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Abstract: Being overweight increases the risk of many metabolic disorders, but how it affects lifespan
is not completely clear. Not all obese people become ill, and the exact mechanism that turns excessive
fat storage into a health-threatening state remains unknown. Drosophila melanogaster has served as
an excellent model for many diseases, including obesity, diabetes, and hyperglycemia-associated
disorders, such as cardiomyopathy or nephropathy. Here, we review the connections between
fat storage and aging in different types of fly obesity. Whereas obesity induced by high-fat or
high-sugar diet is associated with hyperglycemia, cardiomyopathy, and in some cases, shortening
of lifespan, there are also examples in which obesity correlates with longevity. Transgenic lines
with downregulations of the insulin/insulin-like growth factor (IIS) and target of rapamycin (TOR)
signaling pathways, flies reared under dietary restriction, and even certain longevity selection lines
are obese, yet long-lived. The mechanisms that underlie the differential lifespans in distinct types
of obesity remain to be elucidated, but fat turnover, inflammatory pathways, and dysregulations of
glucose metabolism may play key roles. Altogether, Drosophila is an excellent model to study the
physiology of adiposity in both health and disease.

Keywords: Drosophila; obesity; energy metabolism; lifespan; high-sugar diet; high-fat diet; dietary
restriction; obesity paradox; AKH; IIS

1. Introduction

Over the last several decades, obesity has become a global epidemic. According to the statement
of the World Health Organization from 2017 [1], the prevalence of obesity has nearly tripled since
1975. More than 1.9 billion adults suffer from being overweight, and of these, over 650 million are
obese. Obesity increases the risk of many health problems, including diabetes, metabolic syndrome,
cardiovascular diseases and cancer, and hence leads to a higher mortality [2–4]. However, some studies
questioned the causality between adiposity and mortality (e.g., [5,6]), arguing that the increased risk of
death is associated with cardiorespiratory fitness, not with body mass index (BMI) [6]. In addition,
a certain proportion of obese individuals do not suffer from any health complications nor increased
mortality; this condition is known as metabolically healthy obesity (MHO) [7–9]. The prevalence of
MHO ranges between 6–75% of all obesity cases [10]. The identification of mechanisms that underlie
the adiposity-related complications in some, but not all individuals, represents an important challenge
in the field of obesity research.

The core metabolic pathways that regulate energy homeostasis are highly evolutionarily
conserved, and the fruit fly Drosophila melanogaster has served as an excellent model for metabolic
and diet-associated diseases (reviewed in [11–18]). For example, flies have been used to investigate
the metabolic control of tissue growth, and the link between the energy metabolism and cancer [18].
Drosophila has also been used to model obesity induced by high-sugar (HSD) [19–25] and high-fat
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diets (HFD) [26–29]. Moreover, like humans, flies fed a sugar-rich diet suffer from hyperglycemia,
insulin resistance [20,22,24], and cardiomyopathy [19]. Fly obesity can also be induced by genetic
manipulations, which allows decoupling of adiposity from changes in glycemia and carbohydrate
metabolism [30]. Altogether, the Drosophila model provides excellent tools to disentangle the effects
of excessive fat storage from other obesity-related factors that might be responsible for the metabolic
dysregulations and lifespan shortening in some types of obesity.

This review aims to summarize the current knowledge on the lifespan and general physiology of
obese flies. In the first part, we compare the regulation of energy storage in Drosophila and humans;
in the second part, we discuss the lifespan consequences of different types of fly obesity. Whereas some
obesity-inducing diets reduce lifespan expectancy [19,28], the excessive lipid storage can be uncoupled
from the lifespan shortening [23,28,31]. Moreover, many fly models of longevity are actually obese
(e.g., [32–36]). In the last part, we therefore discuss the potential adaptive roles of obesity and insulin
resistance, and the possible mechanisms whereby excessive adiposity leads to metabolic complications
and lifespan shortening in some, but not all types of obesity.

2. Energy Homeostasis in Drosophila and Humans

2.1. Circulating and Stored Sources of Energy

As in humans, the main circulating energy sources in Drosophila are sugars. However, the predominant
sugar is trehalose, even though glucose is found in the fly hemolymph as well [37]. In contrast to the
relatively low, but very stable glycemia in humans (0.1% glucose in the blood), insects have higher and
more variable concentration of circulating sugars, with trehalose concentration in the hemolymph between
1–2% [38]. Trehalose is a non-reducing disaccharide, and therefore can be accumulated in the hemolymph
at high levels without any detrimental effects [38]. Conditions that increase trehalose levels—such as
a high-sugar diet—also increase circulating glucose [20]. Glucose can at least partially compensate for
the lack of trehalose, as mutants deficient in trehalose production survive until the late pupal stage [39].
Before being utilized by cells, trehalose needs to be converted into glucose by trehalase [40–42]. Many
studies therefore report just the total glycemia (e.g., [26,37,43,44]), without differentiating between the
circulating sugars.

In contrast to the tight regulation of glycemia in humans, flies tolerate considerable fluctuations
in the circulating sugars, from 50% reduction (e.g., [37,43]) to more than 50% increase (e.g., [33]).
In humans, hyperglycemia leads to a damage of vascular endothelial cells, causing impairment of blood
vessels, cardiovascular diseases, kidney failure, and blindness (reviewed e.g., in [45]). As Drosophila
has an open circulatory system, damage to the vascular cells is not an issue. Altogether, hyperglycemia
does not seem to be detrimental in this model system. Moreover, several manipulations that extend
lifespan are, in the fruit flies, accompanied by increased levels of circulating sugars [21,33].

