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Abstract
The acquisition of genome sequences from a wide range of insects and other arthropods has

revealed a broad positive correlation between the complexity of their chemical ecology and

the size of their chemosensory gene repertoire. The German cockroach Blattella germanica is an

extreme omnivore and has the largest chemosensory gene repertoire known for an arthropod,

exceeding even the highly polyphagous spider mite Tetranychus urticae. While the Odorant Recep-

tor family is not particularly large,with 123 genes potentially encoding 134 receptors (105 intact),

the Gustatory Receptor family is greatly expanded to 431 genes potentially encoding 545 recep-

tors (483 intact), the largest known for insects and second only to the spider mite. The Ionotropic

Receptor family of olfactory and gustatory receptors is vastly expanded to at least 897 genes

(604 intact), the largest size known in arthropods, far surpassing the 150 known from the damp-

wood termite Zootermopsis nevadensis. Commensurately, the Odorant Binding Protein family is

expanded to the largest known for insects at 109 genes (all intact). Comparison with the far

more specialized, but phylogenetically related termite, within the Dictyoptera, reveals consider-

able gene losses from the termite, andmassive species-specific gene expansions in the cockroach.

The cockroach has lost function of 11%–41%of these three chemoreceptor gene families to pseu-

dogenization, and most of these are young events, implying rapid turnover of genes along with

thesemajor expansions, presumably in response to changes in its chemical ecology.

1 INTRODUCTION

The past two decades have seen the availability of genome sequences

for numerous insects and other arthropods. Among the many insights

these have provided is recognition of the extremely variable sizes of

the various gene families involved in allowing arthropods to sense

external chemicals. These gene families include the Odorant Binding

Protein (OBP), Odorant Receptor (OR), Gustatory Receptor (GR),

and Ionotropic Receptor (IR) families, as well as some smaller fam-

ilies (Leal, 2013; Benton 2015; Joseph & Carlson, 2015; Rimal &

Lee, 2018). Arthropods vary enormously in the complexity of their

chemical ecology, and their chemosensory gene repertoires covary

with it. Extreme examples of this relationship are the most prominent.

For example, the smallest chemosensory gene families are found in

obligate parasites or mutualists with limited need for diverse chemical
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sensing ability, for example, the human body louse Pediculus humanus

(Kirkness et al., 2010) and the fig wasp Ceratosolen solmsi (Xiao

et al., 2013). In contrast, there are insects with complex chemically

mediated social lives, like ants, with massive expansions of the OR

family (Smith et al., 2011a, b; Zhou et al., 2012), many of which are

now known to mediate perception of their highly diverse cuticular

hydrocarbons (Pask et al., 2017), or highly polyphagous species like

the moth Spodoptera frugiperda (Gouin et al., 2017) and the spider mite

Tetranychus urticae (Ngoc et al., 2016), with massive expansions of

the GR family. More subtle examples are also available, for example,

the depauperate GR family in the honey bee Apis mellifera (Robertson

& Wanner, 2006), thought to be commensurate with its mutualistic

relationship with plants, and the considerable contraction of the OR

and GR families of the tsetse fly Glossina palpalis (Obiero et al., 2014),

commensurate with the reduced complexity of its chemical ecology
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compared to most flies. Finer-grained examination of close relatives

has revealed the on-going processes of gene gain and loss thatmediate

these grander patterns, for example, in the monophagous Drosophila

sechelliaon the Seychelles islands (McBride, 2007;McBride&Arguello,

2007) or the unusual pestiferous Drosophila suzukii (Hickner et al.,

2016). Genome sequences are nearly essential for discovering the size

and complexity of these processes as these gene families commonly

encode highly divergent proteins making them difficult to identify by

screening methods, and they are commonly expressed at such low

levels that transcriptome studies, even of chemosensory tissues such

as antennae, palps and legs, will only detect some of them unless

carried out at extreme sequencing depths, for example, the neuro-

transcriptome of the yellow fever mosquito Aedes aegypti (Matthews,

McBride, DeGennaro, Despo, & Vosshall, 2016). Even then, there

are gene family members not expressed in obvious chemosensory

tissues, whereas pseudogenes are rarely transcribed and provide

useful insights into gene family evolution (e.g., Smith et al., 2011a). The

ongoing deluge of arthropod genome sequences promises to provide

manymore examples of the connection of chemosensory repertoire to

chemical ecology, and onemore extreme example is described here.

The German cockroach, Blattella germanica Linnaeus, is a

widespread human commensal species (Schal, Gautier, & Bell,

1984; Schal, 2011), where it causes considerable problems beyond

annoyance, including allergic responses leading to asthma (Gore &

Schal, 2007; Rabito, Carlson, He,Werthmann, & Schal, 2017) and being

a passive vector for potential pathogens. It is an extreme omnivore,

feeding on almost any available foods, with a preference for “sweet”

tastes (Schal et al., 1984). This biological preference was exploited in

the development of insecticide baits that use sugars such as glucose

(Schal & Hamilton, 1990). Resistance to these baits has evolved via

the expected pathways of insecticide resistance (e.g., Gondhalekar

& Scharf, 2012), but also remarkably by evolution of aversion to the

sugar bait (Silverman & Bieman, 1993; Silverman & Ross, 1994). This

aversiveness to glucose has been demonstrated to involve percep-

tion of glucose by the “bitter” neuron in each gustatory sensillum

(Wada-Katsumata, Silverman, & Schal, 2011, 2013). This switch might

involve misexpression of a glucose receptor in these “bitter-sensing”

