The optimization progress is monitored by a log file that prints all the  
details, from current iteration violation score to the specific values of thresholds 
associated with it.

The IGM optimization for a population of 1,000 whole diploid genome 
structures at 200-kb resolution using ensemble Hi-C, lamin B1 DamID, 3D 
FISH HIPMap and SPRITE data takes about 10–15 h of computing time, using a 
controller core with 4 GB of RAM communicating with 250 2-GB-RAM engine 
processors. The optimized coordinates after each iteration, that is, Xt, are saved in 
separate files, each ~350 Mb in size. The complete package (and its documentation) 
is available at https://github.com/alberlab/igm/. In particular, we refer the reader 
to the README.md file (https://github.com/alberlab/igm/blob/master/README.
md/), which also guides the reader through installing and running the platform on 
a simple demo.

Simulating structural observables from a population of genome structures.  
The same notation and variables are used here as in the description above (‘Data 
source representation’ and ‘Probabilistic formulation of maximum likelihood 
problem’) and in the Supplementary Information. x⃗is = (xis, yis, zis) denotes  
the 3D coordinates of locus i in structure s, i and i' indicate the two copies of  
genomic region I.

Genomic data used as input to IGM. Ensemble Hi-C. The Hi-C indicator tensor 
W = (wijs) is computed as

wijs =







1, if
�

�x⃗is − x⃗js
�

�

2 − 2
�

Rex
i + Rex

j

�

≤ 0

0, otherwise
,

Rex
i  being the excluded volume locus radius.

The simulated A = (aIJ) matrix is computed as

aIJ =
1
S
∑

s

∑

(i,i′)∈I

∑

(j,j′)∈J

wijs

min (CN (I) , CN (J))

where CN(I) indicates the number of homologous copies associated with locus I.

Lamina DamID. The lamina DamID indicator tensor V = (vis) is computed as

vis =







1, if x2is
[a(1−cr)−r0]2 +

y2is
[b(1−cr)−r0]2 +

z2is
[b(1−cr)−r0]2 ≥ 1

0, otherwise

where (a, b, c) are the nuclear semiaxes, r0 is the domain radius in the model, and 
cr is the contact range scalar (Supplementary Information). The simulated E = (eI) 
matrix is then computed as

eI =
∑

s

1
S

∑

(i,i′)∈I

vis
CN (I)

Radial distance distributions (radial 3D HIPMap). We extract the ordered radial 
distance distribution of region I from the S structures in the population. Assuming 
I has two copies, we have the list of distances

ZI =
{

∥⃗xis∥2 , ∥⃗xi′s∥2 |s = 1, …S
}

, domain I

We isolate the S maximal and S minimal distances, each defining a ‘maximal’ 
and ‘minimal’ distance distribution. We obtain the two distributions

Zmax
I =

{

max
{

∥⃗xis∥2 , ∥⃗xi′s∥2
}

|s = 1, …S
}

,

Zmin
I =

{

min
{

∥⃗xis∥2 , ∥⃗xi′s∥2
}

|s = 1, …S
}

.

The collection of Z − distance distributions for different chromatin regions 
are cast into the U data variables (Supplementary Information) by binning the 
distances into appropriate Bq =

[

dq, dq+1
)

 bins. In particular, if we use those 
distance distributions as input to an IGM calculation on a population also 
containing S structures (Fig. 5 and Extended Data Fig. 8), we use a straightforward 
approach whereby each distance in the distribution is the center of a distance bin 
Bq (Supplementary Information).

Pairwise distance distributions (pairwise 3D HIPMap). We extract the ordered 
pairwise distance distribution of genomic pair I and J from the S structures in the 
population. Assuming I and J both have two copies, we have the list of distances

ZIJ =
{

∥

∥x⃗is − x⃗js
∥

∥

2 ,
∥

∥x⃗is − x⃗j′s
∥

∥

2

∥

∥x⃗i′s − x⃗js
∥

∥

2

∥

∥x⃗i′s − x⃗j′s
∥

∥

2 |s = 1, …S
}

,

Pair I − J

We isolate the S maximal and S minimal distances, each defining a ‘maximal’ 
and ‘minimal’ distance distribution. We obtain the two distributions