Like mammals, Drosophila stores excess chemical energy in the form of glycogen and lipids.
Although glycogen accumulates also in muscles [46], the main storage organ for both carbohydrates
and lipids is the fat body [46,47]—an organ analogous to the human adipose tissue, but also performing
the functions of the liver [47] (Figure 1). The fat body consists of polyploid, sometimes multinucleate
cells, which store lipids in specialized organelles called lipid droplets (Figure 2). Lipid droplets are
conserved from yeast to humans, and their size and numbers per cell are highly variable [48,49].
However, apart from the increased number and volume of lipid droplets, very little is known about
the obesity-related changes of the fat body.
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Figure 1. The organs that regulate energy homeostasis and may link obesity to lifespan. The tissues
that share similar functions in Drosophila and humans are depicted in the same colors. The median
neurosecretory cells of the fly brain produce Insulin-like peptides 2, 3, and 5 (Ilp2, 3, and 5), which
act similarly to human insulin produced in the pancreatic beta cells. The Drosophila analog of human
glucagon—adipokinetic hormone—is produced in the corpora cardiaca, whereas human glucagon is
produced in the alpha cells of the pancreas. In the fly, fat and glycogen are stored in the fat body, which
is an organ fulfilling the functions of the human adipose tissue and liver. The dorsal vessel (fly heart) is
a linear tube that pumps hemolymph into the open circulatory system, and is considered as a functional
counterpart of the human heart. Pericardial nephrocytes are cells that filter fly hemolymph, and share
morphological and functional features with podocytes, cells of the kidney glomerulus. See the text for
further details.

Figure 2. The fat body of Drosophila. (A) Bright-field image of a subcuticular fat body (white tissue)
attached to the abdominal cuticle. (B) Confocal microscope image of the fat body. Cell membranes in
white (CellMask Deep Red), lipid droplets in red (BODIPY 493/503) and DNA in blue (Hoechst 33342).

2.2. Regulation of the Energy Balance by the Insulin-Like and Glucagon-Like Pathways

In mammals, the balance between circulating and stored energy sources is regulated by the
antagonistic action of glucagon and insulin pathways. Whereas insulin triggers conversion of
circulating sugars into the energy reserves, glucagon increases glycemia by promoting catabolism of
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fat and glycogen [50,51]. Flies have functional homologs of both insulin [32,33,52] and glucagon-like
signaling [37,43,53], but not all the functions are analogous. For example, in the fly, glycogen
mobilization is independent of the glucagon-like signaling [54].

Drosophila has eight insulin-like peptides (Ilp1–8) and a single insulin-like receptor, InR. As this
pathway fulfills functions of both insulin and IGF (insulin-like growth factor) signaling, it is often
abbreviated as IIS (insulin/insulin-like growth factor signaling) [33,55,56]. Ilp2, 3, and 5 are of special
importance from the perspective of glycemia control. These hormones are produced in the median
neurosecretory cells of the brain (Figure 1), and act similarly to human insulin produced in the
pancreatic beta cells [32,52]. Mechanisms that regulate activity of these cells during development differ
from those that act during adulthood [57]. For example, median neurosecretory cells of the larvae
are not able to sense circulating sugars, and their activity is, therefore, regulated indirectly via the
glucagon-like adipokinetic hormone (AKH) [58], and several other hormones [59,60]. By contrast,
median neurosecretory cells of adults sense circulating glucose directly, via a mechanism similar to
mammalian pancreatic β cells [61].

Fat body-specific manipulations of the InR indicate that analogously to human insulin, the fly IIS
is a positive regulator of fat storage. Overexpression of a constitutively active isoform of InR increases
fat content, while dominant negative isoform of InR reduces it [62]. On the other hand, several studies
revealed that a global decrease of the IIS leads to obesity, as seen, for example, in the Ilp2-3,5 triple
mutants [33], and in the flies with ablation of the insulin-producing median neurosecretory cells [32].
Similarly, genetic manipulations of the regulators of IIS from the IGF-binding family of proteins suggest
that IIS is a negative regulator of fat reserves [63–65].

The role of the IIS in glycogen storage of flies seems to be analogous to the function of mammalian
insulin. A recent study by Yamada et al. [47] showed that similarly to insulin in mammals [50], the fly
IIS positively regulates glycogen synthesis. Nonetheless, ablation of the insulin-producing cells in the
brain [32] or Ilp2-3,5 deficiency [33] lead to increased glycogen storage, suggesting that Drosophila has
an additional IIS-independent factor that promotes glycogen synthesis.

In the fly, hyperglycemic functions are governed by the glucagon-like adipokinetic hormone AKH,
which is produced in the endocrine organ called corpora cardiaca (Figure 1) [37,43,53]. Larval corpora
cardiaca are localized in the ring gland [37,53]. The ring gland dissociates during metamorphosis,
and the corpora cardiaca migrate towards the thorax, where it attaches to the esophagus, and sends
axon-like projections toward the brain and crop [53]. AKH regulates catabolism of lipids analogously
to mammalian glucagon. Thus, Akh mutants are obese [43,54], whereas Akh overexpression results
in a lean phenotype [53,54]. However, in contrast to glucagon, AKH does not induce catabolism of
glycogen [43,54] and glycogen levels rise upon Akh overexpression [54]. This is particularly intriguing,
as AKH is a hyperglycemic hormone [37,43,53], and glycogen has been considered as the main source
of trehalose [38]. Thus, the regulation of circulating and stored energy sources is more complicated,
and we are still far from a complete understanding of the pathways that govern energy homeostasis in
the Drosophila model.

3. Lifespan in Different Types of Fly Obesity

There are several methods to measure the fat content of a fly, but the most common approach is
based on a colorimetric measurement of glycerides [66]. The fat levels are either expressed as absolute
raw values, as fat values normalized to body weight, or as fat values normalized to the protein content.
In contrast to the clear BMI-based definition of overweight and obesity in humans, obesity in flies is
not exactly defined, and the term is used as an equivalent for increased fat storage.

3.1. High Sugar Diet (HSD)-Induced Obesity

Sugar-rich substrates represent a natural food source of fruit flies [67]. However, a high
sugar diet (HSD) produces obesity and hyperglycemia [20]. HSD typically refers to a fly diet
containing around 30% sugar, which accounts for an approximate increase in the fat content by
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50–150% [19–21,23,68,69]. The HSD diet is prepared by adding excessive sucrose [19,20,22,23,31],
glucose [21,70], or fructose [70] to the standard fly medium. HSD decreases several aspects of fly
fitness; for example, delays larval development [20,23], reduces fecundity [71–73], and increases the
age-independent mortality [23,72]. However, the overall effect on aging is not clear. Whereas some
studies reported a lifespan-shortening effect of HSD [69,72], Galenza and colleagues [21] revealed that
despite causing obesity and hyperglycemia, HSD leads to a remarkable lifespan extension by 31%.
Interestingly, their study suggests an increase in the early mortality of flies reared on HSD, despite an
overall lifespan extension in the majority of the flies [21]. The same phenomenon was described in the
work of Tânia Reis [23], who showed that the mortality of the HSD flies has a bimodal distribution,
although the mean lifespan upon HSD treatment is mildly increased.