neurons ormodified recognition of glucose by a receptor that normally

senses a “bitter” compound. Thus, in addition to illuminating the

chemosensory biology of this cockroach, documenting the major gene

families encoding chemosensory proteins is a prerequisite to attempts

to understand the molecular basis of this sugar aversiveness. Food

preferences are also used in mate-recognition and acceptance, as

the courting male offers the female a nuptial gift in his tergal gland

rich in sugars (maltose and other oligosaccharides) and phospholipids

(Wada-Katsumata, Ozaki, Yokohari, Nishikawa, & Nishida, 2009). This

cockroach also uses chemoperception in other contexts, including

long-range mate-finding with volatile sex pheromones (Nojima, Schal,

Webster, Santangelo, & Roelofs, 2005), contact-based sexual recog-

nition with derivatives of cuticular hydrocarbons (Eliyahu, Nojima,

Mori, & Schal, 2008), and aggregation (Wada-Katsumata et al., 2015),

so a complete documentation of its chemosensory genes and encoded

proteins lays the ground for improved understanding of many aspects

of the chemical ecology of B. germanica.

Three previous publications describe aspects of the chemosen-

sory repertoire of this cockroach. Zhou et al. (2014) described par-

tial sequences for 14 OBPs, two ORs, and four GRs from a whole

body transcriptome conducted using pyrosequencing, whereas Niu,

Liu, Dong, andDong (2016) expanded theOBP total to 48mostly com-

plete sequences by performing an antennal transcriptome using ILLU-

MINA sequencing and also found five ORs and 5 IRs, albeit mostly par-

tial sequences. The sequencing of theB. germanica genomeas part of an

i5k pilot project (Robinson et al., 2011; i5k Consortium 2013) allowed

Harrison et al. (2018) to compare the repertoires of intact OR and IR

genes of this cockroach with those of the dampwood termite Zooter-

mopsis nevadensis (Terrapon et al., 2014) and two other termites they

sequenced, revealing massive expansion of the IR family in this cock-

roach relative to the termites. Here we describe all four gene fami-

lies in complete detail, including their many pseudogenes, and reveal

that not only is the IR family massively expanded in this cockroach

far beyond that known for any other arthropod, but the GR and OBP

families are the largest known for insects, commensurate with the

broad requirements of this cockroach to sense diverse chemicals in its

environment.

2 MATERIALS AND METHODS

Searches for B. germanica chemosensory genes were conducted on the

genome assembly of Harrison et al. (2018) using TBLASTN at the i5k

Workspace (Poelchau et al., 2014) with proteins from the Z. nevaden-

sis families and other insects (Terrapon et al., 2014) and E values up

to 1000. Iterative searches with newly discovered genes and their

encoded proteins were undertaken in an effort to exhaustively dis-

cover all gene family members. Gene models were built in the Apollo

browser at the i5kWorkspace, with supporting evidence fromRNAseq

data from three sources, all generated with ILLUMINA sequencing:

the antennal set from Niu et al. (2016), a head set from Drinnenberg,

Henikoff, andMalik (2014) available fromtheShortReadArchive (SRA)

at NCBI as SRX682022, and a head set generated by A. W-K. and C. S.

(available in the SRA as SRX3189901/2). Partial genemodels resulting

from difficulties with the genome assembly were repaired when possi-

ble using a combination of the above RNAseq reads and raw genome

reads from the SRA. Pseudogenes were translated as best possible,

using Z for stop codons and X for frameshifts and other obvious pseu-

dogenizing mutations like large insertions or deletions and splice junc-

tion mutants, but only named and included if they encoded at least

half the length of a typical gene family member. Some pseudogenes

were so badly degraded that despite being nearly full-length theywere

not reconstructed and are not included in the protein sets, but were

included in the pseudogene statistics. The same length criterion was

employed for gene fragments that could not be repaired. Proteins from

B. germanica and Z. nevadensis were aligned within each gene fam-

ily, along with representatives from other insects, using ClustalX v2.1

(Larkin et al., 2007), and gene models were refined in light of these

alignments. All protein sequences are available as Supporting Informa-

tion, and the transcripts and protein sequences for all intact and con-

tiguousmodels are available from the i5kWorkspace.
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For phylogenetic analyses, aligned protein datasets were trimmed

using TrimAl v1.4 (Capella-Gutierrez et al. 2009), using the “gappyout”

option for the OR, GR, and OBP families, which are of reasonably uni-

form length, and the “strict” option for the IRs, which vary consider-

ably in the length and sequence of their N-termini, most of which was

effectively removed from the alignment.Maximum likelihood phyloge-

netic analysis was performed with PhyML v3.0 (Guindon et al., 2010)

using default settings with support for nodes evaluated using their

approximate Likelihood Ratio Tests (aLRT). Trees were arranged

and colored with FigTree v1.4.2 (https://tree.bio.ed.ac.uk/software/

figtree/), and figures prepared in Adobe Illustrator.

