
Srinivasan et al. BMC Bioinformatics 2013, 14:96
http://www.biomedcentral.com/1471-2105/14/96
METHODOLOGY ARTICLE Open Access
Mining for class-specific motifs in protein
sequence classification
Satish M Srinivasan1, Suleyman Vural1, Brian R King2 and Chittibabu Guda1,3*
Abstract

Background: In protein sequence classification, identification of the sequence motifs or n-grams that can precisely
discriminate between classes is a more interesting scientific question than the classification itself. A number of
classification methods aim at accurate classification but fail to explain which sequence features indeed contribute
to the accuracy. We hypothesize that sequences in lower denominations (n-grams) can be used to explore the
sequence landscape and to identify class-specific motifs that discriminate between classes during classification.
Discriminative n-grams are short peptide sequences that are highly frequent in one class but are either minimally
present or absent in other classes. In this study, we present a new substitution-based scoring function for
identifying discriminative n-grams that are highly specific to a class.

Results: We present a scoring function based on discriminative n-grams that can effectively discriminate between
classes. The scoring function, initially, harvests the entire set of 4- to 8-grams from the protein sequences of
different classes in the dataset. Similar n-grams of the same size are combined to form new n-grams, where the
similarity is defined by positive amino acid substitution scores in the BLOSUM62 matrix. Substitution has resulted in
a large increase in the number of discriminatory n-grams harvested. Due to the unbalanced nature of the dataset,
the frequencies of the n-grams are normalized using a dampening factor, which gives more weightage to the
n-grams that appear in fewer classes and vice-versa. After the n-grams are normalized, the scoring function
identifies discriminative 4- to 8-grams for each class that are frequent enough to be above a selection threshold. By
mapping these discriminative n-grams back to the protein sequences, we obtained contiguous n-grams that represent
short class-specific motifs in protein sequences. Our method fared well compared to an existing motif finding method
known as Wordspy. We have validated our enriched set of class-specific motifs against the functionally important
motifs obtained from the NLSdb, Prosite and ELM databases. We demonstrate that this method is very generic; thus
can be widely applied to detect class-specific motifs in many protein sequence classification tasks.

Conclusion: The proposed scoring function and methodology is able to identify class-specific motifs using
discriminative n-grams derived from the protein sequences. The implementation of amino acid substitution scores for
similarity detection, and the dampening factor to normalize the unbalanced datasets have significant effect on the
performance of the scoring function. Our multipronged validation tests demonstrate that this method can detect class-
specific motifs from a wide variety of protein sequence classes with a potential application to detecting proteome-
specific motifs of different organisms.
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Background
Most of the information pertinent to the structure and
function of a protein is embedded in its primary structure,
which is the long chain of amino acids. While the
biological characteristics of a protein are a function of the
sequence of amino acids it contains, various segments or
the key peptides of proteins have specific roles in the
overall protein’s function, and not all segments are equally
important. These key peptides can differentiate a protein
class from another in terms of their structure, function,
subcellular location, phylogenetic class, etc. Hence, study-
ing a protein sequence at the segment level (n-gram) has
the advantage of understanding the functional compo-
nents of a protein. In addition, n-gram-based approaches
offer the computational advantage of expanding the search
space for exhaustive comparison against other sequences.
Popular bioinformatic algorithms such as BLAST have
exploited this very concept to design algorithms for
finding global and local similarities. These key peptides,
referred henceforth as n-grams, have been widely used
to identify homologous sequences, aligning sequences
[1], clustering sequences [2], predicting subcellular
localization [3], etc.
In protein sequence classification, it will be interesting

to identify the sequence elements that can precisely
discriminate between classes. In this study, we propose a
new method to identify the discriminative n-grams,
which are short peptide sequences that are highly
frequent in one class but are either minimally present or
absent in other classes. Our method implements amino
acid substitution scores to detect not only the identical
but also the similar n-grams, and a dampening factor to
normalize n-gram scores across different classes with
unbalanced datasets, resulting in the efficient detection
of class-specific motifs.
Since the best equivalent of a word is not known in

biological sequences, a short sequence of amino-acids
i.e. an n-gram can be treated as a word, and statistical
techniques can be applied on it to infer many interesting
properties of the sequences. Using n-grams, statistical
analyses such as determining zipf-like distributions and
information theoretic measures such as perplexity can be
performed to understand the frequency distribution of
n-grams in the protein sequences [4]. N-gram models
can also help in identifying sequence similarity, n-gram
profiling [5], and in determining the conservation profile
to identify protein homologs [6].
Using n-grams as features is a well-known technique

in language processing and has recently been success-
fully applied in biological modeling. A comparative
n-gram analysis on the entire genomes of 44 organisms
has revealed that the frequent n-grams in one organism
are also frequent in many organisms, and for each
organism there is a small set of different n-grams that is
specific to them [4]. Using these selective n-grams,
obtained by chi-square feature selection method, they
trained Bayesian classifiers and neural networks, which
resulted in better protein family classification [4,7]. In
other studies, the distribution of n-grams serves as a
proteome-signature for organisms, which in turn can be
used to determine evolutionary divergence at the genus
level [8]. In this study, a 4-gram analysis across different
organisms revealed that different organisms yielded
different perplexity values. On considering only the top
twenty 4-grams from Neisseria, most of the selective
motifs in its protein sequences were successfully identi-
fied. It was also proposed that the relative abundance of
specific n-gram types could be employed to study the
species-specific properties of DNA modification, repli-
cation and repair mechanisms [8].
Selective n-grams have also been used for training

