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A B S T R A C T

Introduction: Accurate and timely prediction for endemic infectious diseases is vital for public health agencies to
plan and carry out any control methods at an early stage of disease outbreaks. Climatic variables has been
identified as important predictors in models for infectious disease forecasts. Various approaches have been
proposed in the literature to produce accurate and timely predictions and potentially improve public health
response.
Methods: We assessed how the machine learning LASSO method may be useful in providing useful forecasts for
different pathogens in countries with different climates. Separate LASSO models were constructed for different
disease/country/forecast window with different model complexity by including different sets of predictors to
assess the importance of different predictors under various conditions.
Results: There was a more apparent cyclicity for both climatic variables and incidence in regions further away
from the equator. For most diseases, predictions made beyond 4 weeks ahead were increasingly discrepant from
the actual scenario. Prediction models were more accurate in capturing the outbreak but less sensitive to predict
the outbreak size. In different situations, climatic variables have different levels of importance in prediction
accuracy.
Conclusions: For LASSO models used for prediction, including different sets of predictors has varying effect in
different situations. Short term predictions generally perform better than longer term predictions, suggesting
public health agencies may need the capacity to respond at short-notice to early warnings.

1. Introduction

Outbreaks such as those caused by the Severe Acute Respiratory
Syndrome Coronavirus (SARS CoV), the influenza A(H1N1)pdm09
pandemic of 2009, and more recently the Middle East Respiratory
Syndrome Coronavirus (MERS-CoV), Ebola virus and Zika virus have
demonstrated the high potential risk of emerging and re-emerging in-
fectious diseases to spread within and between countries [1–5]. These
in turn cause increasing challenges for public health systems, including
the increasing burden of infectious disease, and the need to build a
surveillance and response system that is able to identify newly emer-
ging disease rapidly, both regionally and internationally which calls for
international collaboration, and the need for drug and vaccine research
and production [6–8]. While the response to endemic diseases may be
less urgent, the burden caused by pathogens such as influenza or ma-
laria is high [9–11], and due to their endemicity, many countries have

long standing surveillance systems to track outbreaks and guide re-
sponse, from vector control to hospital bed utilization [12–15]. Early
warning systems aiming to predict epidemics as soon as possible can
allow control methods to be carried out rapidly and increase their
chance of success [16,17]. To do so, decision makers need to be able to
make accurate forecasts of incidence and to automate this forecasting
process based on routinely collected notification data [18]. If accurate
forecasts were available in both the near and far future, effective po-
licies could then be targeted to the expected future needs. Existing
approaches to real-time forecasting include generalized linear regres-
sion, seasonal autoregressive integrated moving average (SARIMA)
model or a simpler ARIMA form of it, phenomenological models like the
logistic growth model and Richards model, and mechanistic models like
the SIR models [19–24]. Often such approaches involve the challenge of
integrating environmental factors including temperature, humidity and
rainfall, which may influence pathogen transmission directly or affect
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the vector activities (for vector borne diseases), especially in temperate
regions [25–29]. For instance, influenza virus is more transmissible in
low temperature and low humidity conditions [30,31], while the pri-
mary vector of dengue, the yellow fever mosquito Aedes aegypti, favors
higher temperature [32,33]. The availability of real time data-streams
on seasonal variation and climatic variability therefore holds the po-
tential to lead to more accurate prediction algorithms, potentially im-
proving public health response.

