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Abstract: Skeletal muscle fiber types can contribute in part to affecting pork quality parameters. Biceps
femoris (Bf) (fast muscle or white muscle) and Soleus (Sol) (slow muscle or red muscle) are two typical
skeletal muscles characterized by obvious muscle fiber type differences in pigs. However, the critical
proteins and potential regulatory mechanisms regulating porcine skeletal muscle fibers have yet to be
clearly defined. In this study, the isobaric Tag for Relative and Absolute Quantification (iTRAQ)-based
proteome was used to identify the key proteins affecting the skeletal muscle fiber types with Bf and
Sol, by integrating the previous transcriptome data, while function enrichment analysis and a protein–
protein interaction (PPI) network were utilized to explore the potential regulatory mechanisms of
skeletal muscle fibers. A total of 126 differentially abundant proteins (DAPs) between the Bf and Sol
were identified, and 12 genes were found to be overlapping between differentially expressed genes
(DEGs) and DAPs, which are the critical proteins regulating the formation of skeletal muscle fibers.
Functional enrichment and PPI analysis showed that the DAPs were mainly involved in the skeletal-
muscle-associated structural proteins, mitochondria and energy metabolism, tricarboxylic acid cycle,
fatty acid metabolism, and kinase activity, suggesting that PPI networks including DAPs are the
main regulatory network affecting muscle fiber formation. Overall, these data provide valuable
information for understanding the molecular mechanism underlying the formation and conversion
of muscle fiber types, and provide potential markers for the evaluation of meat quality.

Keywords: pig; proteome; transcriptome; muscle fiber; meat quality

1. Introduction

Muscle, one of the most important components of the mammalian body, is composed
of various types of muscle fibers, with different physiological and metabolic properties [1]
to meet different physiological needs. Meat is mainly produced from muscles derived
from slaughtered animals. Meat eating quality is often assessed by various attributes in
livestock, such as tenderness, juiciness, and flavor [2], and these meat quality attributes
are mainly influenced by the muscle structure and properties [3], whereas the differences
in the muscle structure and properties are associated with the muscle fiber types, which
are closely related to many meat qualities, such as pH value, intramuscular fat, meat color,
water holding capacity, and tenderness [4,5]. Thus, the mechanisms underlying muscle
fiber formation are critical for elucidating the molecular mechanism of meat quality in
livestock Moreover, identifying the key genes is the key step to systematically elucidate the
regulatory mechanism of muscle fiber formation.

With the development of various omics approaches, many genes affecting muscle fiber
types in livestock have been identified using transcriptome technology [6–8]. However, an
inconsistency exists between the transcription and translation, so it is intriguing to identify
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the key genes regulating the skeletal muscle fiber types at protein level. In recent years,
several studies have investigated the proteomic differences in the process of postmortem
meat aging [9–11], mainly focusing on the dynamic changes that take place in the proteome
in the conversion of muscle to meat.

Proteomics is a high-throughput technique used for the quantitative analysis of the
entirety proteins in a cell, tissue, or organism under a specific, defined set of conditions. In
the past two decades, proteomic technologies have developed rapidly, and the methods
are generally classified into two categories: gel-based methods, and gel-free methods. The
gel-based methods include one-dimensional electrophoresis (1-DE) and two-dimensional
electrophoresis (2-DE), while gel-free techniques include isobaric tag for relative and ab-
solute quantification (iTRAQ), liquid chromatography-electrospray ionization-tandem
mass spectrometry (LC-ESI-MS), liquid extraction surface analysis mass spectrometry
(LESA-MS), matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF), and
nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS); and these pro-
teomic technologies have been widely used to identify the critical proteins associated with
meat qualities [9,12,13]. Moreover, the proteomic profiling of various skeletal muscles
has been conducted in many species, including cattle [9], sheep [14], horse [15], Chinese
perch [16], and mice [17], using different proteomics technologies. Notably, most of these
studies conducted the proteomic profiling using meat chilled for a long time, not fresh
muscle excised immediately after slaughter. In 2010, Mach et al., compared the porcine
proteomic profiling of meat semimembranosus and longissimus dorsi muscles collected after
24 h of carcass chilling from five different breeds [18], mainly focusing on the dynamic
changes of proteins in the postmortem meat aging process using surface-enhanced laser
desorption/ionization time-of-flight proteomics technology. From these studies, it can be
seen that it is more sensible to investigate proteomic differences of fresh muscles, with
various muscle fiber types collected immediately after the slaughter of livestock, which
will deepen our understanding of the genes controlling meat quality traits. In addition, the
iTRAQ-based proteomic method, as a mainstream technology, has recently been utilized to
identify a set of differentially expressed proteins among various groups in specific condi-
tions in many species, such as pigs [19,20], chickens [21], and ducks [22]. The difference
in skeletal muscle fiber types is one of the important factors affecting pork quality. Biceps
femoris (Bf) (fast muscle or white muscle) and Soleus (Sol) (slow muscle or red muscle)
are two typical skeletal muscles characterized by obvious muscle fiber type differences in
pigs; thus, we previously explored their different profiling through the high-throughput
whole-transcriptome technique [6]. However, the application of iTRAQ to identify the
differential proteomic profiles among porcine skeletal muscles with various muscle fiber
types has not been reported yet. Therefore, the objective of this study was to compare the
proteomic differences between the porcine fast-twitch muscle Bf and slow-twitch muscle
Sol, collected immediately after slaughter using iTRAQ technology, and reveal the key
proteins and pathways controlling meat quality traits in pigs.