SVM based classifiers [1]. It is hypothesized that the
top-n-grams are the grams in which their constituent
amino acids at any given position have a higher prob-
ability of occurrence at that position. Since these grams
have a higher discriminative power to reveal most of the
information about protein sequences, they are effective
for remote homology detection and fold recognition [1].
Maetschke et al. (2010) have proposed an n-gram based
conservation profile method that can be used for
performing better sequence alignment by matching
n-grams in linear time, compared to other well-known
Smith-Waterman or Needleman-Wunsch methods,
which have quadratic time complexity [5]. To exploit
sequence homology, Leslie et al. (2004) have proposed
the use of SVM’s to classify protein sequences in SCOP
database based on functional and structural families.
This method takes a discriminative approach by training
SVMs with a special type of string kernels called
mismatch kernels. For efficiently generating the matrix
kernels i.e., representative of the k-spectrum kernel
denoted using positive weights for the k-mers with m
mismatch instances, a (k, m) mismatch tree has been
proposed. This tree is rooted up to the depth of k, where
the leaf nodes are all possible k-mers in the dataset and
each internal node with 20 branches represent the prefix
of the leaf node k-mer. At each depth d, a depth-first
search in this tree results in identifying valid instances
of the d-length prefix of k-mers that are within m
mismatches. On reaching a leaf node corresponding to a
particular k-mer α, this method obtains pointers to all
the instances of k-mers that are up to m mismatches
from α. SVM’s trained with these mismatch kernels
resulted in fast prediction of protein sequences i.e. in lin-
ear time and maintains good performance when training
datasets are limited. In a subcellular localization study, a
7-gram model in conjunction with Bayesian classifier
resulted in higher accuracy of prediction on the proteome



Table 1 Location-wise distribution of full-length and
Pfam-mapped protein sequences

SL dataset Pfam dataset

Organelle Code # of protein
sequences

# of Pfam
sequences

Cytoskeleton CSK 259 200

Cytoplasm CYT 3334 2809

Endoplasmic
Reticulum

END 1016 884

Extracellular EXC 8666 6393

Golgi apparatus GOL 291 248

Lysosome LYS 159 138

Mitochrondria MIT 2760 2383

Nuclear NUC 5104 4221

Plasma membrane PLA 6852 6155

Perixosome POX 212 190

SL- Subcellular Localization; Pfam- Protein family database.
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sequences obtained from eight eukaryotic organisms [3].
Similar accuracy values are also observed on datasets from
bacterial species using 6- and 8-grams [9].
Previously, we have developed a Bayesian supervised

model for classifying protein sequence data using an n-
gram approach [3], which can classify a set of sequences
but cannot determine class-specific n-grams. In this study,
we develop a novel scoring function that can effectively
identify the discriminative class-specific n-grams from a
given set of protein sequence classes, and validate our re-
sults using several datasets representing distinct biological
functions. This method is compared against an existing
method Wordspy [10], mismatch string kernel method
presented in [11] and also applied against a new dataset to
retrieve known Prosite patterns. Given the generic nature
of this method, we believe that it can be used on a variety
of protein sequence datasets to retrieve class-specific
motifs.

Results
Scoring function
The scoring function proposed in this study for deter-
mining class-specific or discriminatory n-grams is based
on an n-gram model. The scoring function is described
at length in the methods section. In summary, it
includes the following steps. First, n-grams of varying
size are extracted from each class of protein sequences.
Second, similar n-grams are identified using an amino
acid substitution matrix (BLOSUM62) and their fre-
quency counts are summed to obtain enriched counts.
Third, a dampening factor is used to normalize the
weights of n-grams from different unbalanced classes.
Finally, a discriminative ratio (DR) is calculated for each
n-gram to identify the class that contains this n-gram at
least T times higher than the average of the second and
third highest classes. Here, T represents a selection
threshold at which DR is considered significant to be
class-specific.
We applied our scoring function against the subcellular

localization (SCL) dataset, which contains full-length pro-
tein sequences from 10 distinct subcellular locations.
These data are experimentally-determined to exist in
those locations (Table 1) and hence are used for training
and testing our method. For validation, we report stand-
ard performance measures over each class, including
sensitivity, specificity and AUC (area under the curve)
using the ROC curves. (All of our formulae and defini-
tions used in this study are briefly explained in the
methods section). In addition to the standard validation
tests, we also tested our results against experimentally
known SCL signals to determine the effectiveness of the
scoring function in terms of identifying class-specific mo-
tifs. This method is also applied against a completely dif-
ferent dataset to confirm if the method is able to recover
class-specific patterns or not. For this purpose we used 50
different enzyme sequence families that have known
Prosite patterns.

Effect of amino acid substitutions on discriminatory
n-grams
We used the scoring function on the SCL dataset to
identify the entire set of discriminatory 4- to 8-grams.
Any two n-grams of the same size that differ by a single
amino acid at a single position are combined to form a
new n-gram. This is done in accordance with the func-
tionally equivalent amino acid substitutions based on
the BLOSUM 62 amino acid substitution matrix (see
Methods for more details). This technique yielded a
significant increase in the number of n-grams available
for analysis compared to the no substitution control.
Figure 1 shows that at a selection threshold of 5 (i.e. the
DR of each n-gram is greater than or equal to 5), the
scoring function is able to harvest 5- to 8- grams at a
rate of about 1.16 to 2.69 times (6-gram being the
highest) more than without substitution. The increase
in the number of n-grams harvested due to substitution
can be attributed to the summation effect of the frequen-
cies of similar n-grams. In contrast to the individual
n-gram frequencies, the sum of the similar n-gram fre-
quencies is sufficient to surpass the selection threshold,
which makes the entire group of similar n-grams discrim-
inant for a class.

Evaluation of the performance of the method
We demonstrate the performance of the scoring func-
tion using specificity and sensitivity by mapping the
discriminative n-grams back on to a derived dataset
containing only the domain regions of the SCL dataset
(mapped according to the Pfam domain database). A
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Figure 1 Number of n-grams generated before and after substitution as a function of n-gram length at a selection threshold of 5.
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steady increase both in the sensitivity and specificity
was observed with the increase in the selection thresh-
old from 5 to 9 (Table 2). Even at a lower selection
threshold of 5, the specificity values across all the clas-
ses were found to be above 96.1% and at the selection
threshold of 10, the specificity attained a steady state
i.e., there was no significant change in the specificity
values up to three decimal places. In contrast to specifi-
city; at the selection threshold of 5 the sensitivity varied
across classes from 73% to 98.7%. We observed a small
drop in the sensitivity across eight of the ten classes at
the selection threshold of 7 due to drastic reduction in
the number of n-grams harvested at this selection
threshold. Similar to specificity, the sensitivity also
increased with increasing selection threshold. We notice
that this behavior is interesting given the fact that sensi-
tivity and specificity enhancements often have an
inverse relationship. We reason that in this case, the size
Table 2 Specificity and Sensitivity for different selection thre