Expression levels of the OBPs were compared between the anten-

nal RNAseq of Niu et al. (2016) and our RNAseq from heads with

antennae (SRX3189901/2). Trimmed readswere aligned to transcripts

from our complete gene models, with 5′ and 3′ untranslated regions

included, using the Burrows-Wheeler Aligner (BWA) (Li & Durbin,

2009). Samtools (Li et al., 2009)was used to sort, index, and summarize

the BWA. Read counts were standardized as counts per kb. These two

libraries are of comparable size with 67,706,096 reads from Niu et al.

(2016) and 77,726,077 reads from our heads-with-antennae RNAseq,

so counts were not standardized by library depth as our comparisons

are primarily within each dataset.

3 RESULTS AND DISCUSSION

3.1 TheOR family

The OR family evolved from a lineage of the diverse GR family within

insects (Robertson,Warr, & Carlson, 2003;Missbach et al., 2014; Ioan-

nidis et al., 2017), with the wingless firebrat Thermatobia domestica

expressing at least three members of the family in their antennae,

but the slightly older lineage of the bristletail Lepismachilis y-signata

appearing not to have any ORs (Missbach et al., 2014). In all insects

with a genome sequence examined to date the family consists of a sin-

gle highly conserved gene encoding a coreceptor, known as Orco, as

well as 4–400 “specific” ORs that mediate the specificity and sensi-

tivity of insect olfaction (Leal, 2013; Benton 2015; Joseph & Carlson,

2015). The family ranges enormously in size in insects, from a low of

five genes in the damselfly Calopteryx splendens (Ioannidis et al., 2017),

which was previously thought to be anosmic, and 13 in the obligate

parasitic human body louse P. humanus (Kirkness et al., 2010), through

60 genes encoding 62 receptors in D. melanogaster (Robertson et al.,

2003), up to∼400 in someants (Smithet al., 2011a,b; Zhouet al., 2012),

where up to half of them likely mediate perception of the enormously

diverse cuticular hydrocarbons involved in nestmate recognition and

other social cues (Smith et al., 2011a,b; Pask et al., 2017). The ligands

of most of the D. melanogasterORs are known (Hallem, Ho, & Carlson,

2004), as are those from Anopheles gambiae (Carey,Wang, Su, Zwiebel,

& Carlson, 2010; Wang et al. 2010), and some others in other insects,

for example, pheromone receptors in diverse species (Wanner et al.,

2007; Leary et al., 2012; Andersson et al., 2016).

The OR family in B. germanica is of an intermediate size, with 134

potential transcripts from 123 genes in addition to the Orco gene.

Five genes exhibit an unusual form of alternative splicing previously

described in this and the GR family in many insects including D.

melanogaster (Clyne, Warr, & Carlson, 2000; Robertson et al., 2003),

in which tandemly arrayed long first exons are alternatively spliced

into a shared set of exons encoding the C-terminus of the protein, the

most conserved region of the protein. Twenty-nine of these genes or

transcripts arepseudogenic (21.6%), leaving105apparently intact spe-

cific ORs. Niu et al. (2016) described only five ORs from their antennal

transcriptome, and all are partial sequences, so the family here was

namedafresh, attempting to give related receptors, especially in arrays

within scaffolds, consecutive names (their OR1 is Orco, Or2 is Or49,

Or3 is Or33, Or4 is Or100, andOr5 is Or48).

Phylogenetic analysis of these OR proteins with their 70 rela-

tives from Z. nevadensis (Terrapon et al., 2014), reveals the kinds of

gene family evolution well known for this family (e.g., Benton, 2015)

(Figure 1). Beyond the highly conserved Orco lineage, there are many

instances of apparent 1:1 orthologs between the cockroach and ter-

mite, as expected from their close phylogenetic relationship, as well as

many instances of gene losses and duplications in one or both lineages.

Themost extreme examples of the latter are expansions of 18 proteins

in the termite and 15 and 20 proteins in the cockroach. Most pseudo-

genes are found in these and other smaller expansions, suggesting loss

of gene function as these receptors sometimes became irrelevant to

the species chemical ecology. The overall larger size of the cockroach

OR repertoire is a combination of fewer gene losses and more dupli-

cations, many of which have short branches in the tree indicating that

they are the result of recent duplications in the cockroach.

3.2 The GR family

The GR family consists of multiple divergent subfamilies (Clyne

et al., 2000; Robertson et al., 2003) and dates back at least to the

earliest animals where they are called GR-Like genes (Benton 2015;

Robertson, 2015; Saina et al., 2015; Eyun et al., 2017). It varies in size

from a low of five genes in the obligate mutualist fig wasp C. solmsi

(Xiao et al., 2013) and 12 in the honey bee A. mellifera (Robertson

& Wanner, 2006), through 60 genes encoding 68 receptors in D.

melanogaster (Clyne et al., 2000; Scott et al., 2001; Robertson et al.,

2003), to 222 and 286 in the red flour beetle Tribolium castaneum

(Richards et al., 2008) and the Asian longhorned beetle Anoplophora

glabripennis (McKenna et al., 2016), respectively. The sugar receptors

are the oldest distinctive recognizable subfamily of known function,

dating back to crustaceans (Peñalva-Arana, Lynch, &Robertson, 2009),

whereas the distinctive subfamily that contains the carbon dioxide

receptors of endopterygotes dates at least to the odonates (Iaonnidis

et al. 2017). In D. melanogastermost of the remaining GRs are involved

in perception of bitter tastants (Weiss, Dahanukar, Kwon, Banerjee,

& Carlson, 2011), however some are implicated in perception of

pheromones (Bray & Amrein, 2003; Watanabe, Toba, Koganezawa,

& Yamamoto, 2011), Gr43a (a fructose receptor) and other GRs

are involved in both peripheral detection and central monitoring of

tastants (Miyamoto, Slone, Song, & Amrein, 2012; Chen & Dahanukar,

2017), and others are expressed in non-chemosensory tissues (Thorne

&Amrein, 2008) and Gr28b senses light and heat (Ni et al., 2013).