Least Absolute Shrinkage and Selection Operator (LASSO) regres-
sion is a machine learning method that can find patterns within large
datasets while avoiding the problem of over-fitting [34]. Estimation
and variable selection are simultaneously carried out using the LASSO
method, and as such it is commonly used in studies in fields with large
numbers of explanatory variables to reduce the variable space. This
algorithm trades off model accuracy with model parsimony by in-
troducing a penalty term into the objective function (which in standard
linear regression is the sum of squares of residuals). The penalty term
can, for linear regression models, be made equivalent to a constraint on
the sum of the absolute parameter coefficients. This constraint imposed
by LASSO regression has the effect of shrinking some estimated coef-
ficients towards zero, which may help reduce biases caused by se-
paration in some forms of regression [35], while simultaneously pro-
ducing some parameter estimates that are exactly 0, so that the
covariate associated with this coefficient is not associated with the
outcome variable in that model. The optimal balance between model
accuracy and complexity is typically obtained through cross-validation:
repeatedly partitioning the data into training and validation sets,
varying the degree of penalty, optimizing the regression parameters for
each penalty value, then selecting the penalty that minimizes out of
sample predictive accuracy. Computationally efficient methods to ex-
plore the penalty and parameter space exist [36], making it feasible to
use LASSO as part of a ‘real-time’ forecasting pipeline for routinely
collected health data such as infectious disease notifications. This
computational speed allows the forecasting to adapt to changes in the
underlying disease dynamics by permitting refitting of the model each
time new data are reported, which may be important for diseases in
which the severity changes between outbreaks, such as influenza [37].
Forecasts at different time horizons can be obtained through splicing
together separate LASSO models, each trained on the data available at
the time of the forecast, but tailored to predict at different windows into
the future.

The LASSO method has previously been used in dengue outbreak
prediction in Singapore, where it is now routinely used to guide vector
control policy [38]. The objective of this paper is to apply the LASSO
method to infectious disease forecasting and assess more generally in
which situations LASSO models will provide useful forecasts. Unlike
conventional use of the LASSO method to variable selection, the pri-
mary interest of our application of the LASSO-based method on in-
fectious disease data is to make forecast of incidences in the future,
rather than to identify the potential risk factors to explain the epidemics
of these infectious diseases.

In particular, we assess for diseases with different transmission
modalities, in different climatic zones, how accurate short to medium
time forecasts can be, and what data streams are necessary for accurate
forecasts. We apply the method to four countries from different
latitudes—Japan, Taiwan, Thailand and Singapore—to cover tempe-
rate, sub-tropical and tropical settings.

2. Methods

2.1. Sources of data

Four representative countries with distinct climates were selected
for analysis based on Köppen-Geiger climate classification [39] – Japan
with humid continental and subtropical climate; Taiwan with humid

subtropical and oceanic climate; Thailand with tropical wet and sa-
vannah climate and Singapore with tropical rainforest climate. Four
representative infectious diseases were included in the study: two
mosquito-borne infections (Dengue and Malaria) and two infections
that spread from person to person (Hand Foot and Mouth Disease
(HFMD) and Chickenpox). For all four pathogens, a relationship has
previously been found between incidence and climatic variables
[40–42] or for there to be a seasonality to incidence [43]. Not all four
pathogens were considered for each country: some are not present in
each country while others are not captured in routine infectious disease
surveillance systems.

The notified numbers of chickenpox, HFMD cases in Japan were
collected by the National Institute of Infectious Diseases (NIID) [44].
Both were reported as average cases per week per sentinel reporting, to
accommodate varying reporting rates. We extracted weekly data from
2001 to 2012.

Monthly reported cases of chickenpox, dengue, and malaria in
Thailand for the period 2003–2013 were obtained from the Bureau of
Epidemiology, Department of Disease Control, Ministry of Public
Health, Thailand [45]. The number of incident cases were collected
from government hospitals, public health offices and health centers by
the National Disease Surveillance [46] and were reported online.

Ministry of Health, Singapore, actively monitors and publishes the
incidence of dengue and HFMD in Singapore, both being notifiable
diseases. Weekly number of incidences for the period 2003 and 2014
were obtained from the Weekly Infectious Diseases Bulletin [47].

Weekly number of dengue cases from 2003 to 2014 were extracted
from Taiwan National Infectious Disease Statistics System [48]. Both
indigenous and imported cases were included in the count.

Epidemiological week as per US Centers for Disease Control and
Prevention was used in our analysis using the EpiWeek package in R
[49].

Climatic data for Taiwan, Thailand and Singapore were obtained
from the Weather Underground [50] which documented among other
variables, historical temperature, humidity, sea level pressure, and
visibility. Only temperature (daily highest, average and lowest) and
relative humidity (daily highest, average and lowest) were used in our
models due to insufficient historical data of other climatic variables.
Climatic data for Japan were obtained from the Japan Meteorological
Agency [51], which provides and archives various weather information.
Weekly mean temperature, relative humidity and rainfall information
were used in our model. For all locations, the weather data at the ca-
pital (Tokyo, Taipei, Bangkok and Singapore) was used to represent
overall national weather.