Subcellular
location
code

Specificity

Selection threshold

5 6 7 8 9

CYT 0.974 0.98 0.979 0.983 0.985 0

CSK 0.997 0.998 0.997 0.998 0.998 0

END 0.985 0.988 0.987 0.989 0.99

EXC 0.973 0.979 0.979 0.982 0.985 0

GOL 0.996 0.997 0.996 0.997 0.997 0

LYS 0.998 0.998 0.998 0.999 0.999 0

MIT 0.982 0.985 0.984 0.987 0.988 0

NUC 0.977 0.981 0.98 0.984 0.986 0

PLA 0.961 0.97 0.968 0.974 0.978 0

POX 0.997 0.998 0.998 0.998 0.998 0

CYT – Cytoplasm; CSK – Cytoskeleton; END – Endoplasmic Reticulum; EXC – Extracellul
PLA – Plasma membrane; POX – Perixosome.
of n-gram space at each threshold is dynamic as against
the conventional fixed size data space used for deter-
mining specificity and sensitivity. At higher score
thresholds, we have less false negatives leading to higher
sensitivity.
We computed the false positive and true positive rates

to plot the ROC curves (Figure 2). The ROC curves for
our data points are all concentrated on the top left diag-
onal of the plot where the most number of true positives
with the least number of false positives can be observed.
We also determined the area under the curve (AUC)
using the area under the trapezoidal method to get a
quantitative measure of the ROC curve for each loca-
tion. Locations with the highest AUC have the best
performance. The smaller classes including POX, GOL
and LYS have the best AUCs (0.981 to 0.992) indicating
that the scoring function is efficient in identifying
discriminatory n-grams pertaining to even smaller
sholds across different locations

Sensitivity

Selection threshold

10 5 6 7 8 9 10

.985 0.865 0.895 0.888 0.907 0.921 0.912

.998 0.73 0.771 0.769 0.801 0.826 0.822

0.99 0.93 0.95 0.951 0.962 0.97 0.97

.985 0.899 0.924 0.923 0.939 0.949 0.95

.997 0.983 0.996 0.994 0.998 0.999 0.998

.999 0.987 0.993 0.987 0.993 0.997 0.988

.988 0.877 0.898 0.879 0.895 0.906 0.900

.986 0.749 0.807 0.806 0.844 0.871 0.871

.977 0.878 0.897 0.893 0.908 0.919 0.919

.998 0.965 0.979 0.983 0.99 0.997 0.997

ar/Secreted; GOL – Golgi; LYS – Lysosome; MIT – Mitochondria; NUC – Nuclear;



Figure 2 ROC curve showing the performance of the scoring function in predicting true positive and false positive n-grams.
CYT – Cytoplasm; CSK – Cytoskeleton; END – Endoplasmic Reticulum; EXC – Extracellular/Secreted; GOL – Golgi; LYS – Lysosome; MIT – Mitochondria;
NUC – Nuclear; PLA – Plasma membrane; POX – Perixosome.

Srinivasan et al. BMC Bioinformatics 2013, 14:96 Page 5 of 14
http://www.biomedcentral.com/1471-2105/14/96
classes. For big to medium sized classes the AUC were
found to be well above 0.863 and ranged from 0.863
(CSK) to 0.960 (END) indicating superior performance
of the scoring function in identifying the discriminatory
n-grams than any random guessing function.

Comparison against Wordspy method
We compared the performance of our method with and
without amino acid substitutions against a well-known
discriminatory motif finder, Wordspy [10]. Wordspy was
recommended as one of the best methods for discrimin-
atory motif finding [12]. In this experiment, our goal is
two-fold; first to evaluate the effect of amino acid substi-
tutions over no substitution, and second to evaluate the
performance of our method relative to Wordspy. In this
section, we will denote our main scoring function that
implemented the amino acid substitutions as SF1, and
the scoring function without substitutions as SF2 for
comparison.
The outputs of current method and the Wordspy are

not directly comparable because Wordspy's output is
Z-score based while our method outputs based on the DR
ratio. Hence we used two data series for each method at
higher stringency levels. In addition, we were able to con-
duct this experiment only for the classes with smaller
datasets due to a limitation with the Wordspy in handling
larger datasets (see Methods). We tested four smaller clas-
ses that include CSK, GOL, LYS and POX from the SCL
dataset. Using SF1 and SF2 independently, we obtained 4-
to 8-grams at selection thresholds of 9 and 10, and com-
pared those with 4- to 6-grams (motifs) obtained from the
Wordspy at the z-score thresholds of 3 and 6. A z-score
threshold of 3 was suggested as the minimum default for
a word in Wordspy [10]. We have tested z-score
thresholds between 3–6 and found that the Wordspy’s
performance stayed constant beyond the threshold of 4.
Hence, we plotted the ROC curves only for thresholds 3
and 6. Outputs of the above three methods were inde-
pendently mapped to the domain regions of
corresponding class protein sequences to calculate true
and false positive rates. Using these data, ROC curves
were plotted and the AUC’s were determined to get a
quantitative measure of the differences (Figure 3). We
observed a superior performance of SF1 over Wordspy
and SF2 across all the four classes as shown by the AUC
metric. SF1 attained an AUC from 0.988 to 0.994, while
AUC’s for Wordspy range from 0.924 to 0.941. On the
other hand, AUC’s for SF2 ranged widely from 0.484 to
0.935. For CSK and GOL, all the three methods yielded a
good AUC but for LYS and POX, SF1 and Wordspy’s per-
formance was superior to SF2. Overall, our substitution-
based method, SF1, performed better than the Wordspy
and SF2. We want to emphasize that the difference in the
performance between the scoring functions with (SF1)
and without (SF2) amino acid substitutions is stark. This
result also supports the need for using amino acid substi-
tutions in this scoring function to efficiently recover
discriminant n-grams.