HSD leads to an impairment of the IIS [20–22], although the mechanism is not entirely clear,
and may depend on the developmental stage. A study by Pasco et al. [22] showed that in larvae,
HSD increases expression of Ilp2, 3, and 5. However, Ilps cannot activate the InR receptor due to the
increased levels of the Ilp-binding protein, lipocalin neural Lazarillo. Thus, HSD-fed larvae are insulin
resistant, and their peripheral IIS is attenuated [22]. Musselman et al. [20] showed that the HSD-fed
larvae are resistant even to recombinant insulin. The situation is likely different in adults, where HSD
decreases the IIS independently of insulin resistance, causing decreased expression of Ilp2, 3, and 5 [24],
whilst the periphery remains insulin sensitive [21].

Altogether, HSD reduces the peripheral IIS, either via decreased production of insulin, or via insulin
resistance. Interestingly, the survival curves of the Ilp2-3,5 triple mutants [33] are reminiscent of the survival
curves of flies fed HSD, that were described by Tânia Reis [23]. Moreover, the Ilp2-3,5 triple mutants [33] also
recapitulate other HSD-associated impairments of development and reproduction [20,22,33,72], suggesting
that the reduced IIS is responsible for many disorders linked to HSD. Nevertheless, the reduced IIS cannot
account for the HSD-induced lifespan shortening detected in some studies [69,72], as attenuation of IIS is
typically coupled with lifespan extension [32,33].

The lifespan extension reported for some obese and hyperglycemic HSD-fed flies [21,23] suggests
that the adiposity itself is probably not the sole cause of the reduced lifespan in other HSD-feeding
experiments [19,72]. Work of Na and colleagues [31] documented that HSD leads to dysfunction of
pericardial nephrocytes, cells that filtrate fly hemolymph and act analogously to human podocytes in
the kidney (Figure 1). This damage is associated with increased hexosamine flux and the Polycomb
gene complex activity. Interestingly, pharmacological inhibition of the hexosamine pathway extends
the lifespan on HSD—seemingly beyond the lifespan of controls kept on the standard food—while
reducing fat levels only partially [31]. Thus, the HSD-induced damage of nephrocytes—rather than
the adiposity itself—is responsible for the lifespan-shortening effect of this diet. In addition to causing
dysfunctions of nephrocytes [31], HSD affects other processes that might contribute to the reduction of
fly fitness. For example, a short-term exposure to HSD decreases lifespan via a transient inhibition of
the IIS-repressed transcriptional factor Foxo (Forkhead box, sub-group O), which causes a long-lasting
reprogramming of the signaling in the fat body [74]. Sugar overload also directly affects numerous
fat body-unrelated processes; for example, it increases endoplasmic reticulum stress [68], decreases
immunity [68], disrupts gut homeostasis, and reduces commensal bacteria [75]. Like in humans,
HSD causes in flies heart disorders such as fibrillations, asystolic periods, and arrhythmias, leading
to progressive heart failure [19]. The detrimental effect of HSD on the heart is mediated solely by
the hexosamine flux, and the cardiac-specific reduction of this pathway fully protects the heart from
the HSD-induced pathologies [19]. In addition, the recent RNA-seq analyses of the HSD-induced
transcriptional changes may provide further useful hints on the metabolic changes elicited by the
sugar overfeeding [76].

Flies fed on HSD (e.g., [19–21,23,68–70]) do not have access to any additional water source to
compensate for the increased osmolarity of their diet. Part of the pathologies associated with HSD may,
therefore, result from the hyperosmolarity or hypovolemia. A study by Rovenko et al. [70], showed
that the HSD-fed flies have indeed reduced body water content, further supporting this hypothesis.
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In conclusion, HSD may affect the fly physiology independently of the obese phenotype,
for example, via direct damage of the heart [19], nephrocytes [31], or gut [75], via reprogramming of
signaling pathways in the fat body [74], or via reduction of the body fluids [70]. The mechanism that
circumvents these complications in the glucose-based HSD [21] remains to be elucidated, nevertheless,
it might contribute to a better understanding of the MHO in humans as well.

3.2. Dietary Restriction and the Paradox of a Carbohydrate-Rich Diet

Lifespan extension by dietary restriction (DR) is a phenomenon conserved from yeast to humans.
There are several methods to apply DR: intermittent fasting, restriction of certain nutrients, or food
dilution [77–79]. Diet dilution is a frequently used method in various animal models, yet several
studies showed that this treatment leads to increased, compensatory feeding. This was explained by
the protein leverage hypothesis [80], which states that the reduction of proteins increases appetite.
Thus, when the DR food is provided ad libitum, animals consume relatively higher proportion of
carbohydrates and calories, which leads to obesity [80,81]. This mechanism seems to be evolutionarily
conserved, with evidence for it found from fruit flies [82] to humans [80,83,84]. In the Drosophila
field, the DR regime typically refers to the protein restriction. Restriction of dietary yeast, the main
source of proteins in the fly diet, increases both lifespan and fat reserves [35,36,82,85]. Geometric
framework studies in Drosophila showed that ad libitum feeding on high carbohydrate/low protein diet
extends lifespan, whereas the caloric restriction itself does not [71,81,86,87]. Similar data were obtained
in mice [88]. The question then arises: what is the mechanism whereby the high carbohydrate/low
protein diet extends lifespan? DR reduces IIS activity [89], but the lifespan extension in flies is mediated
by the target of rapamycin (TOR) signaling [35]. Interestingly, pharmacological inhibition of the TOR
pathway by rapamycin not only extends lifespan [34], but also increases fat reserves [34,35].