Zmax
IJ =

{

max
∥

∥x⃗is − x⃗js
∥

∥

2 ,
∥

∥x⃗is − x⃗j′s
∥

∥

2

∥

∥x⃗i′s − x⃗js
∥

∥

2

∥

∥x⃗i′s − x⃗j′s
∥

∥

2 |s = 1, …S
}

Zmin
IJ =

{

min
∥

∥x⃗is − x⃗js
∥

∥

2 ,
∥

∥x⃗is − x⃗j′s
∥

∥

2

∥

∥x⃗i′s − x⃗js
∥

∥

2

∥

∥x⃗i′s − x⃗j′s
∥

∥

2 |s = 1, …S
}

The collection of Z − distance distributions for different pairs of chromatin 
regions are cast into the M data variable (Supplementary Information) by binning 
the distances into appropriate Bq =

[

dq, dq+1
)

 bins. In particular, if we use 
those distance distributions as input to an IGM calculation on a population also 
containing S structures (Fig. 5), we use a straightforward approach whereby each 
distance in the distribution is the center of a distance bin Bq (Supplementary 
Information).

Single-cell SPRITE clusters. For a given SPRITE cluster {I1,…,In}, we followed the 
first step of the assignment procedure (Supplementary Information; SPRITE) and 
determined the optimal diploid representation ˜Cn for each structure; we computed 
the SPRITE residual error for all structures: if a structure has no violations, then 
the cluster is present in that structure, and tI1 ,…,In = 1; If no structure has zero 
violations, the cluster is not present in the population, that is, tI1 ,…,In = 0 (Fig. 2g).

Other structural features. A more detailed description of the following structural 
features is provided in ref. 30.

Distance of a locus to the nuclear center and to the lamina. The normalized radial 
distance of a locus i of coordinates (xis, yis, zis) to the nuclear center of an ellipsoidal 
nucleus (in population structure s) is computed as

r2is = ∥⃗xi∥22 =

( xis
a

)2
+

( yis
b

)2
+

( zis
c

)2

that is, locus coordinates are scaled by the corresponding semiaxes. ∥⃗xi∥2 = 0 . 1, 
indicates that the region is located at the geometric center (nuclear lamina).

The normal distance to an ellipsoidal surface cannot be computed exactly, so 
we use the radial approximation for the distance to the lamina (NE)

d (i,NE) =

(

1
√

κi(a, b, c)
− 1

)

∥⃗xi∥2 , κi(a, b, c) =

x2i
a2

+

y2i
b2

+

z2i
c2

Radius of gyration. The radius of gyration of a chromatin segment comprising C 
loci C = (i1, i2, …, iC) in genome structure s is computed as

R2
g [C, s] =

1
C
∑

j∈C

(

x⃗js − x⃗CM
C

)2

where xjs are the coordinates of the j-th locus in the segment, and xCM
C

 is the 
segment center of mass in structure s. The chromosomal radius of gyration is easily 
computed by replacing a chromatin segment with a whole chromosome.

Compartmentalization score. For the HFFc6 cell type, each locus is assigned to 
either A or B compartments using the ensemble Hi-C and the procedure used in 
ref. 8. For each structure, the compartmentalization score is computed as defined 
in ref. 63:

T = NAA + NAB + NBBP (A) =
2NAA+NAB

T P (B) =
2NBB+NAB

T

CompScore = log2 2·P(A)·P(B)·T
NAB

where NAA, NAB and NBB are the number of A–A, A–B and B–B contacts in the 
structure respectively. The A/B assignment for HFFc6 structures was downloaded 
from the 4DN portal58 under identifier 4DNFINQZ5JHV.

Average radial position. The mean radial position of a locus I in an autosome is 

rI =
∑S

s=1
ris+ri′s

2S , with i, i′ as the two homologous copies. S is the total number of 
structures in the population30.

Chromatin decompaction. The local compaction of the chromatin fiber at 
the location of a given locus is estimated by the radius of gyration for a 1-Mb 
region centered at the locus (that is, comprising +500 kb upstream and 500 kb 
downstream of the given locus). To estimate the radius of gyration values along an 
entire chromosome, we use a sliding-window approach over all chromatin regions 
in a chromosome, as described in ref. 30.