Comparison against mismatch string kernel method
The string kernels or mismatch kernels used by Leslie
et al. [11] for training the SVM’s are very much similar
to the n-grams harvested by our SF1, termed as k-mer
or more precisely (k, m) i.e., k-mer with m (position)
mismatches. These mismatch kernels help in capturing
biological information about sequence similarity. The
mismatch kernels work on the basis that any two pro-
tein sequences are similar if they share a large number



Figure 3 ROC curve comparing the performance of SF1, Wordspy and SF2. The black oval ring indicates ROC values of SF1 and the orange
oval ring indicates ROC values of Wordspy. The black circle indicates the ROC region for SF1; the blue circle indicates the ROC region for Wordspy
and the blue crosses and orange dots indicates the ROC region for SF2. CSK – Cytoskeleton; GOL – Golgi; LYS – Lysosome; POX – Perixosome.
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of similar, and high positive weight mismatch kernels
between them, under the assumption that mismatch
kernels with high positive weights correspond to the
conserved region in the protein families. Compared to
the aforementioned mismatch kernels, the n-grams
obtained from SF1 can be visualized as signals that
can precisely discriminate protein sequences between
classes.
Though n-grams and mismatch kernels are obtained

by employing different methods, both of them essen-
tially captures biological information from the protein
sequences. Leslie et al. [11] have observed that their top
200 high-scoring k-mers obtained from (5, 1) mismatch
kernel were within the nine-letter region of the align-
ment of five multiple alignment sequences in the SCOP
dataset. For family-level homology detection, superfam-
ily homology and for fold recognition in the SCOP
dataset, they have showed that their discriminative SVM
trained with (6,1) mismatch kernel performed better
than the BLAST and Smith-Waterman [11]. On the
other hand, our n-grams were promising to be class-
specific signals as will be discussed more in the valid-
ation section below. Leslie et al. have indicated that
their method suffers exponential time complexity for
higher value of m [11]. Therefore they have considered
m=1 for generating mismatch kernels which is similar
to our substitution method i.e., combining n-grams that
are different from each other at any single position.
Again both these discriminant methods have a low false
positive rate.

Computational complexity of the method
Our scoring function performs two major steps. It ini-
tially generates all the n-grams from protein sequences
across different classes and creates a frequency profile
for each n-gram. Secondly, it combines similar n-grams
using the BLOSUM62 substitution matrix. For generat-
ing the n-grams and for creating the frequency profile
from M number of sequences with l as the length of the
longest sequence, across each class ct the running time
complexity can be gives as O(cnMl) where n is the
length of the n-grams and c is the total number of clas-
ses in the dataset. For implementing substitution using
the BLOSUM62 matrix our method breaks any given n-
gram in to its constituent amino-acids and looks for
each amino-acid substitution in a way that it is a valid
substitution i.e. the entry in the BLOSUM62 matrix for
that pair of amino-acid is greater than or equal to the
BLOSUM62 threshold, and the new n-gram formed due
to substitution of any single position change of amino-
acid is present in the protein sequences of the dataset.
Finally a new n-gram is created from the combination of
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all n-grams that differ from the original n-gram at any sin-
gle position. In the worst case i.e. none of the n-grams are
eligible for substitution, for N number of n-grams our
method will have to consider all N n-grams and all n pos-
ition. Thus the run time complexity for implementing
substitution can be given as O(NnO(1)) or O(nN) where O
(1) is the time required for searching the combining
n-grams stored in a hash map. Therefore, the effective
run time complexity of the method is O(cnMl + nN).
For searching a substring or gram of length n in a pro-
tein sequence of length l our PERL-based scripts are
implemented with run time complexity of O(n+logl).

Validation of the discriminatory n-grams
Since discriminative n-grams are class-specific and strik-
ing features of a class, the scoring function should be able
to identify these n-grams. We have validated the discrim-
inative n-grams identified by our method against known
SCL signals. This is accomplished by first generating the
entire set of discriminant 4- to 8-grams from the protein
sequences in the datasets, removing the n-grams that are
sub-strings of other higher order n-grams, merging
contiguous n-grams to obtain higher order n-grams that
correspond to sequence motifs, and then looking for the
known patterns in these motifs.
First, we tested our class-specific discriminatory n-

grams against the nuclear localization signal database
(NLSdb). The NLSdb is a comprehensive database
containing information on nuclear localization signals
(NLS), which are short stretches of residues that medi-
ate transport of nuclear proteins into the nucleus [13].
We obtained discriminant 4- to 8-grams from each of
the ten classes at a selection threshold of 9 (that corre-
sponds to at least 87% sensitivity across all classes
except for CSK) and performed two pruning steps
namely removing the substrings and merging contigu-
ous n-grams. When a pattern search was performed,
our nuclear discriminant patterns matched with 128 out
of 137 motifs from the NLSdb (found in NUC protein
sequences within the SCL dataset), which is 93.4%.
When the same search was performed using non-
nuclear discriminant motifs, we could find only 33 NLS
pattern matches (24%) in plasma membrane (PLA), and
less than 3.6% of those in the other eight classes. This
observation supports the fact that the scoring function
is able to identify a rich set of class-specific functionally
important motifs. The list of all the 137 NLSdb patterns
is provided in the additional data file (Refer Additional
file 1: Table S1). The NLSdb patterns are represented
using the ‘RegEx’ language in PERL.
Since most of the extracellular (EXC) protein sequences

are known to have signal peptides at the N-terminal
region, we wanted to see if the scoring function is able to
identify discriminatory n-grams from the N-terminal
region of EXC protein sequences. We excised the first 50
amino-acid sequences of 1242 EXC proteins that were
known to contain signal peptides at the N-terminal region
[14]. By mapping the discriminative 4- to 8-grams of EXC,
(obtained at a selection threshold of 9) we found that
82.4% of the 1242 EXC sequences had at least one
discriminative 4- to 8-gram mapping to the N-terminal re-
gion. A similar experiment using discriminatory n-grams
of other locations against their matched locations showed
45.2% and 31.2% for PLA and MIT locations, respectively,
and very insignificant mapping for other locations. It is
known that a large number of the plasma membrane
(PLA) and mitochondrial (MIT) proteins harbor their
targeting signals at their N-terminus [15,16]. The above
results corroborate that those locations harboring
targeting signals at the N-terminus are aptly identified by
our method.
In addition to the subcellular targeting signals, we were