2. Materials and Methods
2.1. Animals and Samples Collection

Three full-sibling Duroc ×Meishan female pigs numbered 28, 35, and 36 with similar
performances were selected for the dissection of skeletal muscle tissues; the pigs were
derived from the offspring of a Duroc boar crossed with eight Meishan sows. Two types
of skeletal muscles, Biceps femoris (Bf) (fast muscle or white muscle) and Soleus (Sol) (slow
muscle or red muscle), characterized by obvious differences in muscle fiber types, were
collected immediately from the same pig after slaughter. Thus, a total of six muscles—
namely, Bf28, Bf35, Bf36, Sol28, Sol35, and Sol36—were used for iTRAQ-based proteomic
analysis. The overall experimental design is shown in Figure S1. Detailed information on
the experimental pig population, phenotypic traits, and the characteristics of Bf and Sol
were previously described by Li et al. [6].
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2.2. iTRAQ Assays
2.2.1. Protein Extraction

The cold acetone method was used to extract the total protein from the six muscle sam-
ples, Bf28, Bf35, Bf36, Sol28, Sol35, and Sol36. Briefly, the six muscle samples were ground
into powder in liquid nitrogen, and lysis buffer, including ethylenediaminetetraacetic acid
(EDTA, 2 mM) (Lingfenghx, Shanghai, China), phenylmethanesulfonyl fluoride (PMSF,
1 mM) (Beyotime, Shanghai, China), and dithiothreitol (DTT, 10 mM) (Promega, Madison,
WI, USA), was added and mixed thoroughly, then centrifuged at 25,000× g for 20 min at
4 ◦C to collect the supernatant. Next, a 5-fold volume of cold acetone with 10 mM DTT
was added to the supernatant and incubated at −20 ◦C overnight and centrifugated at
25,000× g at 4 ◦C for 20 min to collect the pellets. Then, 1.5 mL of cold acetone and 10 mM
DDT were added to the samples, followed by centrifugation at 25,000× g at 4 ◦C for 20 min
to collect the pellets, which were dried in the air.

Subsequently, each pellet was resuspended using 1 mL of protein extraction reagent
[8 M urea, 4% (w/v) CHAPS (Roche, Basle, Switzerland), 30 mM HEPES (Sigma, Fremont,
CA, USA), 1mM PMSF, 2 mM EDTA, and 10 mM DTT], sonicated for 5 min, then centrifuged
at 25,000 × g for 20 min at 4 ◦C, to collect the supernatant. The supernatant was added to
10 mM DDT (final concentration) and incubated at 56 ◦C for an hour, to reduce the disulfide
bonds in proteins, before 55 mM iodoacetamide (IAM, final concentration) (Sigma, Fremont,
CA, USA) was added in a dark room for 45 min to block the cysteine. Finally, 5-fold volume
cold acetone with 10 mM DTT was added to the pellets, followed by incubation at −20 ◦C
overnight and centrifugation at 25,000× g at 4 ◦C for 20 min to collect the proteins, which
were dried in air. Each pellet was resuspended in 1 mL of protein extraction reagent and
sonicated for 5 min. The protein concentration and quality were determined with a 2-D
Quant Kit (General Electric Company, Boston, MA, USA) and verified by sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) on 12% gel. The samples were
stored at −80 ◦C for further analysis.

