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Abstract

Experimental evidence suggests that a tetramer of integrase (IN) is the protagonist of the concerted strand transfer reaction,
whereby both ends of retroviral DNA are inserted into a host cell chromosome. Herein we present two crystal structures
containing the N-terminal and the catalytic core domains of maedi-visna virus IN in complex with the IN binding domain of
the common lentiviral integration co-factor LEDGF. The structures reveal that the dimer-of-dimers architecture of the IN
tetramer is stabilized by swapping N-terminal domains between the inner pair of monomers poised to execute catalytic
function. Comparison of four independent IN tetramers in our crystal structures elucidate the basis for the closure of the
highly flexible dimer-dimer interface, allowing us to model how a pair of active sites become situated for concerted
integration. Using a range of complementary approaches, we demonstrate that the dimer-dimer interface is essential for
HIV-1 IN tetramerization, concerted integration in vitro, and virus infectivity. Our structures moreover highlight adaptable
changes at the interfaces of individual IN dimers that allow divergent lentiviruses to utilize a highly-conserved, common
integration co-factor.
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Introduction

To establish productive infection, a retrovirus must insert the

reverse-transcribed form of its genome into a host cell chromo-

some. This process critically depends on two reactions, 39-

processing and strand transfer, catalyzed by the viral enzyme

integrase (IN) (reviewed in [1]). During 39-procesing, IN

endonucleolytically removes two or three nucleotides from the

39-termini of viral DNA to expose 39-OH groups of invariant CA

dinucleotides. These are subsequently utilized in a pair of

coordinated transesterification reactions, resulting in the insertion

of both viral DNA termini across the major groove of

chromosomal DNA. Integration is completed through the action

of host DNA repair enzymes, which mediate the necessary joining

of viral DNA 59-ends, yielding a short duplication of target DNA

sequence flanking the integrated provirus.

Retroviral INs have a characteristic three-domain organization,

all containing N-terminal, catalytic core and C-terminal domains

(NTD, CCD, CTD) (reviewed in [2]). The CCD contains the

invariant D,D-35-E motif responsible for coordination of two

Mg2+ ions within the active site and accounts for sequence-specific

interactions with viral DNA [3,4]. The positively-charged CTD is

also implicated in DNA binding, likely accounting for sequence-

independent interactions [5]. All three domains contribute to IN

multimerization [6–8]. CCDs of divergent retroviral INs invari-

ably crystallize as dimers, with isomorphous dimer interfaces [9–

11]. Structures of the NTD and CTD have been solved both alone

and as part of two-domain constructs involving the CCD by

respective use of NMR and crystallography [12–15]. The NTD

forms a three-helical bundle stabilized through coordination of a

Zn2+ ion by the invariant HHCC motif. The CTD consists of a

five-stranded b-barrel similar to Src homolgy 3 domains.

Although the structure of full-length retroviral IN remains elusive,

its partial structures were instrumental in unraveling the mechanism

of integration. The near-spherical CCD dimer cannot alone explain

the concerted integration of two viral DNA ends. Indeed, the active

sites, located on opposite sides of the dimeric CCD structure, are

separated by ,40 Å, while the distance between target scissile bonds

in ideal B form DNA is close to 18 Å. A tetramer would be the

minimal IN multimer to provide a pair of active sites with the

expected spacing, and available experimental evidence suggests that

the functional form of retroviral IN is indeed tetrameric [16–19]. An

attractive model was derived from the crystal structure of a two-

domain fragment of HIV-1 IN (INNTD+CCD) [15]. Although lacking

the CTD, this construct crystallized in tetrameric form, best

described as a dimer-of-dimers, with the dimers interacting with

each other predominantly via NTD-CCD contacts. This model was

inviting because it showed some structural similarity to the synaptic

complex of the related Tn5 transposase [20] and, while the ,29 Å

separation of active sites was too far to accommodate concerted

integration, it seemed plausible that flexibility along the dimer-dimer

interface could provide the necessary geometry.
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For efficient integration, HIV-1 and other lentiviruses depend

on lens epithelium derived growth factor (LEDGF) [21–23]

(reviewed in [24]), a cellular chromatin-associated protein

implicated in transcription regulation and apoptosis [25,26].