Cell-to-cell variability of structural features30. Cell-to-cell variability, δ, of any 
structural feature for a chromatin region, i, in chromosome c, is calculated as

Nature Methods | www.nature.com/naturemethods

https://github.com/alberlab/igm/
https://github.com/alberlab/igm/blob/master/README.md/
https://github.com/alberlab/igm/blob/master/README.md/
https://data.4dnucleome.org/higlass-view-configs/b522f0c1-1f56-4bec-bf4b-4161031ab297/
http://www.nature.com/naturemethods


ArticlesNAturE MEtHODS

δi = log2
σc,i

σc

where σc,i is the standard deviation of the feature value of region i across the 
population and σc  is the mean standard deviation of the feature value calculated 
from all regions within the same chromosome, c. Positive δi values (δi > 0) result 
from high cell-to-cell variability of the feature (for example, radial position), 
whereas negative values (δI < 0) indicate low variability.

Interchromosomal interaction probability. For each chromatin region I, its 
interchromosomal interaction probability (ICP) is calculated as

ICP[I] =
∑

s n
s
I inter

∑

s
(

nsI,inter + nsI,intra
)

across the full population, where nsintra and nsinter are the number of cis and trans 
contacts in structure s, respectively.

Interior chromatin localization. For a given 200-kb region, the interior localization 
frequency (ILF) is calculated as

ILF[I] = n[rI ≤ 0.5]
S

where n[rI ≤ 0.5] is the number of structures where either copy of the region I has a 
radial position lower than 0.5, for example, in the nuclear interior.

SON TSA-seq. We followed a procedure described in ref. 30. We first identified 
chromatin expected to have high speckle association: we selected 5% of chromatin 
regions with the lowest average radial positions and generated chromatin 
interaction networks (CINs)66 for the selected group of chromatin regions in each 
structure of the population. A CIN was calculated for the selected chromatin in 
each model as follows: Each vertex represents a 200-kb chromatin region. An 
edge between two vertices i, j is drawn if the corresponding chromatin regions 
are in physical contact in the model, if the spatial distance dij ≤ 4r0. Approximate 
speckle locations are then identified as the geometric center of the resulting spatial 
partitions identified by Markov clustering67 of the CINs.

To predict TSA-seq signals from our models, we use

Sigi =
1
S

S
∑

s=1

L
∑

l=1

e−R0∥⃗xis−⃗xls∥2

where S is the number of models, L is the number of approximate speckle locations 
in structure s, ∥⃗xis − x⃗ls∥2 is the distance between the region i and the predicted 
nuclear body location l (in structure s), and R0 = 4 is the estimated decay constant 
in the TSA-seq experiment57. The normalized TSA-seq signal for region i then 
becomes:

Predicted TSA − seq signali = log
( sigi

sig

)

where sig  is the mean signal calculated from all regions in the genome. The 
predicted signal is averaged over copies for regions that have more than one copy 
in the genome.

Lamin B1 TSA-seq. We followed the procedure described in ref. 30. For lamin 
locations, we first identified regions with the highest 15% radial positions in each 
structure, determined spatial partitions of these regions and used centers of these 
spatial partitions as approximate locations of lamina-associated domains. Lamina 
TSA-seq signal was then calculated from these center locations using the decay 
function described in ‘SON TSA-seq’.

Speckle and lamina association frequencies30. For a given 200-kb chromatin region 
I, the SAF is calculated as

SAFI =
ndi<dt + ndi′<dt

2S

where S is the number of structures in the population; ndi<dt and ndi′<dt are the 
number of structures, in which region i and its homologous copy i′ have a distance 
to a predicted speckle smaller than the association threshold, dt (if the chromatin 
region is from a sex chromosome, there is only one copy and i′ = i). The dt value is 
set to 1,000 nm. Distances to the speckles are computed using the predicted speckle 
partitions via Markov clustering.

For a given 200-kb chromatin region I, the LAF is calculated as

LAFI =
nri>0.85 + nri′>0.85

2S

where S is the number of structures in the population; nri>0.85 and nri'>0.85 are the 
number of structures, in which region i and its homologous copy i′ have a radial 

position larger than 0.85 (if the chromatin region is from a sex chromosome, there 
is only one copy and i′ = i). Both for SAF and LAF, we tried different distance 
thresholds, and the selected thresholds resulted in the best correlations with 
experimental data. The following experimental threshold distances were used  
for comparison with the experimental data from Su et al.17: SAF of 500 nm and  
LAF of 750 nm.