Thus, both DR and genetic inhibition of the nutrient-sensing pathways extend lifespan and
increase fat storage [32,34–36,85]. How exactly the obese phenotype contributes to the longevity
is unknown. However, two studies [90,91] revealed that the DR-mediated lifespan extension is
associated with a beneficial effect of increased fat turnover. This process is mediated by the lipolytic
AKH hormone [91] and requires the peripheral circadian clock in the fat body [90]. It remains to
be investigated whether a similar increase in the lipid metabolism accompanies obesity in other
long-lived models, and whether an experimental increase in the fat turnover would rescue longevity
of the short-lived obese flies.

3.3. The HFD-Induced Obesity

Natural food sources, as well as the standard culture media for Drosophila, are relatively
poor in fat content. Nevertheless, flies can feed and survive on artificial experimental diets with
added fat. The HFD for Drosophila typically contains 20% [92] to 30% [26,29,93,94] coconut oil,
or 15% lard [28,95]. HFD leads to obesity [26,28,29,92], hyperglycemia [20,26,28], reduced cardiac
contractility, ectopic accumulation of fat in the heart, and to other pathologies reminiscent of the
diabetic cardiomyopathy [26]. HFD is also associated with lifespan reduction [28,29].

HFD increases TGF-β signaling, which is responsible for the development of insulin resistance [92].
Experimental reduction of TGF-β is sufficient to ameliorate both obese and hyperglycemic
phenotype [92], but whether this treatment restores lifespan is not known. Interestingly, genetically
enhanced lipolysis targeted to the heart is sufficient to prevent the HFD-triggered cardiac
dysfunctions [26,93], suggesting that HSD causes cardiomyopathy in a tissue-autonomous manner
via ectopic lipid storage. Ectopic fat accumulation appears to be a common mechanism behind the
HFD-induced cardiac dysfunction also in mammals—a heart-specific increase in lipolysis improves
the heart functions in mice as well [96–98].

Similarly to human obesity [99,100], HFD leads, in flies, to an overactivation of immune
responses [28]. A macrophage-specific knockdown of the immune response restores insulin sensitivity
and ameliorates the lifespan shortening, but nevertheless, does not ameliorate the HFD-induced
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obesity [28]. Whether and how the inflammatory pathways affect heart functions is, nevertheless,
not known. In conclusion, it seems that—at least in the HFD model—lifespan is not shortened by the
adiposity, but by the inflammatory pathways.

3.4. Obesity and Longevity in the Flies with Abrogated Reproduction

Reduced reproduction is associated with increased fat accumulation and longevity in multiple
organisms (reviewed in [101]). Conversely, numerous treatments that result in longevity and
excessive fat storage decrease fertility. In Drosophila, these examples include DR and inhibition of the
nutrient-sensing pathways [32–34,102]. However, there are also cases where reduced reproduction
correlates with obesity, but not with lifespan extension. Drosophila females homozygotic in the
naturally-occurring allele female sterile (2) adipose are sterile and obese, yet not long-lived [103].
In addition, lifespan-extension associated with inhibition of breeding sometimes correlates with
reduced fat reserves. For example, virgin Drosophila female flies have lowered starvation resistance,
indicating that they are leaner than their reproducing siblings [104].

The interactions between the fat storage and lifespan might be partially explained by the trade-offs
between energy allocation to egg production and fat storage (reviewed in [105]). Importantly, in addition
to the direct costs of reproduction, fly gonads may regulate metabolism and lifespan by modulating
the main signaling pathways, such as the IIS and steroid signaling. As a case in point, elimination of
the germline cells in the ovaries or testis extends lifespan, and this effect is coupled with attenuated
IIS [106].

Fly gonads also produce ecdysteroids [107,108], the only steroid hormones in Drosophila, which
could mediate the trade-offs between reproduction and lifespan [109]. Although the experimental
evidence in females is equivocal, reduced ecdysteroid levels or mild RNAi against the Ecdysone
receptor (EcR) extends lifespan in males [110,111]. Interestingly, the functions of ecdysteroids in adult
flies are reminiscent of the roles of human sex steroid hormones estrogen and testosterone. Like
sex steroids, ecdysteroids regulate maturation (metamorphosis) [112] and reproduction [113–115].
In larvae, EcR acts as a negative regulator of fat accumulation [116], and it is possible that the same
role is conserved in adults as well. In that case, Drosophila could be an appropriate model to study
the obesity associated with reduced levels of sex steroids, a condition which occurs in humans after
gonadectomy, menopause, or during aging [117–119].

3.5. Genetic Links between Fat Storage and Lifespan

The typical genetic interventions that result in a lifespan extension—such as attenuation of the IIS
and TOR signaling—also result in obesity [32–36]. Similarly, the long-lived Methuselah (Mth) mutants
have increased starvation resistance [120], indicating that their fat stores are increased. In addition,
several selection experiments revealed existence of a genetic basis for the positive correlation between
obesity and lifespan. For example, some Drosophila lines selected for longevity have increased
resistance to starvation, suggesting higher energy reserves [121,122]. Conversely, selection for increased
starvation resistance resulted in increased fat storage [123,124], suggesting that longevity and obesity
are determined by the same genetic variants. Nevertheless, there are also longevity selection lines
without increased resistance to starvation [125], as well as fly lines with reduced body fat [126]. Thus,
the longevity can evolve in various ways, which may or may not involve an increase in the body fat.

Altogether, several selection experiments revealed the existence of a genetically based variation
in the fat metabolism and lifespan, suggesting that the fat storage and longevity share a common
genetic architecture [121–124]. The recent advancement of sequencing technologies, together with
the genome-wide association studies on the inbred lines from the Drosophila Genetic Reference Panel,
provide additional tools for identification of genes underlying the variation in fat storage and lifespan
in wild-type flies [127–130]. Further studies of these adiposity-related alleles thus hold new promises
for a better understanding of the fitness and lifespan in naturally obese flies.
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3.6. Lifespan in Other Genetic Models of Obesity

Fly genetics provides numerous tools to induce obesity, such as manipulations of genes associated
with adiposity in mice or humans, as well as mis-expressions of metabolic genes identified by
the genome-wide RNAi screens in Drosophila [30,131,132]. These genetic manipulations allow for
the analysis of the consequences of obesity without altering diet or the nutrient-sensing pathways.
For example, severe obesity can be triggered via inhibition of either lipolytic pathway, one acting via
the lipase Brummer, the other via the AKH hormone signaling [133]. Mutation of brummer (bmm)
results in doubling of the fat, but only in a mild reduction of lifespan [134]. Similarly, the fat content
of the Akh mutants is increased by around 75–100% [43,54], however, the lifespan is reduced only
moderately (MG and PK; unpublished data [135]). On the other hand, increased lipolysis caused
by Akh overexpression or by activation of the AKH secretion is associated with longevity [91,136].
Reduction of fat storage is, nevertheless, not sufficient for lifespan extension, as seen, for example,
in the lean but short-lived mutants deficient for the α-Esterase-7 [137].