https://tree.bio.ed.ac.uk/software/figtree/
https://tree.bio.ed.ac.uk/software/figtree/
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F IGURE 1 Phylogenetic relationships of the OR family. The tree was rooted with the Orco proteins, based on the conserved sequence and basal
position of this protein within the OR family in analyses of the entire insect chemoreceptor superfamily (Robertson et al., 2003). B. germanica
proteins are in blue and Z. nevadensis in orange, as are the branches leading to them. The suffix P after a name indicates that it is pseudogenic. The
scale bar is substitutions per site, and filled circles onnodes indicate support levels as aLRT (approximate LikelihoodRatio Test) values fromPHYML
v3.0 ranging from 0 to 1 [Color figure can be viewed at wileyonlinelibrary.com]

B. germanica has the largest known GR family in insects, with 431

genes potentially encoding 545 proteins through alternative splic-

ing of 26 genes, although 62 (11.4%) of these genes or transcripts

are pseudogenic, leaving a potentially intact set of 483 GRs. Only

the extremely polyphagous spider mite T. urticae has more GRs with

689 (Ngoc et al., 2016). The sugar receptor subfamily consists of

14 genes (BgerGr1–14), compared with six in the termite, through

both loss of genes from the termite and duplications in the cockroach

(Figure 2). The subfamily that contains the carbon dioxide receptors of

endoterygotes is also larger in the cockroach, with 36 genes (Bger15–

50) including a cockroach-specific expansion of 16 genes, compared

with 25 in the termite. A complex mixture of orthologs, gene losses,

and species-specific duplications has been involved in this subfam-

ily. Although these proteins cluster confidently with the carbon diox-

ide receptors of endopterygote insects, their ligands remain to be

determined and are unlikely all to be related to sensing of carbon

dioxide.

The remaining GRs fall broadly into two large groupings, as do

the termite ones. The first is a set of genes that contain three

phase-0 introns near the 3′ end, in positions compatible with being

homologous with the three introns inferred to be ancestral to the

insect chemoreceptor superfamily (Robertson et al., 2003) andpresent

throughout the GRLs in other animals (Robertson 2015; Saina et al.,

2015). These genes are Gr51–94 and 418–430. Gr420–430 form

basal clusters nearer the root of the tree (indicated in Figure 3), and

Gr429 and 430 have acquired three additional introns interrupting

the usually long first exon, so they have introns in phases 1-0-1-0-0-

0. Four relatives of the latter set were not previously recognized in
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F IGURE 2 Phylogenetic relationships of the GR family. The sugar and carbon dioxide receptor subfamilies together rooted the tree, based on
their basal location together in analyses with GRLs of other animals (Robertson, 2015). Major subfamilies are highlighted in colors, and the branch
leading to the mostly intronless clade is indicated inside the circle. Non-blattodean insect GRs are in black. Other details are as in the Figure 1
legend [Color figure can be viewed at wileyonlinelibrary.com]

the termite, so are newly described here, specifically ZnevGr88/89

are related to BgerGr424/425, whereas ZnevGr90 and 91 are related

to BgerGr426 and 429, respectively. Enigmatically, Gr418/419 cluster

in the tree with the intronless genes below. These intron-containing

genes are commonly alternatively spliced in a fashion similar to some

of the OR genes, with multiple long first exons alternatively spliced

into the three shared short final exons, commonly with RNAseq sup-

port for at least someof these alternative splices. The largest of these is

Gr60a-mencoding 13distinct receptors, all apparently intact, whereas

some isoforms encoded by other genes in this set are pseudogenic.

Comparison of the Gr51–94 and 418–430 set with their termite rel-

atives reveals major expansions of several gene lineages, for a total of

171 potential proteins versus just 18 in the termite. Again, although

there are a fewapparent orthologous relationships, the remaining rela-

tionships involve minor expansions in each species, apparent loss from

the termite, and large expansions through alternative splicing in the

cockroach.

The second and larger GR set are intronless genes, at least as

far as the coding sequences are concerned (for some genes there

is RNAseq evidence of an intron in the 5′ untranslated region),

comprising a single lineage in the tree (indicated in Figure 2). This

intronless clade consists of 44 termite and 322 cockroach genes

(Gr95–417). Again, although there are nine apparent orthologous

relationships, many other relationships involve duplications in one or

both species, there are many apparent gene losses from the termite

and very few from the cockroach, and most impressively, there is

a massive cockroach-specific expansion of 166 genes (Gr213–379).

By comparison with other insects such as D. melanogaster, these two

large clades of GRs are likely to be involved in perception of “bitter”

compounds.
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similar to the ionotropic glutamate receptors (Croset et al., 2010; Terrapon et al., 2014). Major conserved lineages are highlighted in colors, and
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Finally, a single divergent gene named Gr431 was discovered while

searching for relatives of the DmelGr43a fructose receptor lineage.