2.2. Statistical analysis

Wavelet analyses were done to explore periodicity of all endemic
diseases and climatic variables in four countries. The wavelet approach
was based on a wavelet function which analyses locality in time and
frequency [52]. Wavelet transformation (W s( )t ) as the convolution of
the time series xt with Morlet function ψ η( )0 at scale s was conducted:
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4 0 2 , where ω0 refers to the
nondimensional frequency and is set to 6 to satisfy the admissibility
condition [53].

The wavelet transformation W s( )t can be divided into amplitude,
W s| ( )|t , and phase, − W s W stan [ { ( )}/ { ( )}]n n

1 I R , where W s{ ( )}nR is the real
part of the transform and W s{ ( )}nI the imaginary part. The wavelet
power spectrum is defined as W s| ( )|t

2 [54].
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Least Absolute Shrinkage and Selection Operator (LASSO) regres-
sion [34] is used for the prediction models. As incidence data were
generally right skewed and with increased stochasticity during epi-
demics, we controlled for skewness and heteroscedasticity by log-
transforming (after adding one to) the observed number of cases for all
analyses, or mean number of cases per sentinel for Japan.

We build separate LASSO models for each disease, in each country,
and for each forecast window based on similar sets of candidate pre-
dictors (adapting the approach used in Ref. [38]). Each candidate
predictor appeared several times in each model, at different historical
lags. To allow for contagion and typical epidemic duration, we used
past incidence of up to a half year (26 weeks for Japan, Taiwan and
Singapore; 6 months for Thailand) as autocovariates. We accom-
modated non-linearities in the relationship between past and future
incidence by using the quadratic of past incidence (again, up to one half
year in the past) as a potential covariate; the inclusion of additional
polynomial terms did not improve the results and hence were omitted.
We used climatic variables (minimum, maximum and average tem-
perature, humidity and rainfall) of up to 4 weeks (one month for
Thailand). We also used a month indicator that associated each epi-
demiological week with a single calendar month to represent potential
seasonal variation beyond those governed by the climatic data. Wavelet
transformations of the covariates and outcomes were not used, to en-
sure that only data available at the time of the forecast were used to
make the forecast.

For each forecast window (from =k 1 time unit to 6, for Thailand
(the data being monthly) or 26, for Japan, Taiwan and Singapore
(weekly)), a separate LASSO model was developed which used data
available at the time of the forecast only. The selection of the time
window was dependent on the resolution of notification data for each
disease. Each LASSO model is as follows:
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The p and penalty term λ have a one-to-one correspondence in
LASSO, which can equivalently be formulated as a constraint to the
total absolute size of the parameters, or as a penalty to the log-like-
lihood determined by their total absolute size. The choice of the optimal
p in this study was based on ten-fold cross validation for that dataset
(country, disease, forecast length combination). Ten-fold cross valida-
tion was carried out by partitioning the total data set into 10 ap-
proximately equal-sized subsamples. Each subsample was used in turn
as the validation set while the rest were used as the training set, the
performance was measured through the mean squared error (of the
difference between the forecast and the data) on each validation set and
averaged over the ten folds. The constraint (or equivalently, penalty
term) that optimized the out of sample performance was then used to
refit the model and make projections. In this way, the optimal com-
plexity of the model—from the perspective of out of sample pre-
diction—can be determined via the constraint. We developed both (a)
‘real time’ forecasts, in which both the parameters and the predictions
were regenerated based on available data at that time, and (b) one set
of ‘retrospective’ forecasts, which used the last of the real time fore-
casts, to summarize effects of covariates.

Following standard practice, covariates were z-scored prior to esti-
mation and the coefficients rescaled afterwards.

As the models were built separately for each forecast window, the
variables selected and their lags and parameter magnitude and sign
may differ substantially.

2.3. Sensitivity analysis

Eight models with different combination of predictor types were
used for each disease/country/forecast length to assess the importance
of including each datastream in the predictive algorithm. Details of the
components in each model are shown in Table 1.