Median trans A/B ratio17,30. For each chromatin region i, we defined the trans 
neighborhood {j} if the center-to-center distances of other regions from other 
chromosomes to i are smaller than 500 nm, which can be expressed as a set; 
Neti = {j : chromi ̸= chromj , dij < 500 nm}. The trans A/B ratio is then  
calculated as

transAB ratioi =
ntA
ntB

where ntA and ntB are the number of trans A and B regions in the set Nei for haploid 
region i. The median of the trans A/B ratios for a region is then calculated from 
all the trans A/B ratios of the homologous copies of the region observed in all the 
structures of the population. The values are then rescaled to have values between 
0 and 1.

Comparison of simulated structures with imaged single cells. Preprocessing of 
the DNA-MERFISH dataset17. We collected both homologous chromosome copies 
from each of the 3,029 single cells that contained at least 80% assigned imaged loci 
and where all chromosomes are imaged. There were 935 loci for 3,029 different 
single cells for the high-resolution chromosome 2 dataset and 1,041 loci for 4,555 
different single cells for the low-resolution whole-genome-imaged dataset. If a 
locus is unidentified in an image, we used linear interpolation to approximate its 
coordinates within the image. For low-resolution chromosome 6 data, we filtered 
out those structures containing at least 75% of assigned loci.

Preprocessing of the IGS dataset68. We collected both copies from each single cell for 
the target chromosomes. Because the number of imaged loci varies per chromosome, 
we considered only chromosome structures with a coverage of at least ten genomic 
regions in a single cell to allow meaningful comparisons. At the end of the pipeline, 
there were 82 imaged single cells for chromosome 2 and 52 for chromosome 6.

Calculation and comparison of distance matrices. Chromosome structures were 
extracted from the images and imaged loci mapped to genomic bins at 200-k 
base-pair resolution. To compare structures from models and microscopy images, 
we only considered loci in the models that had been imaged in experiments.

We computed the distance matrix for each structure s as

Ds =
(

dijs
)

∈ R
n×n, dijs =

∥

∥x⃗is − x⃗js
∥

∥

2 ,

where n is the number of loci in the chromosome at 200-kb resolution and 
coordinates are from either one of the simulated or the imaged chromosomal 
structures.

The matching score between any two structures is the Pearson correlation 
coefficient between the corresponding minimum–maximum normalized 
(flattened) distance matrices. To search for matching structures, we iterated over all 
possible structure pairs, and identified for each structure in one set its best match 
in the other by selecting the one with the largest correlation score.

Data analysis. Correlations. Unless otherwise specified, Pearson correlation 
was used to compare a given quantity across different populations. All Pearson 
correlation values are associated with a P value < 10−8 and we indicated that with 
~0. The chromosomal stratum-adjusted correlation coefficients in Supplementary 
Table 3 were computed following the procedure detailed by Yang et al.60, using a 
smoothing parameter h = 0 and an upper-bound resolution of 50 Mb.

Goodness-of-fit test. We performed a chi-squared goodness-of-fit test on all four 
input data types (that is, Hi-C, lamin B1 DamID, 3D HIPMap FISH and single-cell 
SPRITE) of the HDSF population of structures. The test null hypothesis is that 
both the input data (from the experiment) and the output data (simulated from 
the structure population) are drawn from the same underlying distribution. 
We used a standard confidence value α = 0.05 for assessing the test results. For 
Hi-C and lamin B1 DamID data, the modeled and experimental cumulative 
distributions of probability of locus–locus contacts of a locus with another or 
the NE were compared, respectively. For 3D HIPMap data, the modeled and 
experimental cumulative pairwise distance distributions were compared. As 
for single-cell SPRITE data, we assigned a value of 1 or 0 to any of the 6,617 
SPRITE clusters from the experiment that were or were not present in any of the 
structures of the population, by quantifying the SPRITE residual errors (Methods 
and Supplementary Information). The resulting distribution of binary values was 
then compared with the experimental distribution, which only contained values 
of 1. Large P values associated with the test statistics indicate that the initial null 
hypothesis can be rejected with great confidence; thus, it is reasonable to assume 
that input and output come from the same distribution (Extended Data Fig. 3).
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Error bars. Error bars in Figs. 4, 5c,d and 6c and Extended Data Fig. 8b,c were 
computed by generating three independent population replicates for each 
modeling setup. Each replicate started from different random starting conditions. 
Any two replicates differ in the initial coordinate initialization X0