This receptor lineage evolved from within the “bitter” clade of GRs

(as opposed to being a divergent member of the sugar receptor sub-

family), and is present in all neopteran insects examined to date as

at least one gene and sometimes an expanded lineage, except for the

termite Z. nevadensis (Terrapon et al., 2014). The damselfly C. splen-

dens has a set of five proteins that might be related to this lineage,

however the association is not robust (Ioannidis et al., 2017). Gr431

has a completely different gene structure than all the others, with

introns in phases 0-2-0-1, none of which correspond to any other

GR introns in this species or the fructose receptor homologs in other

insects, splitting the CDS into five roughly equal-size exons. The ter-

mite has a previously unrecognized ortholog of this gene (ZnevGr92P)

with the same gene structure, but it is a pseudogene with a stop codon

in the middle of the fourth exon, whose existence is supported by both

raw genome reads and some expressed sequence tags, although it is

always possible this is a pseudogenic allele specific to the sequenced

strain. These two proteins cluster phylogenetically well within the

intronless clade (indicated in Figure 2), suggesting that all four of these

introns are novel gains in this gene before the cockroach/termite split.

This GR is nevertheless unlikely to be a fructose receptor as that clade

is quite distinct in the phylogenetic tree.

3.3 The IR family

The IR family is a variant lineage of the ionotropic glutamate recep-

tor superfamily of ligand-gated ion channels (Benton et al. 2009; Rytz,

Croset, & Benton, 2013; Rimal & Lee, 2018), present throughout the

protostomes (Croset et al., 2010; Eyun et al., 2017). Like the other
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families, IRs are best understood in D. melanogaster where they have

been shown to mediate a distinct set of olfactory capabilities, espe-

cially involving acids and amines (Ai et al., 2010; Silbering et al., 2011;

Rytz et al., 2013; Ahn, Chen, & Amrein, 2017; Chen & Amrein, 2017),

aswell as perception of temperature and humidity (Knecht et al., 2016,

2017;Ni et al., 2016),whereas the large Ir20a clade are involved in gus-

tation (Koh et al., 2014; Stewart, Koh, Ghosh, & Carlson, 2015). The

family has three coreceptors, Ir8a, 25a, and 76b, involved in different

sensory aspects, as well as various conserved lineages dating back to

early insects (Ioannidis et al., 2017). The family ranges from 14 and

19 genes in the pea aphid Acythosiphon pisum and P. humanus, respec-

tively (Croset et al., 2010; Terrapon et al., 2014) and similarly tens of

genes in most Hymenoptera (Croset et al., 2010), through 62 genes

in D. melanogaster (Benton et al. 2009), to 150 genes in the termite Z.

nevadensis (Terrapon et al., 2014).

B. germanica has far and away the largest IR family known in any

arthropod, with 897 genes, 393 (43.8%) of which are pseudogenes,

leaving 604 intact genes. In addition there are many gene fragments

encoding less than 50% of a related protein, as well as pseudogenes so

badly damaged they could not easily be reconstructed and hence were

not included in the naming or analysis. The naming of IRs is compli-

cated. In their survey of IRs across various insects, Croset et al. (2010)

gave clear relatives of the D. melanogaster proteins the same names

and for the rest assigned sequential numbers to each IR independent

of species, but this approach is not tenable in the long run. Terrapon

et al. (2014) started an alternative approach of naming the remaining

IRs in a series beginningwith Ir101, which avoids confusionwith theD.

melanogaster names as they were named for their cytological locations

and hence only go up to 100a. This approach has now been employed

for several species, including the predatory mite Metaseiulus occiden-

talis (Hoy et al., 2016), the damselflyC. splendens (Ioannidis et al., 2017),

the milkweed bug Oncopeltus fasciatus (Panfilio et al., 2017), the Asian

longhorned beetle A. glabripennis (McKenna et al., 2016), the Colorado

potato beetle Leptinotarsa decemlineata (Schoville et al., 2017), the tick

Ixodes scapularis (Josek et al. 2018), and updated Ae. aegypti and An.

gambiae genomes (Matthews et al. 2018). Thus the single orthologs

of Ir8a, 21a, 25a, 68a, 76b, and 93a are given those names, and as

in the termite, the expanded set of genes related to DmelIr41a are

named Ir41a1–16, whereas the expanded set related to DmelIr75a–

d are named Ir75a–z. Both the termite and cockroach do not have an

obvious ortholog for the Ir40a gene, which is present in the odonate

(Iaonnidis et al. 2017).Niu et al. (2016) identified five IRs in their anten-

nal transcriptome, and like the ORs most are partial sequences, how-

ever their Ir4 is full length. Their IRs correspond with those described

here as follows: their Ir1 is Ir41a11, Ir2 is Ir41a15, Ir3 is Ir41a12, Ir4 is

Ir25a, and Ir5 is Ir76b.

Phylogenetic analysis of the IR family reveals the simple orthol-

ogous relationships of the conserved IRs, the absence of an Ir40a

ortholog, and the expansions of the Ir41a and Ir75 lineages in the

cockroach, once again involving some orthologs, gene losses pri-

marily from the termite lineage, and duplications in the cockroach

(Figure 3). The remaining IRs, much like the GRs, form two large

groupings. The first set of genes generally contains eight introns com-

parable to those seen in these IRs in many other insects. In the cock-

roach, these are BgerIr101–196 and in the termite ZnevIr101–155.