also curious to check if the scoring function is able to
identify other known functional motifs present on the pro-
tein sequences. Since our SCL dataset is classified based
on the spatial distribution of proteins in the cell (as
against functional family classification), we expect to see a
wide distribution of functionally important sequence
motifs across many locations. Using the ELM (Eukaryotic
Linear Motif) database containing a rich set of non-
globular functional linear motifs, we were able to validate
a variety of patterns including nuclear localization signals
(NLS), nuclear export signals (NES), post-translational
modification signals (MOD), cleavage patterns (CLV) and
ligand binding sites (LIG) at a selection threshold of 9. All
the six nuclear (NES and NLS) signaling patterns listed in
Additional file 1: Table S2.1 were recovered in the motifs
obtained from nuclear location. Across the motifs (merged
discriminative n-grams) of all the classes, we searched for
the presence of 30 MOD patterns (listed in Additional
file 1: Table S2.2) and identified 73% to 100% of them in
different locations (Refer Additional file 1: Table S3.1
and S3.2). Similarly, we observed 86% to 100% of the
CLV patterns (Refer Additional file 1: Table S2.3) in all
but the LYS location, which showed only 71.4% of the
CLV patterns. We also found the LIG patterns ranging
from 55% to 97% in all but LYS location that has only
49% (Refer Additional file 1: Table S2.4). On an average,
EXC and PLA motifs had all the three types (MOD,
CLV, and LIG) of ELM patterns ranging from 97% to
98.9% (Refer Additional file 1: Table S3.1 and S3.2). It is
possible that some of the smaller locations owing to
their proteome size may not contain the entire cadre of
proteins containing the above signals, which explains
why the larger locations like EXC and PLA have most of
the signals while the smaller locations like LYS have
only a limited number of them. These observations
strongly support our claim that the scoring function
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is able to identify both class-specific as well as
functionally-significant motifs.

Application of the method to recover Prosite patterns of
enzyme families
In this experiment our goal is to apply the scoring func-
tion against a different dataset and recover known
patterns from the discriminatory n-grams. We have se-
lected a dataset containing the Prosite domain regions
of 50 enzyme families, where each family has a defined
consensus Prosite pattern (Refer Additional file 1: Table
S4). Using the scoring function, we generated discrim-
inative 4- to 8-grams from the protein sequences in the
Prosite dataset at varying selection thresholds from 5 to
11. The n-grams that were substrings of longer n-grams
are removed and the resulting set of discriminant n-grams
were mapped to the original Prosite domain sequences.
After mapping the discriminant n-grams, the amino acid
characters in the unmapped sequence regions are flipped
to ‘X’ as shown in Figure 4; thus allowing only the discrim-
inatory regions to exist in the sequences. Such masked
sequences from each family are used to search against the
Prosite pattern of corresponding family. We found that
the average number of masked sequences containing the
matched Prosite patterns ranged from 90% to 94.2% at
selection thresholds of 11 and 5, respectively (Figure 5). At
lower thresholds of 5–7, about 94% of the matches were
found followed by a drop in the percentage of matches.
Note that the average percentage of matches did not fall
below 90% even at higher thresholds of 10 and 11 indicat-
ing that these highly conserved class-specific patterns are
efficiently recovered by the scoring function even at higher
thresholds. These results also demonstrate that this is a
generic scoring function and hence can be used for classi-
fication and functional annotation of a variety of protein
sequence classes.

Discussion
We refer to the terms class and family in an inter-
changeable fashion because in the context of this paper,
all families are classes but all classes are not families.
Figure 4 Protein sequences with mapped discriminative n-grams and
For classification purpose, a class includes a set of
identically labeled instances while a family includes a set
of sequences with similar function. The datasets used in
this study represent both classes and families. The SCL
data, which represents classes, is based on the physical
location of sorted proteins in the cell. Hence, these clas-
ses represent a heterogeneous mixture of proteins with
different functions. In contrast, the PROSITE datasets
are made of families, where each family represents a
specific function. Hence n-grams from the SCL dataset
are expected to be very diverse while those from the
PROSITE are more homogeneous. Our results show
that irrespective of these differences, the scoring func-
tion is able to discriminate between classes/families,
which is anticipated to be more difficult with the SCL
dataset.
The idea behind amino acid substitutions is to accom-

modate for changes in the amino acids by point mutations
[5]. We considered only one amino acid change between a
pair of n-grams when combining similar n-grams because
in the length range of 4- to 8-grams, the chances of having
more than one positively selected point mutation are very
low. We used the amino acid substitution scores from the
widely used substitution matrix, BLOSUM62 [17], which
is adopted by the popular BLAST program as its default
matrix [18]. Implementation of the amino acid substitu-
tion matrices to identify similar n-grams has considerably
expanded the search space for exhaustive comparison
of protein sequences thus enhancing the capability of
the scoring function in detecting discriminant motifs
(Figures 1 and 3).
The scoring function can generate n-grams of differ-

ent sizes, but in this study we are focusing only on 4- to
8-grams. The reasons being; the search space of the
distinct unitary, di- and tri-peptides is too small to
explore the sequence landscape, while on the other end,
the higher-order n-grams become less frequent, hence
are too long to adequately explore the search space. A
previous study showed that even with 4-grams most of
the selective motifs in protein sequences are identifiable
[8]. In our previous studies, we have optimized the
non-discriminative regions masked with ‘X’.
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n-gram length for similar datasets between 5–7 and we
extended one order on either side in this study [3,9,19].
On the higher order, we were limited to generating only
up to 8-grams because the scoring function suffered an
exponential time complexity for generating n-grams
and determining discriminatory n-grams beyond n=8.
Despite this, we generated higher order discriminatory
n-grams (n > 8) by combining different lower-order
n-grams (4 ≤ n ≤ 8) if they overlap or are contiguous in
the protein sequences of corresponding class.
The scoring function reports an n-gram as discrimin-