i ̸= X0
j , and 

undergo the same optimization procedure. Different random seeds were used each 
time to generate initial random chromosome positions within the nuclear volume. 
The average and standard deviation of the statistics from the three replicates are 
plotted in the figures.

Cross-Wasserstein distance. Let Q and P denote the cumulative probability 
distributions of distributions q and p of variable y, then the Wasserstein  
distance (WD)

WD (p, q) =

∫

|P − Q|dy

is customarily used to estimate the amount of work required to transform one 
distribution into the other; ‘work’ measured as the amount of distribution weight 
to be moved, multiplied by the distance it has to be moved. We used the ordinary 
Wasserstein distance to compare two distributions within the same population.

When comparing probability distributions between two different genome 
populations or between one population and a set of experimental data, we used 
the notion of cross- (‘all versus all’) Wasserstein distance: we computed the set of 
all Wasserstein distance values for applicable distribution pairs within the same 
populations (cross-WD) and then computed a simple correlation between the two 
sets (score). Let us assume we want to compare the set of distance distributions of n 
pairs C = {(i1,j1),⋯,(in,jn)} between population 1 and population 2 (either one could 
be an experimental distribution), then we will compute

WDscore = Pearson [crossWD1, crossWD2]

= Pearson
[

{

WD1
(

pij
)}

(i,j)∈C , {WD2 (pmn)}(m,n)∈C

]

which is the correlation between two sets of n(n − 1)/2 Wasserstein distance values. 
For a given haploid pair I−J, the four diploid pair distributions were concatenated, 
pIJ = pij ∪ pij′ ∪ pi′j ∪ pi′j′. We use cross-Wasserstein distance to compare 
distance distributions in Fig. 2e, to compare radial, cis and trans pairwise distance 
distributions, and chromosomal radius of gyration in Figs. 5c and 6c and Extended 
Data Fig. 8b.

Data analysis. The codes used in our work are based on standard, publicly available 
software packages. Pre- and post-processing data and the generation of figures 
were performed using the Anaconda (v4.10) packages Matplotlib v3.4, Scikit 
Learn v1.0, Scipy v1.5 and NetworkX v2.3. Figures were then assembled using 
Adobe Illustrator. Chimera (v1.13)69 was used for visualization of the 3D structures 
generated.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The following datasets were used to generate or validate the structures: ensemble 
Hi-C (4DN portal; accession code 4DNES2R6PUEK), lamin B1 DamID (4DN 
portal; accession code 4DNESXZ4FW4T), 3D HIPMap FISH (4DN portal; https://
data.4dnucleome.org/publications/80007b23-7748-4492-9e49-c38400acbe60), 
single-cell SPRITE (4DN portal identifier: 4DNESJYGTI8S, private), SON 
TSA-seq (4DN portal; 4DNES85R9TIB), transcription data (ENCODE; accession 
code ENCSR735JKB). Super-resolution single-cell imaging data are available at 
the referenced papers. The pre-processed experimental inputs of different data 
sources (Hi-C, lamin B1 DamID, 3D HIPMap FISH and single-cell SPRITE) for 
the HFF cell line and the simulated HDSF population are available at https://

doi.org/10.5281/zenodo.6540731. Other data (including configuration files and 
synthetic data input files) are available upon request. The configuration files and 
pre-processed data input files are sufficient to reproduce the structure populations 
with the IGM software.