In contrast to HSD- or HFD-induced obesity, genetic interventions enable distinguishing the
effects of adiposity from the consequences of hyperglycemia. For example, obesity associated with
euglycemia can be triggered by manipulations of calcium signaling via Stim RNAi [30], whereas obesity
coupled with hypoglycemia can be induced by the Akh mutations [43].

Altogether, as summarized in Table 1, some types of obesity are associated with lifespan
shortening, whereas others with longevity.

Table 1. Examples of obesity-causing manipulations and their effects on the lifespan of Drosophila.
Legend: ↑ increase; ↓ decrease; - no change; nd not determined in the study.

Obesity Type Details Study Fat Glycemia Lifespan Note

D
ie

t-
in

du
ce

d

H
SD

sucrose [23] ↑ nd ↑ Increase in the mean lifespan, but also increase
in the early mortality.

glucose [21] ↑ ↑ ↑

sucrose [31] ↑ ↑ ↓ Inhibition of the hexosamine pathway
rescues lifespan.

sucrose [19] ↑ ↑ ↓
sucrose [71] ↑ nd ↓ Importance of the protein/carbohydrate ratio.

H
FD

lard [28] ↑ ↑ ↓ Inhibition of the immune response rescues
lifespan, but not obesity.

coconut oil [29] ↑ nd ↓ Obesity and decrease in lifespan are
ameliorated by endurance exercise.

coconut oil [27] ↑ ↑ ↓ Increased levels of the total body glucose.

di
et

ar
y

re
st

ri
ct

io
n

amino acid
restriction [35] ↑ - ↑

yeast restriction [91] ↑ nd ↑

G
en

et
ic

II
S

re
la

te
d

(r
ed

uc
ed

II
S) Ilp2-3,5 mutants [33] ↑ nd -

Ilp2 > rpr [32] ↑ ↑ ↑ Ablation of the insulin-producing cells in
the brain.

hsGAL4 > ImpL2 [65] ↑ - ↑ Heat shock-inducible overexpression of ImpL2.

S106 > Ilp6 [138] ↑ ↑ ↑ Overexpression of Ilp6 in the fat body.

Mth mutants [120] ↑ nd ↑ Increased lipid reserves inferred from the
starvation resistance

ot
he

r female sterile (2)
adipose mutants [103] ↑ nd ↓ Lifespan decreased in mated females.

bmm mutant [134] ↑ nd ↓
rapamycin [34] ↑ nd ↑ Feeding with rapamycin (inhibitor of TOR).
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4. Pathways and Tissues Linking Lipid Metabolism and Lifespan

Energy homeostasis of Drosophila is controlled by a complex neuroendocrine system with extensive
interorgan communications (reviewed e.g., in [139–143]). Here, we focus only on the most prominent
tissues and pathways that could link obesity and aging.

4.1. The IIS and AKH Endocrine Systems

Human obesity is often associated with profound changes in the production of adipose
tissue-derived factors, such as leptin, adiponectin, and tumor-necrosis factor alpha (TNF-α). These
dysregulations lead to reduced glucose uptake, increased glycemia, and development of insulin
resistance (reviewed in [144,145])., Hyperglycemia-associated glucotoxicity damages, among other
tissues, also pancreatic β cells, which further exacerbates the diabetic phenotype [145]. Similarly,
many types of Drosophila obesity correlate with changes in signaling via fat body-produced hormones.
For example, both HSD and HFD increase expression of the fly homolog of leptin, unpaired2 (upd2) [59].
Interestingly, the typical models of fly obesity (flies reared on DR, HSD, or HFD) also have reduced
insulin-like signaling [21,89,92,146]. The mechanism of the IIS attenuation seems to be diet-specific.
Whereas DR selectively decreases production of Ilp5 [89,146], HSD in adult flies reduces expression
of all three brain-produced Ilps [24], while the periphery remains insulin-sensitive [21]. By contrast,
the HFD-induced changes in the brain-produced Ilps are less clear [26,92]. Nevertheless, HFD leads
to reduced peripheral IIS, and to insulin resistance [92]. Altogether, the diet-induced obesity of flies
appears to be accompanied by reduced IIS, reminiscent of the diabetic phenotype of many obese
patients. However, in contrast to humans, the attenuation of insulin signaling does not endanger
health of the flies, but—on the contrary—extends their lifespan [32].

Diabetes and hyperglycemia in humans are associated with increased glucagon production, which
further worsens the diabetic phenotype [145]. Interestingly, HSD in flies leads to increased signaling
via the analogous AKH hormone [147]. Nevertheless—in contrast to humans—overactivation of the
AKH signaling extends lifespan [91,136].

In summary, the diet-induced dysregulation of the IIS and AKH signaling in obese flies
resembles the dysregulations of the corresponding pathways in obese humans. However, the health-
and lifespan-associated consequences of these dysregulations differ tremendously between flies
and humans.

4.2. The Fat Body

Similar to the human adipose tissue [144], the insect fat body is not only a deposit of neutral
fat [148], but also an important endocrine and immune organ [82,139,141,148]. In addition, the fat
body has a key role in the sensing of proteins and carbohydrates, and in the regulation of the
hypothalamus-like centers in the brain according to these dietary cues [82]. These endocrine functions
are mediated by several hormones secreted from the fat body, including the leptin analog Upd2, which
signals the nutritional state by acting on the GABAeric neurons that regulate secretion of Ilp2 [59].
There are several other factors derived from the fat body that regulate the insulin-producing cells in
the brain, including the peptide CCHamide-2 (CHHa2) with important developmental roles [60,149],
and the satiety signal encoded by the female-specific independent of transformer (fit) [150].