atory if that n-gram is highly frequent in protein se-
quences of one class and is less frequent or absent in
other classes. Therefore, it is ideal to have a balanced dis-
tribution of n-grams in the protein sequences of different
classes. However, such distributions are difficult to achieve
in biological datasets that are typically unbalanced and
incomplete. Both the SCL and Pfam datasets used in this
study are unbalanced in size across classes. To reduce the
noise arising from this unbalanced distribution, we intro-
duced a dampening factor into the scoring function.
Multiplying the frequency count of each n-gram with this
dampening factor results in giving a higher weightage to
an n-gram that is observed in a single or fewer classes and
a lower weightage to a n-gram that is distributed over
many classes. We did not prefer to take into account the
sequence count in each class (size) for normalizing the
frequency count of an n-gram because, even in the
balanced datasets, the natural frequency distribution of
n-grams is not the same.
Based on the performance results (Figure 2), multi-

pronged evaluation against known motifs and Prosite
patterns (Figure 5) and comparison against another
popular method, Wordspy (Figure 3), we conclude that
our scoring function is more robust and can precisely
discriminate between classes. It does not put any con-
straints on number of classes it can handle at a time for
harvesting n-grams. In this work, we have considered
the SCL dataset with ten classes and the Prosite dataset
with fifty families. Secondly, the scoring function per-
forms simple computation i.e. finding the frequency of
each n-gram across all the classes, using a dampening
factor to normalize its frequency across all classes.
Finally, the scoring function has demonstrated better
utilization of memory and reasonable execution time
that increases exponentially with the increase of the n-gram
size. In contrast, Wordspy performs sophisticated statistical
calculations and engages in dictionary creation to dis-
criminate motifs against background words. Our experi-
ence suggests that Wordspy has limitations with the
size of datasets as well as with the size of the n-grams.
Hence, to make a head-to-head comparison of the
performance of our scoring function against Wordspy,
we had to limit to using only four small classes (CSK,
GOL, LYS and POX) from the SCL dataset, which in-
turn suggests that Wordspy cannot be effectively
exploited on larger datasets. In terms of the motif size,
with Wordspy we could only work with 4- to 6-gram
sizes and the program crashed on our 128 GB (RAM)
machine due to memory explosion issues.
The method proposed here describes an alignment-free

approach to identify class-specific regions in protein se-
quences. These class-specific regions are generally referred
to as motifs, only if they are found in all the sequences of
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a particular family. We would like to point out that discov-
ering the motifs is not the sole purpose but a byproduct of
this work. Nevertheless, for validation purpose we used
the known targeting signals from the subcellular locations
or the patterns from the PROSITE database. The class-
specific regions identified in this study include known mo-
tifs/signals as well as other contiguous regions of protein
sequences that are highly enriched in a particular class or
family of proteins. We hypothesize that the latter may rep-
resent potential unknown signals or otherwise functionally
important class-specific regions of proteins. The func-
tional importance of these highly enriched class-specific
regions is worth investigating by experimental methods.

Conclusion
Here, we have developed a scoring function to identify
class-specific or discriminative n-grams for functional
annotation of protein sequences. The scoring function
implements BLOSUM62 based amino-acid substitutions
and also normalizes the frequencies of the n-grams
using a dampening factor to avoid noise due to their
non-uniform distribution across different classes. At a
selection threshold of 9, the scoring function identified
a rich set of n-grams resulting in high specificity and
sensitivity values across all the 10 subcellular locations.
The scoring function also demonstrated a superior
performance when compared against its variant (no
substitution) and against a well known discriminative
motif-finder, Wordspy. Validation against known sub-
cellular localization signals and functionally-important
motifs from the ELM database showed that the scoring
function is able to identify most of those signals/motifs
accurately. Application of the scoring function against a
different dataset containing 50 enzyme families with
known Prosite patterns resulted in the recovery of 90%
of the sequences with correct patterns. These results
clearly demonstrate that the scoring function is capable
of discriminating the class-specific regions of protein
sequence classes and is generic enough to be applied
against a variety of sequence classes.

Methods
Datasets
Three different datasets were used in this study. The
first one is the SCL dataset collected from the Swiss-
Prot database release 50.0, which contains experimen-
tally determined annotations on subcellular localization
of proteins. The following filters were applied to obtain
high quality data: only eukaryotic, non-plant sequences
were considered; sequences with predicted or ambigu-
ous localizations were removed; sequences shorter than
10 residues in length were removed; all redundant
sequences were removed; and sequences known to
localize in multiple locations were removed. The final
SCL dataset consists of a set of 28,653 protein sequences
distributed over 10 different organelles (Table 1). The sec-
ond dataset contains the mapped domain regions of the
first dataset, based on the Pfam domain database [20].
This mapping was done by cross-mapping the sequence
IDs against the accession numbers in the protein2ipr data-
base. Out of 28,653 sequences, only 23,621 proteins have
at least one domain mapping against the Pfam-A domains.
Table 1 provides the distribution of protein sequences in
10 different subcellular locations and corresponding Pfam
mapped sequences. The third dataset was collected from
the PROSITE database (Additional file 1: Table S4), which
contains domain regions of the protein sequences from 50
enzyme families where each family has a known PROSITE
pattern. The dataset consisted of a set of 26,863 protein
sequences over 50 families. In the filtering step, it was
ensured that there are no identical sequences within and
across families. On average, there are 537 sequences in
each PROSITE family used in this study.

The n-gram model for protein representation
An n-gram is any subsequence of a protein of fixed
length n. In literature, these protein subsequences have
been called alternatively as n-grams, n-mers, n-peptides,
etc. For the purpose of identifying discriminative n-grams,
all possible n-grams are extracted from each protein
sequence in the dataset. Given a dataset of protein
sequences D, let di be a protein sequence in D where
di = (s1s2. . .sk), where si ∈ Σ here Σ represent the set of all
possible amino-acids, and |Σ| = 20 then a set of
(k-n+1) grams can be obtained from di g1 = (s1 . . . sn)
g2 = (s2 . . . sn + 1), . . . gk − n + 1 = (sk − n + 1 . . . sk), Using the
n-gram model, the following properties of n-grams can
be observed.

� A discriminant gram gn follows a Zipf-like
distribution, i.e., a discriminant gram is present m
times, m > 1 more often in one class than the
average of its frequencies in second and third
highest class. Here m is selection threshold also
referred to as DR.