LEDGF directly interacts with lentiviral IN proteins and is

thought to tether the preintegration complex to chromatin for

strand transfer [27–29]. The CCD of HIV IN is the main

determinant for the interaction with LEDGF, although the NTD

is required for high-affinity binding [28,30]. Reciprocally, a small

alpha-helical domain within the C-terminal portion of LEDGF is

necessary and sufficient for the interaction with IN [31,32]. Crystal

structures of the integrase-binding domain (IBD) of LEDGF

(LEDGFIBD) in complex with HIV-1 INCCD and HIV-2

INNTD+CCD have revealed molecular details of this interaction

[30,33].

Herein we present two new crystal structures containing the

NTD and the CCD of maedi-visna virus (MVV) IN in complex

with LEDGFIBD. In both structures, this highly divergent lentiviral

IN is present in tetrameric forms, stabilized by swapping pairs of

NTDs between interacting dimers. Comparison of four indepen-

dent IN tetramers observed in our structures reveals variability of

the dimer-dimer interface, which affords juxtaposition of a pair of

active sites for concerted integration. Using a range of comple-

mentary functional assays, we show that the tetramerization

interface is essential for IN function, both in vitro and in the

context of viral replication.

Results

Crystal structures of the MVV INNTD+CCD:LEDGFIBD

complex
To ascertain protein-protein interfaces involved in retroviral

integration, we sought to determine crystal structures of divergent

lentiviral INs. MVV IN presented an appealing target because it

shares less than 30% overall sequence identity with its HIV-1

counterpart (Figure S1). Opportunely, sequence analysis of

LEDGF cDNA isolated from sheep, a natural MVV host,

confirmed that the amino acid sequence of its IBD is identical to

that of the human ortholog. Bacterial co-expression of MVV

INNTD+CCD (residues 1–219) with LEDGFIBD yielded monodis-

perse preparations of the protein-protein complex without

introducing solubilizing point mutations into the IN construct.

The protein complex crystallized in two forms, referred to as

crystal form (CF) 1 and CF2, and the resulting structures were

refined to 3.28 and 2.64 Å, respectively (Table 1).

The asymmetric unit (ASU) of CF1 contains three IN dimers

(chains A–F), each with a pair of associated LEDGF chains (G–L).

The dimers interact with each other to form three independent

dimer-dimer interfaces, such that the EF dimer interacts with the

AB and CD dimers, and the CD dimer with the A9B9 dimer from

another ASU (Figures S2A–S2C). The ASU of CF2 contains a

pair of IN dimers that form a single tetramer with four associated

LEDGF chains (Figure S2D). Although in most IN chains the

loops connecting NTDs and CCDs are disordered, clear electron

density was seen in chain B of CF1, allowing unambiguous

assignment of all NTDs in this crystal form (Figure S2C). In CF2,

where the NTD-CCD linkers are disordered for all monomers,

unambiguous assignment of IN chain B and C NTDs (cyan and

yellow in Figure S2D) was possible due to distance restraints: the

shortest path to connect chain B Gln44 with chain C Ser55, while

avoiding clashes with the rest of the model, would be well over

50 Å, a distance that cannot be covered by 10 amino acid residues.

IN tetramerization is primarily mediated by
intermolecular NTD-CCD interactions

Collectively, CF1 and CF2 reveal four independent IN

tetramers (Figure S2). Within each tetramer a pair of NTDs

(henceforth referred to as inner NTDs) mediate stable dimer-

Table 1. Summary of crystallographic statistics.