2.2.2. Protein Digestion and iTRAQ Labelling

Protein digestion was conducted with trypsin at a ratio of 1:20 (trypsin/protein).
Briefly, a 100 µL equivalent volume of protein sample was mixed with tetraethylammonium
bicarbonate (TEAB) at pH 8.5 and digested at 37 ◦C for 4 h, followed by treatment with
trypsin digestion solution, again at 37 ◦C for 8 h. The solvent was removed using a
SpeedVac vacuum concentrator (Thermo Fisher Scientific, Waltham, MA, USA).

Subsequently, iTRAQ labelling was performed using an iTRAQ labelling kit (Applied
Biosystems, Foster, CA, USA) following the manufacture’s protocol. Briefly, for each protein
sample, 100 µg of protein was denatured and the cysteines were blocked, then digested
with 5 µg of sequencing-grade modified trypsin (Promega, Madison, WI, USA) at 37 ◦C
for 36 h. The trypsin-digested samples were analyzed via MALDI-TOF-TOF to ensure
complete digestion and dried in a centrifugal vacuum concentrator. Following this, the
protein pellets were dissolved in 30 µL of 50% TEAB (Sigma, Fremont, CA, USA) together
with 70 µL of isopropanol and labelled with the 8-plex iTRAQ reagent. The protein samples
were labelled with iTRAQ tags, as follows: 114 (Bf28), 116 (Bf35), 118 (Bf36), 115 (Sol28),
117 (Sol35), and 119 (Sol36). Then, the iTRAQ-labelled protein samples were pooled and
subjected to strong cation exchange (SCX) fractionation.

2.2.3. Strong Cation Exchange Fractionation

SCX was conducted on a high-performance liquid chromatography (HPLC) system
(LC-20AB, Shimadzu, Tokyo, Japan) with an SCX column (Ultremex column, 4.6 mm
I.D. × 250 mm, Phenomenex, Torrance, CA, USA). The retained peptides were dissolved
using 4 mL buffer A (25 mM NaH2PO4 in 25% ACN, pH 2.7), and eluted using Buffer A
for 10 min, 5–35% Buffer B (25 mM NaH2PO4, 1M KCl in 25% ACN, pH2.7) for 20 min,
and 35–80% buffer B for 1 min, with at flow rate set at 1 mL/min when peptides flowed
into the columns. The fractions were collected every 15 min after sample injection and
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desalted using a Strata-X 33-µm Polymeric Reversed Phase column, then dried in a vacuum
concentrator and dissolved with 0.1% formic acid prior to reverse-phase nano-liquid
chromatography/tandem mass spectrometry (nLC-MS/MS).

2.2.4. nLC-MS/MS Analysis

The nLC-MS/MS analysis was performed on a Proxeon Easy Nano-LC system (Thermo
Fisher Scientific, Waltham, MA, USA) connected to a hybrid quadrupole/time-of-flight MS
(TOF-5600, Bruker, Leipzig, Germany). Specifically, the peptide content in each fraction
was first equalized, and a 10-µL aliquot of each fraction was injected twice into the Proxeon
Easy Nano-LC system. The peptides were first separated using a C18 analytical reverse-
phase column with mixtures of Solution A (5% acetonitrile/0.1% formic acid) and B (95%
acetonitrile/0.1% formic acid) at a flow rate of 300 nL/min. Then, the peptides were
eluted using a linear LC gradient elution program, as follows: the column was equilibrated
with 5% Solution B for 10 min; then, the following linear LC gradient elution procedure
was used for peptide elution: 5–45% Solution B from 10 to 80 min; 45–80% Solution B
from 80 to 85 min and 80% Solution B maintained for 15 min; 80–5% Solution B from
80 to 105 min and 5% Solution B held for 15 min. The SCX peptide fractions were pooled
together to obtain 17 fractions, to reduce the peptide complexity, and detected using a
hybrid quadrupole/time-of-flight MS (TOF-5600, Bruker, Leipzig, Germany) equipped
with a nanoelectrospray ion source. All of the mass spectrometry data were collected using
a Bruker Daltonics micrOTOFcontrol and processed and analyzed using data analysis
software (Bruker Daltonics, Bremen, Germany). The MS/MS scans were recorded from
50 to 2000 m/z. Nitrogen was used as the collision gas. The ionization tip voltage and
interface temperature were set at 1250 V and 150 ◦C, respectively.