This set of genes again contains some potentially orthologous relation-

ships, as well as the usual losses primarily from the termite, and dupli-

cations in one or both species, the largest of which are eight genes,

BgerIr152–159, related to ZnevIr132 and 14 genes, BgerIr163–176,

related to ZnevIr137/138.

The truly massive IR expansions in the cockroach, however, have

occurred within a clade of largely intronless genes. Some of these

genes have acquired idiosyncratic single, and rarely two, introns,

commonly near their 5′ end and barely interrupting the N-terminal

coding region. It is possible that some of these were introns in

5′ untranslated regions that have now become coding. This mas-

sively expanded clade is BgerIr196–950 (755 genes) and ZnevIr156–

222 (66 genes). As usual it contains a few apparent ortholo-

gous relationships, many gene losses from the termite and a few

from the cockroach, and most impressively massive cockroach-

specific expansions. In stark contrast to the termite, where the

largest expansion is just five genes, in the cockroach expansions

include 17 genes (Ir226–239) related to ZnevIr163, 46 genes

(Ir702–747) with no clear termite relative, 61 genes (Ir592–653)

related to ZnevIr190–193, 147 genes (Ir751–870 and 924–950)

related to ZnevIr213, and 347 genes (Ir262–567, 748–750, and

884–923) without a clear termite relative.

3.4 TheOBP family

OBPs are small globular secreted proteins, which in the context of

insect chemoreception are secreted into the lumen of sensilla from

support cells at their base (Leal, 2013; Pelosi, Iovinella, Felicioli, &Dani,

2014). Not all OBPs are involved in chemoperception, however, with

some expressed in other cells and tissues (e.g. Foret and Maleszka

2006; Pelosi et al., 2014). TheClassic structure for anOBP is tohave six

highly-conserved cysteines thatmaintain their tertiary shape via three

disulfide bonds, however there are variants with four cysteines called

Minus-C, and ones with two additional cysteines, called Plus-C, as well

as apparent OBP dimers (Pelosi et al., 2014). The family ranges consid-

erably in size up to 90 genes in the parasitoid wasp Nasonia vitripennis

(Vieira et al., 2012), and appears to be largely an insect-specific inven-

tion (Missbach, Vogel, Hansson, &Gro𝛽e-Wilde, 2015), extending back

to basal hexapods like Collembola (Pelosi et al., 2014), although simi-

lar if not homologous proteins are known from other arthropods (e.g.,

Renthal et al., 2017; Vizueta et al. 2017; Josek et al. 2018).

Niu et al. (2016) described 48 mostly full-length OBPs from their

antennal transcriptome of B. germanica, along with extensive data on

their expression patterns. Those 48 names were therefore retained,

whereas gene models were completed for their partial ones, and 61

models were added for a total of 109 genes, all of which are intact

(OBP103 is a pseudogene in the genome assembly with a single-base-

insertion frameshift in a homopolymer region of exon7, but examina-

tion of raw genome and RNAseq reads indicates it is polymorphic with

an intact version,whichwas employed instead). Eleven additionalmod-

els required repair of the genome assembly and all models are now full

length. This is the largest known OBP family. Because Niu et al. (2016)

described and named their proteins from a transcriptome, the genes
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F IGURE 4 Phylogenetic relationships of the OBP family. In the absence of an established outgroup, the tree was rooted at the midpoint. The
Classic andMinus-C OBPs are highlighted in yellow, the remaining OBPs being Plus-C and a distinctive clade. Other details are as in Figures 1 and
2 legends, except that here four additional cockroachOBPs from other species are in black [Color figure can be viewed at wileyonlinelibrary.com]

encoding them have no logical order in the genome. The new ones

were also added in no particular order, so unlike the chemoreceptor

families, consecutive gene names have nomeaning for this OBP family,

including in a large array of 61 genes spanning approximately 1.6 Mb

across four scaffolds (scaffolds1250, 997, 2545, and 116). The newly

addedOBPsmostly have RNAseq support from head RNAseq and less

from the antennal RNAseq ofNiu et al. (2016) (Supporting Information

Figure 1), largely explaining why they were not included in their

compilation. These OBPs might be expressed in gustatory rather than

olfactory sensilla, whereas others might not be involved in chemop-

erception at all. Like OBP genes in other insects, most of these have a

phase-0 intron separating the first exon encoding the signal sequence

from the rest of the gene, which typically consists of 7–9 short coding

exons commonly spanning several kilobase pairs.

Phylogenetic analysis, along with the 29 OBPs from Z. nevadensis

(Terrapon et al., 2014), three from P. americana (Li, He, Zhang, & Dong,

2017), and a pheromone-bindingOBP from Leucophaea (= Rhyparobia)

maderae (Riviere et al. 2003) reveals that there is a major clade of 71

genes, most of which are in the large 61-gene array in the cockroach,

including a 33-gene cockroach-specific expansion. These are all Plus-

C OBPs, while the Classic and Minus-C OBPs cluster together (high-

lighted in yellow in Figure 4). Once again, several gene losses from the

termite and almost no termite-specific expansions are evident from

the tree. The cockroach genes that cluster with this 71-gene clade,

but are not in the 61-gene array, are OBP27 which is a singleton in

another large scaffold, OBP85 in another large scaffold with other

OBPs, OBP33 and 43 in yet another large separate scaffold along with

other OBPs, and OBP39 and 104–107 in yet another large scaffold
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(OBP108 is discussed below). These genes have presumably relocated

from the large array, as they clearly belong evolutionarily with it. Five

of the six ZnevOBPs that cluster with this cockroach OBP expansion

in the tree are also in an array spanning 100 kb across two scaffolds

(ZnevOBP23–28 in scaffolds1046 and 631), so this expansion is an old

one, and there are relatives in other insects not shown in Figure 4.