Code availability
The IGM platform is available at www.github.com/alberlab/igm/. This includes, 
but is not limited to, the source code, a README file detailing code installation 
and execution, accompanying documentation, and a demo that uses a reduced data 
input for users to familiarize with the input, expected outputs and execution steps.
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Extended Data Fig. 1 | Flowchart of the Stepwise Iterative Optimization pipeline. Ensemble Hi-C, lamina DamID, 3D HIPMap FISH and SPRITE data are 
used as input to the Stepwise Iterative Optimization protocol which underlies the Integrated Genome Modeling platform. A randomly initialized diploid 
genome population with chromosome territories X0 is first thermally relaxed subject to envelope and polymer restraints only (not shown). Then, genomic 
data are gradually added and structures are optimized via a sequence of iterative A/M optimization steps. Optimization hardness is gradually increased 
by adding batches of data and reducing the tolerance, as visually indicated (see also Methods). For example, at the end of i-th A/M step, all contacts 
with probability larger than θi (that is, all matrix entries specified by Aθi), all lamina contacts with probability larger than λi (that is, all entries Eλi), all 
3D HIPMap FISH distances with a tolerance equal to ti (that is, Utiand Mti) and all SPRITE clusters with volume density ρi (that is Tρi) are included (see 
Methods). Multiple sequential A/M iterations may be needed for a given set of optimization thresholds in order to generate an intermediate population 
X̂(i)

 which successfully incorporates all the data restraints that have been added up to that point. At the end of the pipeline, all data up to the final 
threshold values are included, and, after additional iterations lead to convergence (all data is satisfied), the optimized population X̂(final)

 is returned, 
together with the final violation statistics (see also Extended Data Fig. 2).
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Extended Data Fig. 2 | Optimization statistics for HFFc6 all-data genome model. (A) Top and side view of one full genome structure from the optimized 
HDSF population, with the ellipsoidal nuclear lamina axes annotated (in nm): the same color is used for homologous chromosomes. (B) Fraction of 
violations plotted as a function of A/M iterations during the HDSF population optimization: jumps in the curve (iterations 6 and 11) indicate the gradual 
addition of more data batches (that is data added at optimization thresholds (Methods)). All data are added by iteration 12, but additional iterations are 
run to ensure robust convergence with a violation fraction < 10−5. (C) Optimization thresholds (θi,λi,ti and ρi