2.3. iTRAQ Data Processing and Analysis
2.3.1. Identification of Proteins and Analysis

The collected raw files were converted into MGF files for the identification of proteins.
The UniProt databases were downloaded and integrated into the Mascot search engine
(version 2.3.02, London, UK). The parameters for the protein identification were set as
follows: trypsin was specified as the digestion enzyme, cysteine carbamidomethylation
as a fixed modification, iTRAQ 8Plex on the N-terminal residue, iTRAQ 8Plex on tyro-
sine (Y), iTRAQ 8Plex on lysine (K), glutamine as pyroglutamic acid, and oxidation on
methionine (M) as a variable modification. The tolerance settings for peptide identifica-
tion in the Mascot searches were 0.05 Da for MS and 0.05 Da for MS/MS. The Mascot
search results were exported into a DAT FILE and normalized and quantified using Scaf-
fold version 3.0 software (version Scaffold_4.7.2, Proteome Software Inc., Portland, OR,
USA). Confident protein identification is based on at least one unique peptide with an
FDR <0.01. Protein quantification was based on the intensity of the reported ions of the
assigned peptides with at least two unique spectra, and Bf28 was used as a reference to
calculate the relative protein abundance. Subsequently, principal component analysis (PCA)
was performed to detect the differences among the muscles, using all the protein expression
data. Furthermore, gene ontology (GO) annotation and classification for all the proteins
were conducted using the WEGO (web Gene Ontology Annotation Plot) web service
(https://biodb.swu.edu.cn/cgi-bin/wego/index.pl, 4 May 2022). Annotation and classifi-
cation of clusters of orthologous groups of proteins (KOG) for all proteins were performed
according to the COG database (http://www.ncbi.nlm.nih.gov/COG/, 4 May 2022). Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway annotation was conducted using
the KEGG Pathway Database (http://www.genome.jp/kegg, 4 May 2022).

2.3.2. Identification of Differentially Abundant Proteins (DAPs) and Analysis

DAPs were determined using Fisher’s test, according to the following criteria: fold
change ≥1.2 or ≤0.83 and a p-value < 0.05. Hierarchical clustering of protein expression for
DAPs was conducted using the online tool Pretty Heatmap, based on the Pearson distance
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matrix method (http://www.ehbio.com/, 20 July 2022). Moreover, eleven DPAs were
randomly selected, and the corresponding differences in mRNA expression between Bf
and Sol muscles were detected using qRT-PCR. The primers for DAPs detection are shown
in Table S1. The relative gene expression was calculated using the 2−44Ct method, and
HPRT was used as an endogenous reference gene. Furthermore, GO enrichment analysis
for DAPs was conducted using Blast2GO (http://www.blast2go.org, 4 May 2022), and
KEGG pathway enrichment analysis was conducted using the KEGG Pathway Database
(http://www.genome.jp/kegg, 4 May 2022). The hypergeometric test was used to calculate
the p-values, and p-values < 0.05 were determined to be significantly enriched. Protein–
protein interaction (PPI) analysis for all the DAPs, and the analysis of DAPs from the top
20 significantly enriched KEGG pathways were carried out using the web tool STRING
with a medium confidence value of 0.4 and four active interaction sources: co-occurrence,
experimental evidence, existing databases, and text-mining. The protein networks were
clustered by the MCL algorithm with an inflation parameter of 3 (http://string-db.org/,
20 July 2022).

2.4. Integrative Analysis of the Proteome and Transcriptome Data

Previously, we constructed six transcriptome libraries, using Biceps femoris (Bf28, Bf35,
Bf36) and Soleus (Sol28, Sol35, and Sol36), and carried out gene expression analysis and
the identification of differentially expressed genes (DEGs) [6]. Here, we performed a
correlation analysis of all the gene expressions in the transcriptome and proteome data.
First, the ratio of Sol to Bf was calculated using the expression of all genes and proteins
in the transcriptome and proteome data and the expression ratio was transformed to log2
(expression ratio). Then, the Pearson correlation between them was analyzed for all the
genes and proteins identified, and the expression association of genes and proteins was
shown using a nine-quadrant diagram. Furthermore, we re-identified the DEGs using the
R packages DEseq2 (version 3.15), based the pig reference genome sequence (Sscrofa 11.1)
with the criteria of “FDR < 0.05 and absolute value of log2 (fold change) > 1”. Then, we
performed intersection analysis using the DEGs and the genes corresponding to the DAPs.