The fat body negatively regulates the production of Ilps in the mid-brain via Ilp6 [138]. The fat
body-specific overexpression of Ilp6 extends lifespan and fat storage [138], thus mimicking the ablation
of the insulin-producing cells in the brain [32]. In addition to the regulation of insulin production,
the fat body inhibits the IIS in the periphery by secreting Impl2, an Ilp2-binding protein from the
IGF-binding protein family [64]. The fat body remotely regulates additional pathways and processes;
for example, slows down the digestion via secreting the Activin-like ligand Dawdle, a repressor of
digestive enzymes [151].
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During larval development, the fat body has an important role in coupling nutrient availability to
growth. The nutrient sensing occurs via several pathways, including the amino-acid transporter
Slimfast, the TOR pathway [141], and the pathway activated by the systemically circulating
lipoprotein-associated form of the signaling protein Hedgehog (Hh) [152]. The circulating Hh is
produced by the midgut. The expression of hh increases upon starvation, when the Hh pathway
promotes mobilization of lipid reserves in the fat body [152]. Interestingly, the Hh signaling
was identified as the top-scoring anti-obesity pathway in a genome-wide obesity screen in adult
Drosophila [132]. Hh plays a crucial role in fat metabolism also in mammals [132], and is considered an
antagonist of aging and aging-associated diseases [153].

Many lifespan-extending manipulations, including those concerning the IIS and TOR pathways,
act via the fat body, and they are frequently coupled with obesity. For example, the fat body-directed
overexpression of foxo, a transcriptional factor repressed by the IIS, extends lifespan and increases
lipid accumulation [154]. The nutrient-sensing TOR pathway regulates lifespan via the fat body as
well [155]. Similarly, the fat body-specific inhibition of steroid signaling via EcR RNAi is sufficient for
the lifespan extension [111].

4.3. The Heart

Several studies have shown the importance of the heart in a remote regulation of fat reserves.
For example, a heart-specific signaling via Skuld—a subunit of the mediator transcriptional
complex—remotely regulates the fat storage in flies [156]. Similarly, the mammalian homolog of
Skuld, MED13, remotely regulates fat storage in mice [157]. The fly heart produces a substantial
proportion of the apoB-lipoproteins—the essential lipid carriers [158]. Under HFD, the apolipoproteins
derived from cardiomyocytes, and not those produced by the fat body, are the predominate regulators
of lipid metabolism [158].

As described in the part on the diet-induced obesity (Sections 3.1 and 3.3), the HSD- or
HFD-induced cardiomyopathies [19,26,93] may contribute to the lowered fitness in these types of
obesity. The heart damage seems to occur in a tissue-autonomous manner, either via the increased
hexosamine flux (in the case of HSD) [19], or via the overactivation of the TOR pathway and ectopic
fat accumulation (in the case of HFD) [93]. However, it is unknown whether the heart accumulates
ectopic fat only under the HFD [93] and HSD [19] regimes, or also in other types of obesity. Similarly
enigmatic is the mechanism that putatively prevents heart dysfunctions in the long-lived obese flies.

4.4. The Immune Cells

Human obesity is coupled with a chronic low-grade inflammation and activation of the immune
response, which leads to insulin resistance and metabolic syndrome [99,100]. The precise mechanism
behind the obesity-associated inflammation is not entirely clear. The immune response involves an
increase in macrophage numbers, infiltration of the adipose tissue and other organs with macrophages,
and enhanced production of proinflammatory cytokines TNF-α, interleukin 6 (IL-6), leptin, visfatin,
resistin, and others [100,159]. These cytokines trigger chronic inflammation, which subsequently
causes insulin resistance, hyperglycemia, and other metabolic complications [100]. In Drosophila,
feeding on HFD leads to an immune response as well, namely, to the enhanced production of
the macrophage-derived cytokine Upd3, which is responsible for the subsequent development of
hyperglycemia and insulin resistance [28]. The elegant study of Woodcock and colleagues [28] showed
that HFD shortens lifespan solely via the Upd3-dependent inflammatory response, and not via the
increase in fat storage. It remains to be investigated whether HFD activates, in flies, production of other
cytokines, and whether all types of fly obesity cause activation of the immune response. Altogether,
it is possible that the activation of an immune response is a common feature triggered by adiposity.
However, how is this process initiated under HFD, and avoided in the long-lived obese flies, remains
to be investigated.
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4.5. The Pericardial Nephrocytes

In humans, inflammation plays a central role in the development of diabetic
nephropathy—end-stage kidney disease associated with diabetes [160,161]. Although accompanied
by changes in several cell types in the kidney, diabetic nephropathy is caused mainly by
the injury of podocytes, specialized cells that encircle capillaries of the glomerulus [162,163].
Nephrocytes—specialized cells that filter hemolymph—are the functional homologs of mammalian
podocytes in the fly [164,165]. Analogous to the diabetic conditions in humans, HSD in flies
leads to damage of the pericardial nephrocytes, which is a condition reminiscent of the diabetic
nephropathy [31]. The podocyte injury is induced by increased hexosamine flux and enhanced activity
of the Polycomb gene complex. Interestingly, inhibition of this pathway is sufficient to protect from
the lifespan-shortening effect of HSD [31].

Altogether, the immune response and the increase in the hexosamine flux are responsible for the
lifespan shortening under the HFD and HSD regimes, respectively [28,31], while the fat accumulation
does not seem to be causative of aging in these types of Drosophila obesity.