2.4. Accuracy

To assess prediction accuracy of the models, we made out-of-sample
forecasts and compared with data observed. For each time point and
each prediction window, a 95% projection interval—which we define
here as an interval derived from the best fitting model with random
errors overlaid, but excluding parametric uncertainty—was derived and
the percentage of such intervals successfully capturing the actual value
was calculated.

To assess if the prediction models were able to detect early signs of
elevated levels of transmission—which we defined to be time windows
(weeks or months) in which the number of cases is more than the 75th
percentile of what has been observed in the preceding year—we cal-
culated the fraction of predictions in which the projection correctly
classified the data as being above or below that threshold. This was
calculated separately for each length of forecast window. An accuracy
of 75% is expected for a poorly predictive model. One-sided binomial
tests were done to all prediction windows and those that significantly
identify the early signs at an accuracy of more than 75% were identi-
fied.

Prediction accuracy was measured by the mean absolute percentage
error (MAPE), root mean squared error (RMSE), and R-squared, for
each forecast window. Relative prediction error as compared to the
simplest incidence only model at all forecast windows was calculated to
assess model complexity and accuracy. All statistical analysis were
performed using R Statistical Software [55].

3. Results

Climatic and incidence patterns of the diseases are presented in
Fig. 1. Four representative diseases were shown in this figure (others
are presented in Supplementary Figs. 1–4). At further distances from
the equator, temperature and humidity show more obvious annual
cycles, and there is concomitantly more cyclicity in disease incidence,
as indicated in the power spectra illustrated in Fig. 2. Power spectra of
average temperature and humidity are presented in Supplementary
Figs. 5 and 6. Temperature in all countries has a period of one year but
the cyclic effect is more marked in temperate and subtropical regions,

Table 1
Sets of predictors in different models.

Models Incidence Squared incidence Climatic variables Monthly effect

1 √ . . .
2 √ √ . .
3 √ . √ .
4 √ . . √
5 √ √ √ .
6 √ √ . √
7 √ . √ √
8 √ √ √ √
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and less so in equatorial Singapore. Average humidity displays one-year
cycle in temperate and subtropical regions, but again not Singapore,
although the effect is not as obvious as with average temperature. Al-
though in temperate regions, there is an apparent synchronicity be-
tween incidence and climatic factors, in tropical regions like equatorial
Singapore, there was little variation in either temperature or humidity,
and similarly no observed cycle of disease incidence. In addition, there
was no correlation observable between cases and climate, either in
incidence itself or the change in incidence (reflecting transmissibility).

Fig. 3 shows the actual incidences as well as forecasts at four pre-
diction points for the four diseases presented in Fig. 1 (predictions at
other time points/diseases are presented in Supplementary Videos 1–8)
using the model with all variable sets. At each time point, up to six

month ahead predictions are shown in the figure, using data available
at the time the prediction was made. The number of variables from each
category that were selected by our LASSO models are presented in
Supplementary Fig. 7 and the effect size of each climatic variable at
different lags for all forecast windows are shown in Supplementary
Fig. 8. Generally, the 95% projection interval of the forecast captured
the actual scenario more than 80% of the time, indicating slight under-
coverage. Coverage rates for the full models are tabulated in Table 2.
MAPE for full models at all prediction windows are shown in Table 3.
RMSE and R-squared values for full models are included in
Supplementary Tables 1 and 2. For most diseases, predictions made
beyond 4weeks ahead were increasingly discrepant from the actual
scenario.

Fig. 1. Incidence and climatic (temperature and humidity) patterns of four representative diseases. (a) Chickenpox in Japan; (b) HFMD in Japan; (c) chickenpox in Thailand; (d) HFMD in
Singapore. Year 01 corresponds to the year 2001 of the common era, et cetera.
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Video 1.

Video 2.

Video 3.
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Video 4.

Video 5.

Video 6.
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Video 7.

Video 8.