3. Results
3.1. Summary of iTRAQ-Based Proteome Data

After LC-MS/MS analysis, a total of 375,816 spectra were generated, which included
32,593 matched spectra, corresponding to 19,091 unique spectra, 4417 peptides, and
3769 unique peptides. Ultimately 1002 proteins (Table S2) were identified in all skele-
tal muscle samples according to the criterion described in the “Materials and Methods”.
The peptide length, protein mass, distribution of protein sequence coverage, and peptide
number are shown in Figure S2. The distribution of peptide length was close to a normal
distribution. Among the identified proteins, about 63.3% of the proteins had molecular
weights ranging from 20 to 60 kD. Moreover, the number of proteins decreased with the in-
crease in protein sequence coverage. Most of the proteins contained fewer than 10 peptides,
and the number of proteins also decreased with the increase in peptides.

3.2. Functional Annotation and Classification of the Identified Proteins

In order to elucidate the biological significance of proteins, GO and KOG annotation
and classification, and KEGG pathway annotation were first performed using all proteins
identified in the skeletal muscle. The results are shown in Figure 1 and Table S3.

As the GO analysis shows in Figure 1A, the function of proteins was mainly catego-
rized as “cellular process” and “metabolic process” for “biological process”; “cell” and
“cell part” for “cellular component”; and “biding” and “catalytic activity” for “molecular
function”. As the COG analysis shows in Figure 1B, most of the proteins were classified as
“signal transduction mechanisms”, followed by “posttranslational modification, protein
turnover, and chaperones”. Moreover, relatively more proteins were classified as “cytoskele-
ton”, “intracellular trafficking, secretion, and vesicular transport”, and “energy production

http://www.ehbio.com/
http://www.blast2go.org
http://www.genome.jp/kegg
http://string-db.org/
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and conversion”. As the KEGG pathway annotation shows in Table S3, many proteins were
classified in pathways related to skeletal muscle metabolism, such as “oxidative phospho-
rylation”, “carbon metabolism”, “glycolysis/gluconeogenesis”, “biosynthesis of amino
acids”, “fatty acid degradation”, “pyruvate metabolism”, and “citrate cycle (TCA cycle)”.
Moreover, many proteins were enriched in pathways associated with human diseases, such
as “Parkinson’s disease”, “Alzheimer’s disease”, and “Huntington’s disease”. Overall, the
identified proteins were closely related to the physiological and metabolic properties of
skeletal muscle.
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3.3. DAP Identification and GO Terms and KEGG Pathways Enrichment Analysis

After the identification of proteins, the relative protein abundance was calculated
and a PCA was carried out using the expression level of all the identified proteins. The
PCA results showed that there were obvious differences between the Bf and Sol samples
(Figure 2), suggesting that the reliable DAPs could be obtained using Bf and Sol.
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According to the criteria of a fold change≥1.2 or≤0.83 and a p-value < 0.05, 126 DAPs
between Bf and Sol were identified in this study, including 38 downregulated DAPs and
88 upregulated DAPs (Figure 3, Table S4).
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Figure 3. Identification of DAPs between fast-twitch and slow-twitch muscles. A volcano plot was
drawn to show the DAPs between Bf and Sol. The green dots indicate significantly downregulated
proteins (p < 0.01 and fold change <0.83), the blue dots indicate significantly downregulated pro-
teins (p < 0.05 and fold change <0.83), the yellow dots indicate significantly upregulated proteins
(p < 0.01 and fold change >1.2), the red dots indicate significantly upregulated proteins (p < 0.05 and
fold change >1.2), and the black dots represent proteins with non-significant (p > 0.05 or 0.83 < fold
change <1.2) differences in expression.
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The cluster analysis based on the protein abundance of DAPs showed that the three
biological replicates of Bf or Sol clustered into one group (Figure S3), suggesting that the
reliable DAPs were obtained between fast- and slow-twitch muscles. In addition, the
reliability of DAPs was validated at the transcriptional level using qRT-PCR. The results
showed a high consistency between the expression of proteins and mRNAs in our study,
and the Pearson correlation coefficient of the log2 (fold change) data between the qRT-PCR
and iTRAQ was 0.84, although 2 of 11 proteins showed the opposite expression patterns
(Figure S4). Subsequently, GO and KEGG pathway enrichment analyses were conducted to
explore the functions of the DAPs (Figure 4 and Table S5).
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Figure 4. GO and KEGG pathway enrichment analysis of DAPs. (A) GO enrichment analysis of
DAPs. (B) KEGG pathway enrichment of DAPs. The top 20 enrichment GO terms and pathways are
shown, and detailed information can be found in Table S5.