4.6. The Gut

The gut plays a central role in the digestion and absorption of nutrients. In addition, the gut
regulates energy homeostasis via its endocrine and neuroendocrine functions [166]. The epithelial cells
of the midgut produce at least 12 different peptide hormones [166]. These peptides include, for example,
regulators of feeding, such as neuropeptide F (NPF) [167] and CCHa2 [60,168], and regulators of lipid
metabolism, such as Tachykinin (Tk) [169]. The digestive tract also express starvation-inducible gene
takeout (to) [166], which codes for a juvenile hormone-binding protein that promotes feeding [170,171]
and extends lifespan [172]. Interestingly, to is activated under several lifespan-extending manipulations,
including dietary restriction, downregulation of the IIS pathway, mth mutation, and repression of
ecdysteroid signaling [172,173],

The adult gut of Drosophila is a plastic organ capable of regeneration; epithelium of the midgut
renews within two weeks [166]. Maintaining intestinal homeostasis is important for healthy aging [174].
Senescence of the gut is associated with leakage of the epithelial barrier, increase in the proliferation of
the stem cells and accumulation of the undifferentiated progenitor cells [166,174]. The loss of the tissue
homeostasis leads to inflammation-like state, which activates the stress-induced Jun-N-terminal kinase
(JNK) pathway [175]. The JNK pathway promotes further overproliferation of intestinal stem cells,
which is directly responsible for lifespan shortening [176]. Overactivation of the JNK pathway also
leads to the chronic activation of the IIS-repressible factor Foxo, which inhibits expression of the lipase
Magro (Mag) [175], the key lipase necessary for digestion of triacylgylcerol [177]. Reduced Mag activity
thus leads to lowered body fat content in old flies [175]. Experimental inhibition of the JNK pathway,
or overexpression of Mag in the intestine increases fat reserves in old flies [175]. Moderate inhibition
of the JNK pathway also extends lifespan [176], but whether this effect is mediated by improved lipid
metabolism remains unclear. Mild increase in the intestinal Foxo signaling in aging flies might actually
be an adaptive response, as lifespan is extended by overexpression of Foxo by GeneSwitch drivers
with strong intestinal expression patterns, such as S106- and S32-GAL4 [154,178,179].

The microbiome of the fly gut depends on the diet [130], and contributes to the regulation of
energy metabolism [180]. Elimination of the microbiota leads to obesity, despite lower food intake of
axenic flies [180]. The effect of the gut bacteria on lifespan is less clear, as both lifespan shortening
effect [181], as well as longevity where reported for axenic flies [182]. The effect of the antibiotic
treatment on lifespan likely depends on the sex and age of the flies when antibiotics are applied [183].

Altogether, maintenance of the gut homeostasis is required for proper digestion and uptake of
lipids, as well as for longevity. In addition, the gut may link energy metabolism and longevity via
numerous endocrine and neuroendocrine factors, and via the gut microbiota.
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5. The Adaptive Roles of Hyperglycemia and Obesity

5.1. The Thrifty Genotype

Diabetes mellitus type 2 is a clearly harmful, nevertheless, surprisingly widespread disease.
In 1962, James Neel proposed the “thrifty genotype hypothesis” [184], arguing that in the course
of evolution, “thrifty” genetic variants that promoted accumulation of fat were positively selected,
because they enabled survival during famine periods. However, these genotypes became maladaptive
in modern societies where nutrition is not restricted, being now responsible for obesity, diabetes
type 2, and other metabolic complications. The thrifty genotype hypothesis predicted the existence
of a genetic predisposition for obesity and diabetes, and recent genome-wide association studies
indeed identified numerous obesity-associated loci [185]. Like human societies in the past, natural
populations of Drosophila are exposed to fluctuations in the food availability. Interestingly, there is also
a genetic variation in the fly genes associated with fat accumulation [127–130], suggesting that the
thrifty genotype hypothesis might explain the evolution of some types of Drosophila obesity as well.

5.2. Lipogenesis as a Protective Mechanism against Glucose Toxicity

Lipogenesis can be considered as a protective mechanism of sugar detoxification [25].
The evolution of fat storage not only enables survival during periods of food shortage, but also
provides a protection against hyperglycemia. However, when lipogenesis exceeds the storage capacity
of the adipose tissues, fat starts to accumulate in other organs. The ectopic fat storage elicits lipotoxicity,
which, in humans, leads to damage of the pancreatic beta cells, cardiomyocytes, hepatocytes, renal
parenchymal cells, and endothelial cells [186]. It has been suggested that many medical complications
of obesity result from the lipotoxic response in non-adipose tissues, rather than from accumulation of
fat in the adipocytes [186]. Thus, an increase in the lipid storage capacity of adipocytes might actually
be beneficial. This notion has been confirmed in the Drosophila models of the HSD-induced obesity,
in which an experimental increase in the fat storage improved tolerance to dietary sugars, whereas
genetic interventions leading to a lean phenotype exacerbated the consequences of HSD [25]. These
experiments highlight the importance of understanding the physiology of different types of obesity,
as the reduction of body fat may actually worsen health under certain conditions.

5.3. The “Obesity Paradox” and the Beneficial Roles of Body Fat

The fat reserves clearly provide an advantage under conditions of nutrient scarcity. Nevertheless,
numerous studies showed that the fat might have a protective role under ad libitum feeding as well.
For example, increased BMI correlates with an improved prognosis and lowered mortality in several
medical conditions. These include, for example, chronic heart failure and coronary diseases [187,188],
end-stage kidney disease [189], and cancer [190]. This phenomenon—a better prognosis of obese
individuals—is known also as the “obesity paradox”.

Obesity typically correlates with increased all-cause mortality [3,4]. Nevertheless, a meta-analysis
study by Flegal et al. [2] showed that whereas this is true for obesity (BMI ≥ 30), overweight
(BMI of 25 < 30) is actually associated with a significantly lower all-cause mortality, suggesting that
there are instances in which increased body fat provides an advantage. A positive role of stored lipids
has been shown in several others systems, including the budding yeast Saccharomyces cerevisiae, in which
excessive fat increases lifespan [191]. A recent review on the protective roles of triacylglycerides argued
that neutral fat prolongs lifespan in an energy-independent fashion, by protecting against various
stressors [192]. Interestingly, lipid droplets have antioxidant roles and protect stem cells also in
flies [193], suggesting that this beneficial function may involve other fly tissues as well. Longevity
models of Drosophila—such as the flies with downregulated TOR [34] and IIS [32] signaling, and the
Methuselah mutants [194]—have increased resistance to paraquat, a commonly used agent to elicit
oxidative stress in insects. Thus, it is tempting to speculate on a potential antioxidant role of the lipid
droplets in these long-lived obese flies.
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5.4. Adaptive Roles of the Stress-Induced Hyperglycemia