ZnevOBP29, and its cockroach ortholog BgerOBP108, are not only

elsewhere in their respective genomesbut are far longer than the aver-

age OBP at 331 and 324 amino acids, respectively, with a long section

of simple sequence between the N-terminal secretion signal sequence

and theOBP-homologousC-terminus. Finally,OBP109 is anevenmore

unusual gene encoding a 596 amino acid protein, the C-terminus of

which has homology to OBPs, but the N-terminus has no similarity to

other proteins in the nonredundant protein database at NCBI, and the

termite ortholog appears to havebeen lost. LikeZnevOBP29andBger-

OBP108, this gene model is deeply supported by RNAseq from anten-

nae and heads, so its unusual length is real. OBP109 is at one end of

the 61-gene array and appropriately clusters phylogenetically with the

others from the array.

3.5 Chemoreceptor pseudogenes

The proportion of pseudogenes in the three chemoreceptor families

is fairly high (21.6%, 11.4%, and 43.8% for the OR, GR, and IR fam-

ilies). These large numbers present an opportunity to examine them

in more detail, specifically by counting the numbers of obvious pseu-

dogenizing mutations in each gene. This approach previously revealed

an excess of “middle-aged” pseudogenes in the OR and GR families of

the red harvester ant Pogonomyrmex barbatus, something not seen in

the honey bee A. mellifera, suggesting that it had undergone a major

shift in its chemical ecology in the distant past (Smith et al., 2011a).

As noted in the methods, in addition to the many pseudogenes named

and translated for analysis herein, there were some, especially in the

IR family, that despite being near full lengthwere not formally included

in the families as they were too damaged to be easily reconstructed.

For the purpose of examining the pseudogenes, these were counted

as having more than seven pseudogenizing mutations, thus the num-

bers in the histograms are somewhat higher than the numbers given

in the family descriptions above. The distribution of pseudogenes is

clearly dominated by those with single mutations, with a clear reduc-

tion in numbers of pseudogenes with more mutations (Figure 5). This

is the pattern to be expected if older pseudogenes are removed from

the genome by deletions, although at 2.2 Gbp, this genome is not that

small and hence pseudogenes are probably not removed as quickly as

in smaller genomes like that of D. melanogaster, but would be removed

more quickly than from a large orthopteran genome (Petrov, Sangster,

Johnston, Hartl, & Shaw, 2000).

4 GENERAL DISCUSSION

The connection between complexity of chemosensory repertoire and

chemical ecology of an arthropod species is now clear, as it is for ver-

tebrates (Niimura, 2012), and this example of the German cockroach,
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and its comparisonwith the dampwood termite, demonstrates it abun-

dantly. Termites evolved from cockroaches, and comparison of their

genomes has revealed many genomic processes that parallel those of

the independent evolution of sociality inHymenoptera (Harrison et al.,

2018). Termites have lost many chemosensory genes that their cock-

roach ancestors had, presumably because they were no longer neces-

sary for their more specialized ecological niche. In addition, they have

only expanded a few chemoreceptor lineages, in particular one of 18

genes in the OR family, which might be involved in their social behav-

ior. In radical contrast, B. germanica has lost only a few gene lineages

that once were present in the common ancestor with the termite, and

has expandedmany lineages in dramatic fashion, most spectacularly in

the GR and IR families. These major expansions, many of them fairly

young as indicated by the short terminal branches to many proteins in

the phylogenetic analyses, along with reasonably high percentages of

pseudogenes, especially in the IR family, suggests that these chemore-

ceptor gene families continue to undergo rampant evolution in this

cockroach lineage.

Blattodeans are evolutionarily distant from the dipteran and

other endopterygotan species for which evidence of ligand speci-

ficity is available for at least some chemoreceptors. Hence, it is only
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possible to make general inferences about the roles of most of these

proteins. In the OR family, the well-conserved Orco protein is present

as a single ortholog, as is the case in almost all insects examined to

date (the three namedOrco proteins in the basal zygentoman T. domes-

tica described by Missbach et al. (2014) are likely actually a single

Orco and two “specific” ORs (Iaonnidis et al. 2017)). The remaining

123 cockroach ORs are therefore likely “specific” receptors that func-

tion as dimerswithOrco, but their divergence fromall endopterygotan

ORs of known ligand specificity precludes any speculation about their

functions.

The GR family consists of several subfamilies, the most distinc-

tive and ancient of which is the sugar receptors, here with 14 genes.