The GO analysis results showed that “mitochondrion”, “transmembrane transporter
activity”, and “transmembrane transport” were the most significantly enriched GO terms
for “cellular component”, “molecular function”, and “biological process”, respectively.
Moreover, “organelle”, “catalytic activity”, and “single-organism process” were the most
significantly enriched GO terms for “cellular component”, “molecular function”, and
“biological process”, respectively. The KEGG pathway analysis results showed that the
metabolism-related pathways were dominated by the significantly enriched pathways, and
“cardiac muscle contraction” and “fatty acid metabolism” were the two most significantly
enriched pathways. Moreover, some skeletal muscle fiber-related signaling pathways
were significantly enriched, such as the “calcium signaling pathway” and the “cGMP-PKG
signaling pathway”.

3.4. Interaction Network of DAPs

Protein interactions were analyzed for all the DAPs (Figure 5A), and the DAPs from
the top 20 most significantly enriched KEGG pathways (Figure 5B) were determined using
the website STRING.

The results obtained from all the DAPs showed that the PPI enrichment p-value was
lower than 1.0 × 10−16 and the average local clustering coefficient was 0.54, indicating that
these DAPs had significant interaction connections. The cluster analysis results showed
that all the DAPs were clustered into 18 groups, among which the average local clustering
coefficient of the top five clusters ranged from 0.7 to 0.9, indicating that the DAPs in these
pathways had a strong interaction. The first cluster had the largest number of DAPs (17),
mainly involving the skeletal-muscle-associated structural proteins, such as MYH2, MYH7,
MYL3, ACTN2, TNNC1, and TNNT1. The DAPs in the second cluster were mainly involved
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in the mitochondria and energy metabolism, such as COX5A, COX6C, COX7A1, ATP5L,
ATP5PD, ATP5J2, and ATP5B. The DAPs in the third cluster were mainly involved in the
tricarboxylic acid cycle. The DAPs in the fourth cluster were mainly involved in the fatty
acid metabolism. The DAPs in the fifth cluster were related to kinase activity. Similarly,
the results from the DAPs in the top 20 most significantly enriched KEGG pathways
showed that the PPI enrichment p-value was lower than 1.0 × 10−16 and the average
local clustering coefficient was 0.66, indicating that these DAPs had significant interaction
connection. The cluster analysis results showed that the DAPs were clustered into seven
groups, and the DAPs in the first two clusters were mainly involved in mitochondria and
energy metabolism.

Figure 5. Protein–protein interaction (PPI) network of DAPs. (A) PPI network of all the DAPs. (B) PPI
network of the DAPs from the top 20 most significantly enriched KEGG pathways. The interaction
network was constructed using the web-based search STRING database. Line color indicates the
type of interaction evidence: the light blue line indicates the known interactions from the curated
databases, the purple line indicates the known interactions that were experimentally determined, the
blue line indicates the predicted interactions of co-occurrence genes, and the yellow line indicates the
PPI using the text mining method. Solid line represents the PPIs that were experimentally validated,
whereas the dotted line represents the PPIs that have not yet been validated.

3.5. Association Analysis between Proteome and Transcriptome

The expression of genes in the transcription and translation levels is often inconsistent.
To explore the association between the proteome and transcriptome, we calculated the
Pearson correlation coefficient using the log2 (expression ratio) of all the genes and proteins,
and the expression patterns of genes in transcription and translation levels are shown using
a nine-quadrant diagram (Figure 6A).
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Figure 6. Integrated analysis of transcriptome and proteome. (A) Overall correlation between mRNA
and protein changes displayed using a nine-quadrant diagram. x axis represents log2 (fold change)
of proteins and y axis represents the log2 (fold change) of mRNAs. The correlation coefficient and p
value of the transcriptome and proteome are shown at the top of the graph. Each dot represents a
gene and protein. The black dots represent non-differentially expressed proteins and genes; the red
dots represent the genes and proteins whose expression trends are consistent or opposite; the green
dots represent the DEGs but not DAPs; and the blue dots represent DAPs but not DEGs. (B) Venn
plot of DAPs and DEGs. The gene name and Ensemble ID for the 12 overlapped genes are shown in
the “Results” section of the main text.