Predicted cases against actual cases at 1 week, 2 weeks, 4 weeks and
8weeks for all prediction period for all diseases were plotted in Fig. 4.
For all diseases, as the prediction window gets longer, the magnitude of
the error grows, especially for the largest sizes of outbreaks where there
is likely to be more stochastic variability. Cumulative density functions
of the observed time series of all diseases and predicted time series at
various forecast windows are shown in Fig. 5: those derived from pre-
dictions are generally close to that from the observed time series. Short
term predictions generally performed better than longer term predic-
tions. Table 4 shows the classification accuracy of our prediction
models being able to correctly classify one week/month to be an epi-
demic week/month. A percentage above 75% suggested that the pre-
diction model performed better than a random guess. Models that
passed the binomial test of having accuracy significantly higher than
75% were marked with the asterisk. Predictions for HFMD epidemic
were generally accurate even at long prediction windows; for most
other diseases, prediction within 5 weeks were above 75%. However,
for chickenpox in Japan and dengue in Singapore, only predictions
within 3 and 4weeks were significantly above 75% from the Binomial
test. This suggests that the approach can predict the timing of periods of
elevated transmission at about one month in advance but that the ab-
solute magnitude is hard to predict accurately, given the larger errors at
high levels exhibited in Fig. 4.

The trade-off between model complexity and efficiency was assessed
by constructing models with different groups of variables and com-
paring the forecasts based on these models (Fig. 6, an enlarged version
is shown in Supplementary Figs. 9 and 10). The prediction errors arising
from each model were then compared with the simplest incidence only
model. A ratio substantially less than 1 shows prediction accuracy

increased by including the set(s) of variables. For some diseases like
chickenpox in Thailand, dropping some variables affected prediction
accuracy by a large extent, indicating the importance of including
monthly effect to achieve greater accuracy in predictions. For other
diseases like dengue in Taiwan, dropping the climatic variables had
only minimal effect on the accuracy of the predictions, which suggests
that the features in those sets are not necessary for routine predictions.
Panels in the second and fourth columns in Fig. 6 showed prediction
error for all diseases for different prediction windows. Prediction error
was quantified by the mean absolute percentage error. In line with our
previous observations, as the prediction window gets longer, prediction
error increases. More complicated models show less prediction error
but the improvements varied by diseases and countries.

4. Discussion

Applying the LASSO method to data on recent incidence and climate
leads to around 20% or lower prediction error for short term predic-
tions, even for an aseasonal, tropical country like Singapore in which
the presence of randomness in outbreak occurrence may be strongly felt
[56]. Most of the variation in incidence was explained by the auto-
regressive terms as there was no or minimal improvement in forecast
accuracy by including more variables other than autoregressive terms
in the prediction model shown in Fig. 6. Long term predictions were not
accurate, even when we include multiple climatic variables as candi-
date features. We believe this reflects the difficulty in using weather
data relating to current conditions to predict disease levels in several
months—in contrast, most other analyses use climate data from near
the time point being forecast [28,57], which is typically not available in
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real time. Hence the utility of predictive analytics for infectious disease
policy making is mostly for immediate response over the next few
weeks rather than months.

This LASSO-based method we proposed for forecast provides an
insight into the potential utilization of LASSO regression outside its
usual application in the area of variable selection, for real time

forecasting. This approach can readily be automated to run on routinely
collected case data, but the accuracy of the prediction is very much
dependent on the timeliness at which such data become available. This
calls for a comprehensive regional and country level infectious diseases
surveillance system, whether using clinician/laboratory driven case
notification, or mining of electronic medical records. Weather data, in

Fig. 2. Wavelet power spectrum for (a) chickenpox in Japan; (b) HFMD in Japan; (c) chickenpox in Thailand; (d) HFMD in Singapore. For each panel, the power spectrum values are
categorised by decile prior to plotting.
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contrast, are widely posted to sources like the Weather Underground
which can be mined in real-time. An example of this in practice can be
found in Singapore, where the National Environment Agency has a
weekly dengue forecast, as described elsewhere [38]. The LASSO model
building process involves identifying the model complexity through
optimal out of sample predictive performance, and as such it is natu-
rally suited to making forecasts. By fitting separate models at each
forecast window, variables whose predictive performance is expressed
differently at different lags can be efficiently exploited: this might be
particularly beneficial for vector borne diseases in which the effect of
weather on transmission is mediated through one or more generations
of vectors.