Although the ligands of these proteins are almost certain to be sug-

ars, the precise ligand specificities of sugar receptors remain unclear

even in D. melanogaster (e.g., Fujii et al., 2015). In any case, the sugar

GRs in this cockroach do not have simple orthologous relationships

with those of the flies, having mostly expanded within this lineage in

two gene clusters of five and six genes in different large scaffolds, as

well as a singleton and pair of genes in other scaffolds. Basal insects

have an expanded GR subfamily to which the carbon dioxide recep-

tors of endopterygotes belong, here consisting of 36 genes, however

it seems unlikely that all of these are involved in detecting this gas, but

rather represent the subfamily from which the carbon dioxide recep-

tors evolved. The remaining GRs in most insects appear to function

in perception of “bitter” chemicals, although some in D. melanogaster

are pheromone and light sensors. These comprise the vast major-

ity of the expanded GR family in this cockroach, including an intron-

less clade of 322 genes, and are inferred to primarily sense a wide

diversity of chemicals in their diverse foods. Somewhat surpris-

ingly, the otherwise well-conserved fructose receptor lineage related

to Gr43a in D. melanogaster is absent from both these blattodean

genomes. This lineage was also not confidently identified in the

odonate C. splendens (Iaonnidis et al. 2017) so it is possible that it orig-

inated from a “bitter” receptor at some point later in insect evolution,

although its role in brain nutrient sensing would seem to be an ancient

and essential role (Miyamoto et al., 2012).

The IR family has several conserved members whose functions can

be assignedwith some confidence by comparisonwithD.melanogaster,

and are named for their fly orthologs. The Ir8a, 25a, and 76b pro-

teins are coreceptors with other IRs, and involved in diverse aspects

of IR function. The Ir21a, 68a, and 93a proteins have recently been

demonstrated to mediate perception of temperature and humidity in

D. melanogaster (Knecht et al., 2016, 2017; Ni et al., 2016), although

these blattodeans have lost the fourth gene involved, Ir40a, as it is

present in C. splendens (Iaonnidis et al. 2017). The cockroach has con-

siderably expanded the Ir41a lineage to 16 intact genes. DmIr41a and

76a are close relatives and cluster with Ir92a, and Ir92a and Ir41a are

involved in olfactory perception of amines, in cooperation with Ir76b,

at least in the case of Ir41a (Min, Ai, Shin, & Suh, 2013; Hussain et al.,

2016). Interestingly Niu et al. (2016), in addition to detecting the core-

ceptors Ir25a and 76b in their antennal transcriptome, identified three

of these Ir41a lineage genes, suggesting that like inDrosophila they are

olfactory receptors that partner with Ir76b to detect amines. The Ir75

subfamily in Drosophila consists of the Ir75a–d, 31a, 64a, and 84a pro-

teins, which along with Ir8a are involved in perception of various acids

(Ai et al., 2010, 2013; Grosjean et al., 2011; Gorter et al., 2016; Prieto-

Godino et al., 2016; 2017). This subfamily is considerably expanded in

this cockroach to 26 genes, all but two intact, which can reasonably

be inferred to also partner with Ir8a to sense a diversity of acids. The

remaining 850 BgIrs, especially the 755 intronless Ir genes, are likely

to encode gustatory receptors, by analogywith the large Ir20a clade of

D. melanogaster, which are expressed in gustatory tissues (Koh et al.,

2014; Stewart et al., 2015), and like the GR expansions presumably

sense various chemicals in foods.

Finally, theOBP family is the largest known at 109 genes. This large

number, many of which are expressed at low levels in antennae, is

appropriate given the huge expansion of GRs and IRs, and because

manyof thesenonantennalOBPsareexpressed inheadRNAseqwhere

they might serve in gustatory sensilla in support of the numerous gus-

tatory receptors. Li et al. (2017) described three OBPs from P. amer-

icana, and the first two are close relatives of BgerOBP28 and 30,

respectively, and are also expressed in antennae and bind a variety

of relevant odorants, so similar roles can be ascribed to these and

probably many other of the 48 OBPs Niu et al. (2016) described.

Their third OBP is a Plus-C subfamily member, and Li et al. (2017)

did not describe a close B. germanica relative, but it is related to the

71-gene expansion in Blattella, and it is widely expressed in P. ameri-

cana and did not bind any of 87 chemicals tested. Thus, it and some

of the B. germanica relatives might not be involved in chemosensa-

tion. It is, however, also related to the Pheromone Binding Protein of

another cockroach, Leucophaea maderae (Riviere et al. 2003). The bio-

logical roles of OBPs remain unclear as their assumed role of trans-

porting commonly hydrophobic odorants and tastants through the

sensillar lymph to the membrane-bound receptors (Leal, 2013; Pelosi

et al., 2014) has been challenged by the first direct mutational evi-

dence for the physiological role of an OBP in D. melanogaster, where

DmOBP28a is not involved inodorant transport, but rather inbuffering

the responses of the relevant olfactory sensory neurons (Larter, Sun, &

Carlson, 2016).

In summary, B. germanica has the largest chemosensory repertoire

known for any arthropod, including the second-largest GR family, the

largest OBP family, and by far the largest IR family. It therefore sup-

ports the contention that chemosensory repertoires evolve in concert

with the complexity, as well as presumably the details, of the chemi-

cal ecology of the species. Complete documentation of these four large

gene families will facilitate future work towards identifying the roles

of some of these proteins in various aspects of cockroach biology, from

their sex and aggregation pheromones to the remarkable evolution of

sugar-aversive strains.
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