The results showed that there was a high association, with a Pearson correlation coefficient of
0.63 between gene expression in the proteome and transcriptome in the present study, indicating a
good consistency between the proteome and transcriptome in our study. The detailed annotation
information of genes in each quadrant is shown in Table S6. Moreover, a total of 295 DEGs with
the “FDR < 0.05 and absolute value of log2 (fold change) > 1” were identified, and 87 no redun-
dant genes corresponding to 126 DAPs were extracted. A total of 12 genes overlapped between
DEGs and DAPs (Figure 6B). These genes include MYBPC1 (ENSSSCG00000000866), MYH7 (EN-
SSSCG00000002029), ACTN2 (ENSSSCG00000010144), ANKRD2 (ENSSSCG00000010522), MYL3
(ENSSSCG00000011325), TNNC1 (ENSSSCG00000011441), LMCD1 (ENSSSCG00000011538),
CSRP3 (ENSSSCG00000013354), TNNT1 (ENSSSCG00000025353), TNNI1 (ENSSSCG00000024061),
HSPB6 (ENSSSCG00000023498), and a novel gene (ENSSSCG00000039506), which represent the
critical candidate genes for the formation of skeletal muscle fibers.

4. Discussion

It had been demonstrated that the difference in skeletal muscle fiber types is one of
the critical factors affecting meat quality [23–26]. The identification of the critical genes
affecting the skeletal muscle fiber types and elucidating their regulatory mechanisms will
be of great significance for the improvement of meat quality traits in livestock. Bf and
Sol are two types of skeletal muscle tissues with significant differences in meat color and
the expression of muscle-fiber-type-associated marker genes in pigs [6]. Previously, we
constructed whole-transcriptome profiles using Bf and Sol; and identified many critical
protein-coding genes [6], non-coding genes including microRNAs [27], long non-coding
RNAs (lncRNAs) [8], and circular RNAs (circRNAs) [7] related to skeletal muscle fibers. It
is well known that these proteins are the end product of coding genes executing a function,
and these expressions of genes may be inconsistent at the transcriptional or translational
levels. Thus, the aim of this study was to screen the DAPs between Bf and Sol using the
proteomic technique and combine the transcriptome data to find the critical genes related
to porcine skeletal muscle fibers and pork quality.

The iTRAQ-based proteomic method is a technique that is commonly used for protein
relative quantification [28]. In the present study, 1002 proteins were identified. The number
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identified was relatively small compared to the number identified in some studies using
iTRAQ assays [22,29,30] but is consistent with the proteomic research of skeletal muscle
in pig [20]. These different results may be influenced by species, tissues, and the process
used for the detection of proteins. Moreover, the correlation analysis showed a good
consistency between the observed genes and the expression of proteins (Figure 6A), which
is consistent with other proteomic studies conducted using iTRAQ assays [31]. Additionally,
the consistency between the genes and proteins expression was further validated through
the quantification of DAPs using a real-time PCR method (Figure S4). However, our results
are not consistent with previous studies in human and mouse [32,33], in which, although the
skeletal muscle tissues were used, an overall low correlation between mRNA and protein
was observed. These differences may be influenced by species and physiological status.