−1), which control the rate and size of data 
batches being added, shown as a function of the number of A/M iterations: a red vertical line indicates the iteration when all data points are added to the 
modeling. Final values are non-zero, which reproduces typical experimental setups where finite precision is only available. θfinal = θintrafinal = 0.008 (Hi-C 
probability), λfinal = 0.3 (lamina DamID probability), tfinal = 25nm (FISH distance tolerance), ρfinal = 0.005nm−3 (SPRITE volume density), see also Methods 
and Extended Data Fig. 1. (D) Final violation statistics broken down into the different restraint categories; each panel shows the normalized histogram 
of residual errors (η > 0.05, see Supplementary Information) associated with violations in a given data category. No bars are showing in the SPRITE panel 
because all applied SPRITE restraints are satisfied, and none is violated. The accompanying table details the number of applied restraints and the number 
of violations: over 99.999% of polymer restraints, over 99.999% of Hi-C restraints, 99.98% of FISH restraints, and 100% of both SPRITE and lamina 
DamID restraints are satisfied in the optimized population. The number of FISH and SPRITE restraints is orders of magnitude smaller than polymer, Hi-C 
and DamID restraints.
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Extended Data Fig. 3 | χ2 goodness-of-fit test between the predicted data from IGM HDSF populations and the input data from experiments. Each 
panel compares the cumulative probability distributions from experiments (blue) and simulation (red). For Hi-C (A) and laminB1 DamID data (B), 
the cumulative distributions of probability of contacts of a locus with another locus (Hi-C) or the nuclear envelope (DamID) are compared. (C) To 
demonstrate the good agreement between 3D HIPMap data from experiment and models, we show an example for a distribution of pairwise distances 
between loci 2.4 Mb and 273.5 Mb for chromosome 1. All the other distance distributions are also accurately reproduced with p-values ~1.0. (D) As for 
single cell SPRITE data, we assign a value of 1 or 0 to any of the 6617 SPRITE clusters from experiment that are or are not present in any of the structures of 
the population, by quantifying the SPRITE residual errors (Methods and Supporting Information). The resulting distribution of binary values is then compared 
with the experimental distribution, which only contain values of 1. The large p-values indicate that the null hypothesis can be accepted (confidence level α 
= 0.05) and that input and output are in fact drawn from the identical underlying probability distribution.
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Extended Data Fig. 4 | Validating chromosome structures from HDSF population with single cell structures from imaging experiments.  
(AB) Comparison of distance matrices of single cell chromosome 6 (A) and chromosome 2 (B) structures from simulated models and DNA-MERFISH 
imaging data17. Models reproduce a variety of folding patterns observed in experiment very efficiently. Numbers above the distance matrix indicate 
Pearson correlation between simulated and experimental distance matrices. (CD) Comparison of distance matrices of single cell chromosome 6 (C) and 
chromosome 2 (D) structures from simulated models and fibroblast in situ genome sequencing (IGS) imaged single cells68. Models reproduce a variety 
of folding patterns observed in experiment very efficiently. Numbers above the distance matrix indicate Pearson correlation between simulated and 
experimental distance matrices.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Reproducibility across IGM replicates. Reproducibility of 15 structural features in independent HDSF replicate calculations starting 
from different random starting configurations, see Methods. These features also include the reproducibility of cell-to-cell variability of several features  
from two independent population replicates. The high Pearson’s correlation values in each panel validate the robust reproducibility of all features  
(ICP = interchromosomal contact probability, SAF = speckle association frequency, LAF = lamina association frequency).
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Extended Data Fig. 6 | Prediction of experimental SPRITE and FISH data in HFFc6 H, HD, HDS, HDSF populations. (Top panels) SPRITE11 cumulative 
residual (left) and fraction of violated SPRITE restraints (right) for each of the data-driven populations discussed in Fig. 4. Lamina DamID restraints tend 
to stretch the genome towards the lamina, whereas SPRITE restraints squeeze the targeted loci close to one another: an optimal balance is only found 
when both data modalities are simultaneously integrated, for example, populations HDS and HDSF. (Bottom) FISH cumulative residual (left) and cross 
WD score (right). The cumulative residual is defined as the sum of the residual errors η for all violations; the cross WD score is the Pearson correlation 
between two cross WD sets (see Methods and Supporting Information). FISH distributions55 are gradually better predicted with increasing amount of data 
and most efficiently recapitulated in population HSDF only, as suggested by a cross WD score of 0.999 and the smallest cumulative residual.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


Articles NAturE MEtHODS

Extended Data Fig. 7 | Relevance of low frequency inter-chromosomal contacts. (Unperturbed) Hi-C, lamina DamID and 1000 radial and 1000 pairwise 
FISH distance distributions extracted from the ground truth (Fig. 5) are used to generate a population of structures. The predicted radial profiles for 
chromosome 1 are compared with the underlying ground truth at different stages of the optimization process. Specifically, lamina DamID and FISH data 
have been all added up to the final thresholds λfinal and tfinal, and low frequency inter chromosomal contacts added up to probability θinter = 0.02 (left) and 
θinter = 0.008 (right). Radial profiles are better reproduced in multi-modal Hi-C + lamina DamID + FISH models at θinter = 0.02 than they are in Hi-C only 
models with the same setup (Fig. 6A), and then refined by lowering the contact probability θinter. This provides alternative evidence that independent data 
sources can account for missing information; here, inter chromosomal contacts with probability smaller than 0.008. (θinter = 0.02, 0.008).
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Extended Data Fig. 8 | Comparing information content of lamina DamID data against increasingly larger radial distance distribution FISH data 
sets. Additional Hi-C* and radial FISH only populations (3a, 3b and 3c) are analyzed and compared with previous Hi-C*-radial FISH population 3 and 
Hi-C*-DamID only population 5 from Fig. 5. (A) The four populations with FISH data differ in the number of radial distributions used in the input (500, 
1,000, 5,000 and 10,000). (B) The seven quantities from Fig. 5C are predicted for each population and compared with the ground truth. (C) The overall 
performance rank for these five populations indicates that a sufficiently large sample of radial distance distributions can match and outperform the 
information provided by lamina DamID data. Error bars for each setup were estimated from three independent population replicates (see Methods); data in 
panels (B) and (C) are presented as mean values +/− standard deviation.
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