Chronic diabetes is dangerous for human health, yet there are instances when hyperglycemia
provides an advantage. In contrast to the chronic hyperglycemia, stress hyperglycemia is an important,
evolutionarily conserved mechanism to cope with injury and infection (reviewed in [195,196]).
In humans, this type of hyperglycemia is hormonally regulated by the hypothalamus–pituitary–adrenal
axis, sympathoadrenal system, and proinflammatory cytokines, which collectively induce
gluconeogenesis, glycogenolysis, and insulin resistance [195]. Stress-induced hyperglycemia was
reported in organisms ranging from worms to humans [196]. In Drosophila, an increase in circulating
sugars seems to be a common response to various forms of infections, including bacterial [197],
nematode [198], and wasp parasites [199]. This mechanism is highly adaptive, documented by the
fact that inhibition of the rise in circulating sugars, either by inhibition of the adenosine transport or
AKH signaling, increases sensitivity to the infections [198,199]. The infection-induced hyperglycemia
is likely mediated by the attenuation of the IIS pathway, as shown, for example, for the infection
by Mycobacterium marinum [197]. An experimental decrease of the IIS (by overexpression of foxo or
by mutation in the InR substrate Chico) is sufficient to increase the transcription of several immune
genes [200]. Thus, it seems that the increase in circulating sugars driven by the low IIS is sufficient
to enhance Drosophila immunity. As a case in point, the glucose-based HSD increases glycemia
and resistance to infection by the enteric pathogen Vibrio cholerae [21]. However, the sucrose-based
HSD increases susceptibility to infection by Pseudomonas aeruginosa [68]. Thus, it remains to be
determined whether these inconsistencies result from differential effects of dietary sugars (glucose [21]
vs sucrose [68]), or rather reflect pathogen-specific effects of HSD.

6. Limitations of the Comparisons among Drosophila Studies

Comparisons of individual studies on obese flies is limited by the variability in the methods
used to analyze and express the fat content (fat per fly, or normalized per body weight or per protein
content), as well as by the differences in the diets used across laboratories. There is no clear definition
of fly obesity yet; nevertheless, the normalization of fat content to the protein levels could fulfill a
similar function as the BMI index in humans. The field of Drosophila research would also undoubtedly
benefit from standardized diets, and from reporting the raw lipid and protein data in all obesity studies,
which would allow meaningful comparisons and meta-analyses of individual papers.

7. Potential Roles of the Fat Body Dynamics in Longevity

Even though fat accumulation in Drosophila often correlates with longevity (e.g., [21,32–36,85]),
experimental increase in the fat content via inhibition of the lipolytic pathways, for example,
by mutations of bmm or Akh, moderately decreases lifespan ([134] and M.G. and P.K unpublished
data [135]). Conversely, an increase in lipolytic AKH signaling extends lifespan [91,136], despite
causing a lean phenotype [53,54]. Studies by Katewa and colleagues [90,91] argued that lifespan
is extended by an increase in the fat turnover, i.e., by increase in both lipogenesis and lipolysis,
irrespective of whether it is associated with a lean phenotype (as in the case of Akh overexpression [91]),
or with obesity (as in the case of DR [90]). This hypothesis also explains the decrease in the lifespans
of the bmm [134] and Akh mutants (M.G. and P.K., unpublished data [135]), as their defects in lipid
mobilization probably reduce the global fat turnover rates.

However, how the DR-induced turnover is facilitated at the cellular level remains an open
question. Is it specific for the triacylglycerides, or does it reflect a general increase in the turnover of
all macromolecules, or even organelles? The longevity effects of the IIS and TOR downregulations
are associated with increased autophagy-mediated turnover of organelles [201–203]. Importantly,
as shown in mice, autophagy has an important role in lipid metabolism, promoting lipolysis and
breakdown of lipid droplets [204]. Thus, increased fat turnover might be linked to longevity via the
well-known lifespan-extending effects of autophagy [203].
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The relation between obesity, aging, and the dynamics of the fat body at the cellular level remains
enigmatic as well. In contrast to the larval fat body that consists of post-mitotic cells that grow solely
via endocycling [205], the cellular biology of the adult fat body is not well understood. The number of
fat body cells remains rather constant throughout life, while their size increases several fold within
the first days after eclosion [206]. The fat body cells are susceptible to stress-induced apoptosis [207],
can adapt to the increased adiposity by increasing the cellular proportion of lipid droplets [48,49],
and possibly also by growth and division [206]. Nevertheless, how these multinucleate and polyploid
cells proliferate, is not known, and the existence of fat body stem cells has not been reported to
date. The mechanism whereby the lifespan-extending manipulations affect the physiology of this
tissue remains to be investigated. Nevertheless, differential contribution of fat turnover, autophagy,
cell proliferation and growth in different types of obesity might explain why certain types of obesity are
coupled with lifespan shortening, whereas others are associated with longevity. In conclusion, the so
far unknown cellular biology of the Drosophila fat body may hold the key to a better understanding of
the interactions between fat storage, inflammatory responses, and lifespan.
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Abbreviations

Akh Adipokinetic hormone
BMI body mass index
bmm brummer
CCHa2 CCHamide-2
DR dietary restriction
EcR Ecdysone receptor
fit female-specific independent of transformer
foxo Forkhead Box, Sub-group O
HFD high-fat diet
hh hedgehog
HSD high-sugar diet
IGF Insulin-like growth factor
Ilp1–8 Insulin-like peptide 1–8
IIS insulin/insulin-like growth factor signaling
IL-6 interleukin 6
ImpL2 Ecdysone-inducible L2
InR Insulin-like receptor
JNK Jun-N-terminal kinase pathway
mag magro
MHO metabolically healthy obesity
mth methuselah
NPF neuropeptide F
Tk Tachykinin
TNF-α tumor necrosis factor-α
to takeout
TOR target of rapamycin
upd2 unpaired 2
upd3 unpaired 3
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