According to the criteria commonly adopted (fold change ≥1.2 or ≤0.83 and a
p-value < 0.05), we identified 126 DAPs between Bf vs. Sol, which represent the criti-
cal candidate proteins affecting the characteristics of skeletal muscles. Many DAPs are
involved in the structure of skeletal muscle, such as PVALB, MYH7, MYL2, MYL3, TNNC1,
MYH2, TNNI1, and TNNT1, and MYH7 and MYH2 are involved in skeletal muscle fiber
types, [34,35], suggesting the DAPs identified in this study are promising candidate genes
affecting meat quality. Notably, PVALB is related to Ca+ metabolism [36] and was reported
to be a critical candidate gene affecting pork quality [37]. Other DAPs are associated with
the mitochondria and energy metabolism of muscle, such as ATP5B, ATP2A1, PKM, COQ6,
COX6C, CA3, AK1, and HADHA. This can also be seen in the results of protein interactions
(Figure 6). Intriguingly, the PHKG1 and RYR1 have been proven to be two major genes
affecting pork quality traits [38,39] and were also the DAPs in this study, supporting the
importance of the DAPs identified here. Carbonic anhydrase 3 (CA3) is a key enzyme
mediating the reversible hydration of carbon dioxide, is enriched in slow-twitching type
I fibers, and can be used as an ideal marker for studying fiber-type shifting and muscle
adaptations [40]. In addition, some DAPs have been demonstrated to affect meat quality,
such as LDHB [41], AMPD1 [42], and PKM [43]. Moreover, in the KEGG enrichment
analysis, skeletal-muscle-fiber-related signaling pathways, such as the “Calcium signaling
pathway (ko04020)”, were found to be significantly enriched. Additionally, “Fatty acid
metabolism (ko01212)”, “Fatty acid degradation (ko00071)”, and “Fatty acid elongation
(ko00062)” were also found to be significantly enriched, suggesting that the skeletal muscle
fiber types may be impacted by fatty acid metabolism. Generally, many of the KEGG
pathways enriched in proteomic analysis in the present study overlapped with those in our
previous transcriptome analysis [6–8,27], indicating that the overlapped enriched KEGG
pathways may play a crucial role in the formation of skeletal muscle fibers. Finally, we
screened 12 genes between DEGs and DAPs in an overlapping analysis; the pathways
involved in these genes are critical for the formation of skeletal muscle fibers.

5. Conclusions

In summary, we conducted the differential proteomic profiling of fast- and slow-twitch
muscles using an iTRAQ-based proteomic method and identified 126 DAPs between Bf and
Sol, deepening our understanding of the difference between fast- and slow-twitch muscles
at the protein level. Notably, after a combined analysis with transcriptome profiling data,
12 genes were found to overlap between DEGs and DAPs, which are the key candidate
genes regulating the formation of skeletal muscle fibers. Moreover, the results obtained
from the functional classification, the enrichment analysis of DAPs, and the PPI network
provide valuable information for the regulation of skeletal muscle fiber. Overall, our study
reveals new promising key proteins controlling skeletal muscle fiber type formation, which
may be useful for the improvement of meat quality traits in pigs. Further studies are still
needed to reveal the roles of these DAPs, the enriched pathways, and the PPI network in
the regulation of skeletal muscle fiber types.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11182842/s1, Figure S1: Experimental design and work-
flow for quantitative proteomic difference analysis between Biceps femoris (Bf) and Soleus (Sol);
Figure S2. Summary of iTRAQ-based proteomics data for porcine skeletal muscles. Basic information
statistics for spectra, peptide and protein. (B) Distribution of peptide length. (C) Distribution of
protein mass. (D) Distribution of peptide sequence coverage. (E) Distribution of proteins containing
different number of identified peptides; Figure S3: Heatmap of DAPs between fast-twitch and slow-
twitch muscles. Protein expression were log10 transformed and displayed in colors from red (high
abundance) to blue (low abundance). Columns are clustered using Pearson’s correlation distance.
The samples are classified into two clusters, the first cluster comprised Bf28, Bf35 and Bf36, and
the second cluster included Sol28, Sol35 and Sol36; Figure S4: Validation of DAPs and correlation
analysis. (A) Validation of DAPs using qRT-PCR (n = 3). Relative mRNA expression levels were
calculated using the 2−∆∆ct value method, and porcine HPRT was used as an endogenous reference
gene. The x-axis represents DAPs and y-axis represents the log2 (fold change) of DAPs derived from
qRT-PCR and iTRAQ data. (B) Correlation analysis of the expression of DAPs between qRT-PCR and
iTRAQ data. The x and y-axis represent the log2 (fold change) of DAPs detected by qRT-PCR and
iTRAQ data, respectively. Table S1: Primers used for qRT-PCR analysis; Table S2: Proteins identified
in porcine skeletal muscles; Table S3: Function annotation of all identified proteins in this study;
Table S4: Detailed information of DAPs between fast-twitch and slow-twitch muscles; Table S5: GO
and KEGG enrichment analysis of DAPs; Table S6: Annotation information of nine quadrant associate
analysis of mRNA and proteins.
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