In large countries, and in particular those that span multiple lati-
tudes, we anticipate that the accuracy of the predictions will improve if
regional information rather than aggregated country-level data streams
are used. The aggregation averages the whole country and thus at-
tenuates regional differences in both climate and incidence. Future

work could assess the impact of disaggregation for countries like Japan
for which prefectural level data are available.

By using past disease incidence and seasonal terms, LASSO has
many of the characteristics of traditional time series models (e.g. the
SAR in SARIMA) which have frequently been used for prediction of
infectious disease time series [20,58–61]. What is less clear is how to
incorporate structural information about outbreak data, such as the
typical Gaussian incidence curve that is seen in both empirical data
[62] and theoretical transmission dynamic models [63], or the known
impact of changing herd immunity levels [64]. This may also help
predict atypical outbreaks, such as the 2009 influenza pandemic which
occurred in the Northern Hemisphere’s summer [65], and for which
extrapolating approaches like LASSO may break down.

5. Limitations

There are several limitations to this study. Regression models,

Fig. 3. Actual incidence (orange line) and forecasts (blue dots, dark red 95% projection interval, pink 70% projection interval) at four time points for each of the representative diseases.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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including those built using LASSO, may be effective in providing ac-
curate predictions, but differ from traditional epidemic models such as
susceptible-infected-removed compartmental models, network models
[66] or individual based simulation [67], which seek to describe the
transmission dynamics of contagious diseases, and can therefore be

used to predict the effect of interventions or novel scenarios. A further
limitation is that, for simplicity, only weather information from the
capitals were used in the study, but for countries like Japan, Thailand
and Taiwan, there are great variation between climatic conditions in
the North and the South. Prediction accuracy might improve if

Table 2
Fraction of 95% projection intervals that cover the eventual value for full models for all diseases at all prediction windows.

Japan Singapore Taiwan Thailand

Prediction Window Chickenpox HFMD Dengue HFMD Dengue Chickenpox Dengue Malaria

1 100% 100% 100% 100% 99%
2 100% 98% 100% 100% 98%
3 100% 96% 99% 98% 97%
4 100% 96% 98% 96% 96% 100% 100% 100%
5 100% 95% 98% 94% 94%
6 100% 94% 97% 87% 92%
7 100% 92% 95% 83% 91%
8 100% 91% 93% 77% 89% 100% 98% 96%
9 100% 91% 91% 74% 86%
10 100% 90% 90% 73% 85%
11 100% 90% 88% 71% 82%
12 100% 89% 86% 69% 80% 100% 98% 96%
13 100% 89% 83% 64% 80%
14 100% 89% 84% 63% 81%
15 100% 90% 83% 63% 81%
16 100% 90% 83% 63% 81% 100% 94% 100%
17 100% 91% 89% 65% 80%
18 100% 90% 91% 64% 80%
19 100% 90% 92% 64% 80%
20 99% 90% 91% 64% 80% 100% 93% 98%
21 99% 90% 90% 65% 81%
22 99% 90% 91% 63% 82%
23 99% 90% 90% 63% 82%
24 99% 90% 89% 63% 81% 100% 94% 98%
25 100% 90% 86% 63% 82%
26 100% 90% 82% 63% 81%

Table 3
Mean Absolute Percentage Error for full models for all diseases at all prediction windows.