� gn is discriminatory in one class then it is not
discriminatory in other classes.

For the following properties the observations are con-
tingent based on the value of the selection threshold

� If a gram gn is discriminatory in a class then all of its
substrings gk with length k < n, 4≤ k < 8 can be
either discriminatory or non-discriminatory within
the class and also across the classes. This property
highlights the fact that the substrings of a
discriminatory n-gram are not always discriminatory
within and across classes. However, in our
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experiments we found few discriminatory n-grams
whose substrings were also discriminatory within
and across classes.

Substitution of amino acids
We used the amino acid substitution matrix, BLOSUM62,
as the reference matrix to identify functionally-similar and
evolutionally accepted amino acid groups. A pair of amino
acids with a positive substitution score (1 or more) is con-
sidered similar in our substitution scheme. Based on this,
we combined fixed length similar n-grams that differ by a
single amino-acid position. In the first step, the n-grams
are combined irrespective of the class they belong to.
Two n-grams, each with an amino-acid α and β at
position i ≤ n are combined to form a new n-gram if the
entry for (α, β) in the BLOSUM62 matrix is above or
equal to a specified threshold (BLOSUM62 threshold). For
example, consider a 6-gram TLSNPK. At a BLOSUM62
threshold of 1, n-grams such as TLNNPK, TLSDPK,
TLSNPK, TLSNPK and TLNSPK can be combined to form
a new 6-gram TL[SN][NDS]PK, where [xy] means either x
or y will occur in that position. The assumption is that in
the process of evolution, these amino acids replace each
other in those positions by point mutations, yet underwent
positive selection.
Since n-grams are subsequences of the protein se-

quences, each n-gram can have a different frequency
count across different classes. The frequency count for
a newly combined n-gram is the class-wise sum of the
frequency counts of all its constituting similar n-grams.
If the new n-gram TL[SN][NDS]PK is discriminatory to
a class C1 then instead of TL[SN][NDS]PK the scoring
function assigns all its constituting n-grams, TLNNPK,
TLSDPK, TLSNPK and TLSSPK as discriminatory to the
class C1 and updates the frequency count of each of
these n-grams in class C1 equal to the frequency count
of the combined n-gram TL[SN][NDS]PK.

Scoring function
Figure 6 schematically represents the steps followed by
the scoring function to determine discriminative n-grams
and motifs from the protein sequences. The scoring func-
tion helps in determining a set of discriminatory n-grams
based on the n-gram model discussed above. The scoring
function is parameterized with the length of the n-gram, a
selection threshold, and the target dataset to begin with.
The scoring function reads in all the protein sequences for
each class, and generates all possible n-grams for each
sequence. If a protein sequence is of length k then the
total number of n-grams is given by (k-n + 1). Once all the
n-grams are generated, it implements amino acid substitu-
tion to combine a set of similar n-grams as described
above in the substitution section. At the same time, the
scoring function keeps track of the frequency counts of
each n-gram (combined and single) across all the classes.
In order to avoid noise due to the unbalanced nature of
the dataset and also due to the non-uniform distribution
of the occurrence of n-grams in nature, the scoring func-
tion normalizes the frequency counts of all the n-grams
using a damping factor. This concept has been previously
used in text mining literature as the TFIDF algorithm [21].
The dampening factor gives more weightage to the n-
grams that are found only in a fewer number of classes as
described below.
For an n-gram x, the damping factor is given by the

expression ln Cj j
c:x∈cf gj j where |C| denotes the total number

of classes in the dataset and |{c : x ∈ c}| denotes the total
number of classes in which the n-gram x is present. This
damping factor is similar to the term ‘weighting’ as
discussed in a previous study [22]. The scoring function
multiplies the frequency count of each n-gram in a class
with this damping factor. In some cases, it is possible
for an n-gram to be present in all the classes thus making

the expression Cj j
c:x∈cf gj j ¼ 1 and consequently, the damping

factor becomes 0, i.e. ln 1=0. To avoid this, we adjust the
denominator expression as {c:x∈c}-0.1 i.e., to have a larger
numerator.
After determining the normalized frequency counts of

all the n-grams in all the classes, the scoring function
calculates a discriminatory ratio (DR) for each n-gram,
which is determined as the ratio of its highest normalized
frequency in a class to the average of its second and third
highest normalized frequencies. If the DR is greater than
the selection threshold, then the n-gram is considered as
discriminatory to the class where the highest frequency
(normalized) is observed. Variations in determining the
DR is resolved using the following conditions:

� If the second highest and third highest normalized
frequency values are 0, then the scoring function
considers the mean value to be 1 to avoid divide by
zero error.

� If the third highest normalized frequency value is 0,
then the scoring function considers the mean value
as equal to the second highest normalized frequency
value.

� If the mean is between 0 and 1 then the scoring
function considers the mean to be 1.

>The scoring function exploits the Zipf-like property
of n-gram distribution in protein sequences across clas-
ses [4,8]. The scoring function picks an n-gram z as dis-
criminatory for a class y if the frequency of occurrence
of z in class y is greater than selection threshold times
its average occurrence in any other two classes v,w ≠ y.
For example, if a 5-gram LMPQS is discriminant in CYT
at a selection threshold of 5 then it means that LMPQS



Figure 6 A schematic diagram showing the methodology and scoring function. GOL – Golgi; MIT – Mitochondria; NUC – Nuclear.
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appears in CYT more than 5 times the mean of its oc-
currence in other two highest classes. Due to substitu-
tion it is possible that the same discriminatory n-gram
may appear in different classes with different DR. The
scoring function filters the duplication of these discrim-
inatory n-grams by retaining the n-gram in the class
where its DR is the highest.