Japan Singapore Taiwan Thailand

Prediction Window Chickenpox HFMD Dengue HFMD Dengue Chickenpox Dengue Malaria

1 0.10 0.18 0.17 0.12 0.47
2 0.10 0.31 0.20 0.18 0.57
3 0.13 0.40 0.23 0.23 0.64
4 0.14 0.46 0.26 0.26 0.66 0.09 0.15 0.20
5 0.16 0.51 0.29 0.29 0.67
6 0.18 0.58 0.31 0.31 0.70
7 0.19 0.65 0.33 0.33 0.70
8 0.20 0.69 0.35 0.35 0.74 0.17 0.24 0.29
9 0.22 0.69 0.36 0.38 0.75
10 0.22 0.68 0.36 0.41 0.77
11 0.23 0.75 0.37 0.43 0.80
12 0.23 0.83 0.39 0.45 0.80 0.24 0.25 0.31
13 0.23 0.89 0.38 0.46 0.82
14 0.25 0.89 0.39 0.47 0.80
15 0.25 0.93 0.39 0.48 0.79
16 0.25 0.95 0.40 0.49 0.80 0.28 0.30 0.31
17 0.25 0.92 0.42 0.51 0.80
18 0.25 0.91 0.42 0.51 0.79
19 0.24 0.90 0.42 0.51 0.82
20 0.24 0.92 0.42 0.53 0.82 0.28 0.32 0.30
21 0.24 0.92 0.43 0.53 0.79
22 0.24 0.85 0.45 0.52 0.79
23 0.23 0.69 0.46 0.51 0.78
24 0.23 0.66 0.46 0.50 0.79 0.31 0.33 0.32
25 0.21 0.64 0.47 0.51 0.81
26 0.22 0.60 0.46 0.51 0.81
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Fig. 4. Predicted cases against actual incidence at 1 week, 2 weeks, 4 weeks (1 month), and 8weeks (2 months) for all prediction period for all diseases.
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incidence and weather information can be collected at a finer resolu-
tion.

We suspect that even the accuracy of short term forecasts may be
reduced should new epidemiological conditions replace those that the
model was trained on. Examples of this would be the emergence of a
new strain or variant, such as an influenza pandemic [68], more

virulent strain of the virus [69], or a virus moving into a new popula-
tion [70]. It would also break down in the presence of changing control
efforts such as school closure [71] or novel vector control [72]. In such
situations, a mechanistic modelling approach [73] may be better able to
predict the epidemic dynamics until sufficient training data are avail-
able.

Fig. 5. Cumulative density functions (CDF) for observed time series for all diseases and the CDF for predicted time series at various forecast windows.

Table 4
Percentage of our prediction model correctly classify a predicted future week/month being an epidemic week/month. An epidemic week/month is defined as when the number of cases is
more than the 75th percentile of the level in the past year. Percentage above 75% is shown bold. Models that had significantly higher accuracy than 75% are marked with an asterisk.

Japan Singapore Taiwan Thailand

Prediction Window Chickenpox HFMD Dengue HFMD Dengue Chickenpox Dengue Malaria

1 89%* 97%* 90%* 99%* 93%*

2 87%* 97%* 88%* 96%* 93%*

3 86%* 97%* 83%* 95%* 91%*

4 78% 95%* 81%* 94%* 89%* 98%* 98%* 100%*

5 76% 93%* 79% 91%* 89%*

6 75% 91%* 80% 90%* 86%*

7 72% 89%* 75% 87%* 83%*

8 71% 88%* 73% 85%* 80%* 94%* 94%* 100%*

9 68% 88%* 69% 81%* 80%*

10 69% 88%* 71% 80%* 77%
11 70% 88%* 70% 79% 75%
12 69% 88%* 71% 80%* 75% 93%* 96%* 100%*

13 71% 87%* 70% 81%* 74%
14 70% 87%* 68% 81%* 76%
15 69% 87%* 69% 81%* 77%
16 71% 86%* 71% 80%* 76% 91%* 93%* 100%*

17 73% 86%* 70% 80%* 77%
18 72% 88%* 73% 80%* 77%
19 73% 89%* 71% 80%* 76%
20 71% 90%* 71% 80%* 77% 89%* 93%* 100%*

21 71% 90%* 73% 79% 78%
22 70% 89%* 73% 79% 77%
23 68% 89%* 72% 80%* 77%
24 70% 89%* 71% 80%* 77% 87%* 91%* 100%*

25 71% 89%* 71% 78% 77%
26 73% 89%* 71% 81%* 76%
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6. Conclusion

Regression models using LASSO were built to forecast incidence for
four endemic diseases in four countries. For some diseases including
one set of variables may improve predictive accuracy substantially
while for other diseases, the simpler models give similar results as more
complex models. For all diseases, short-term prediction were generally
much better than longer term predictions, which suggests that public
health agencies may need the capacity to respond at short-notice to
early warnings of possible infectious disease outbreaks should models
based on this approach be implemented routinely.
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