Mapping and merging of n-grams
After obtaining a rich set of discriminative 4- to
8-grams the scoring function applies some filters on it.
As mentioned in the n-gram model, it is possible that a
sub-string of a discriminative n-gram could also be
discriminative. For example a discriminative 5-gram,
LMPQS can be a sub-string of a discriminative 7-gram,
SLMPQST. The scoring function has a sub-string re-
moval module implemented in PERL that identifies all
the sub-strings (n-grams) and removes them from the
list of discriminative n-grams while retaining the larger
sized n-grams. This module initially sorts all the
n-grams in an alphabetical order first and then based
upon its size (lowest to highest). The sub-string removal
function in this module performs a pair-wise compari-
son by taking a small sized n-gram as pattern and looks
for it in larger sized n-grams. If a match is found the
pattern is discarded and the larger sized n-gram is
retained, else the pattern is retained.
Once the filtered set of discriminative 4- to 8-grams
is available, the scoring function maps the discrimina-
tive n-grams of each class to the matched class se-
quences using a mapping and merging module. For
each protein sequence in the class, this module creates
a profile that includes the list of discriminative n-
grams that can be mapped on to this sequence and
their starting and ending position in the sequence. The
profile for each protein sequence in the class is then
sorted (ascending) based on the starting position of
each discriminative n-gram. The module then merges
the discriminatory n-grams x and y if the ending pos-
ition of x is more, equal or one less than the starting
position of y or vice-versa, to obtain contiguous higher
order n-grams. Additional file 1: Table S5 demonstrates
the steps performed by the mapping and merging mod-
ule of the scoring function.

Pattern matching with PERL regular expressions
We developed a PERL module in the scoring function
to perform complex string comparisons using its
regular expression patterns (RegExp) because PERL is
well-known for being a flexible text-processing lan-
guage. When a pattern is provided to this module, it
scans across the list of discriminatory n-grams, motifs
or merged discriminatory n-grams and/or protein se-
quences and reports whether that pattern exists or
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not. The patterns provided in well-known databases
such as NLSdb, ELM and PROSITE do not follow the
same convention as that of the PERL RegExp. There-
fore, before the pattern matching step, we converted
the native patterns to Perl RegEx patterns. For ex-
ample, a NLSdb pattern KKPx{6,9}Kx{1,3}RK is equiva-
lent to the Perl RegEx pattern KKP.{6,9}K.{1,3}RK,
and a PROSITE pattern G-S-x(2)-M-x-{RS}-K-x-N is
equivalent to PERL RegEx pattern GS.{2}M.[^RS]
K.N. The PERL RegEx equivalents of NLSdb (Refer
Additional file 1: Table S1) and PROSITE patterns used
in this research are provided in the additional data file
(Additional file 1: Table S4).
Let us consider the PERL RegEx pattern, GS.{2}M.

[^RS]K.N, a pattern found in the Fumarate_Lyases
(PS00163) family of sequences. In the above mentioned
PERL RegEx pattern, the letters represent the amino
acids, the ‘.’ indicates that any one of the twenty amino-
acids can be substituted in that position, ‘{2}’ indicates
any combination of two-letter amino acids that also
includes repeat of same amino acid in both positions,
and ‘[^RS]’ indicates any one amino acid that is not R
and not S. The PERL-based pattern matching module
can identify this pattern for the following sample of
amino acid distributions in the PS00163 family protein
sequences: XXPENEPGSSIMPGKVNPTQCXX, GSSA
MPYKRNPMRSEXXX, XXEPFEKDQIGSSAMP
YKKN, etc. (The bolded letters represent areas where
there is a pattern match). The PERL module (s) are
provided in Additional file 2.

Performance metrics
We report standard performance measures over each
class including the following: true positives (TP) as the
number of n-grams that are correctly identified in a
class that belongs to them; false negatives (FN) as the
number of n-grams that are not identified in a class that
belongs to them; true negatives (TN) as the number of
n-grams that are not found in a class that doesn’t belong
to them; false positives (FP) as the number of n-grams
that are identified in a class that doesn’t belong to them;
specificity can be observed as a ratio of TN to the sum
of TN and FP; and sensitivity as the ratio of TP to the
sum of TP and FN. We used a confusion matrix to keep
track of all these values, where, the entries in the diagonal
represent the TP for each class; the sum of the entries in
each row minus the TP is FN; the sum of the entries in
each column minus the TP is FP, and the sum of the rest
of the entries in the confusion matrix is TN.
We also report coverage in a class as the ratio of

number of sequences in which a pattern match was
found to the number of sequences in that class. A
pattern match occurs only when an n-gram satisfying
the rules (PERL RegEx) described in the pattern exists.
Generating motifs using Wordspy program
We downloaded the Linux executables (binaries) for
Wordspy on a 48-core 2.00 Gz machine with 128 GB
RAM. Using the command line option, we supplied
Wordspy with a positive data set and a negative data
set containing protein sequences in FASTA format.
Datasets belonging to only four smaller classes that
include CSK, GOL, LYS and POX were used in this
experiment. We created a positive data set file including
protein sequences of one class and a negative data set
file containing protein sequences from the rest of the
three classes. For example, if the positive data set
included protein sequences from CSK then the negative
data set included protein sequences from GOL, LYS and
POX. This step was repeated for each of the four classes.
We instructed Wordspy to identify all significant 4- to
6-gram motifs, each with a z-score greater than 3 and 4.
In addition to that Wordspy was commanded to identify
motifs that occurred more than 5 times in the protein
sequences of positive data set. Once we obtained the
motifs from Wordspy we supplied it to our pipeline
for obtaining ROC curves and determined AUC’s for
each class.

Additional files

Additional file 1: Table S1. List of 137 NLSdb patterns encoded by Perl
RegEx patterns. Table S2.1. ELM Perl RegEx patterns for Nuclear Export
Signals (NES). Table S2.2. ELM Perl RegEx patterns for Post-Translational
Modification Sites (MOD). Table S2.3. ELM Perl RegEx patterns for
Clevage Sites (CLV). Table S2.4. ELM Perl RegEx patterns for Ligand
Binding Sites (LIG). Table S3.1. ELM patterns observed in the protein
sequences of Subcellular Localization dataset. Table S3.2. ELM patterns
observed in the motifs obtained from subcellular localization dataset at a
selection threshold of 9. Table S4. Prosite patterns of 50 enzyme families.
Table S5. Mapping and merging of discriminative n-grams.

Additional file 2: This file contains source code for six PERL
modules used in this project. A full description of each program, usage
and source code are provided in the README section at the beginning
of the file.
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