CF1 CF2

Data collection:

Resolution rangea (Å) 40-3.28 (3.46-3.28) 40-2.64 (2.71-2.64)

Rmerge
a 11.0 (66.5) 10.2 (58.6)

Multiplicitya 3.8 (3.8) 3.4 (3.3)

I/sI
a 11.2 (2.0) 8.1 (2.1)

Completenessa (%) 99.6 (99.7) 99.5 (99.4)

Refinement:

Resolution (Å) 40-3.28 40-2.64

Reflections work set 32,366 50,264

Reflections test set 1,718 2,827

Rwork (%) 21.28 22.63

Rfree (%) 25.51 25.30

No. protein atoms 12,786 8,625

No. ligand/ion atoms 6 43

No. water molecules 0 110

R.m.s. bonds (Å) 0.009 0.013

R.m.s. angles (u) 1.134 1.406

Ramachandran plot (%):

Favored 93.6 96.6

Allowed 5.2 3.2

Outliers 1.2 0.2

aData in parentheses represent highest resolution shell.
doi:10.1371/journal.ppat.1000515.t001

Author Summary

Integrase is the viral enzyme that orchestrates insertion of
both ends of retroviral DNA into a host cell chromosome.
This process, thought to require a tetramer of integrase,
involves two concerted cutting/joining (transesterification)
reactions that target a pair of phosphodiester bonds in
chromosomal DNA, separated by ,18 Å. Until now, the
architecture of the integrase tetramer responsible for
concerted integration has remained a mystery. We now
report two crystal structures containing the N-terminal and
catalytic core domains from a lentiviral integrase in
complex with its co-factor LEDGF. Comparison of the
structural arrangements observed in our crystals elucidates
the details of the integrase tetramerization interface,
reveals its dramatic flexibility and the mechanism by
which a pair of active sites can be brought into close
proximity. Taking advantage of the structural data, we
generated a series of HIV-1 integrase mutants designed to
disrupt or re-create its tetramerization interface. Biochem-
ical and virus replication studies with these mutants
strongly support the functional significance of the
tetrameric architecture observed in the crystal structures.
Our results provide important novel insights into the
assembly of the functional integrase tetramer and will be
invaluable for the ongoing efforts to model the retroviral
pre-integration complex.

Functional Integrase Tetramerization
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dimer interactions. The remaining (outer) NTDs do not share a

conserved role or position within the tetramers (Figure S2). The

salient details of higher-order dimer-dimer interaction are shown

for three of the four tetramers (CF1/IN chains CDEF, CF1/

ABEF, and CF2/ABCD) in Figure 1A–1C, with LEDGF chains

and outer NTDs omitted for clarity. The interface within the

CF1/CDA9B9 tetramer is very similar to that in ABEF, and will

therefore not be discussed separately. Within tetramers, the

positions of the inner NTDs relative to the opposing CCD dimers

are maintained in all cases, and are identical to those seen in the

earlier tetrameric HIV-1 (Figure 1D) and dimeric HIV-2

INNTD+CCD structures, although in the latter case the NTD-

CCD interfaces were intramolecular [15,30].

The NTD-CCD interfaces, observed in the structures of

divergent INs, share conserved features including a well-defined

salt bridge between Glu11 and Lys188 (Lys186 in HIV-1 IN; refer

to Figure S1 for an MVV/HIV-1 IN sequence alignment) and

hydrophobic interactions involving Trp15 (Tyr15 in HIV-1 IN)

and chain A Tyr134 as well as chain B Leu167, Ile183, Thr184

and Lys188 (Trp132, Val165, Phe181, Ile182 and Lys186,

respectively, in HIV-1 IN) (Figure 2A and 2B). An additional salt

bridge is formed between Glu25 and Lys190, and this is

reproduced in the HIV-1 IN interface as Asp25:Lys188. HIV-2

IN encodes Lys at position 25, so it cannot form the same salt

bridge; instead the related Arg188 forms a salt bridge with Glu21

(Figure 2C). The conservation of the NTD-CCD interface and the

resulting tetramers in crystal structures of divergent lentiviral INs

strongly argues for their functional relevance.

Closure of the flexible tetramerization interface
Although each IN tetramer is stabilized by identical intermo-

lecular NTD-CCD interactions, there is remarkable variation in

the relative positions and orientations of the interacting dimers

(Figure 1, Figure S2, Videos S1 and S2). The plasticity of the

dimer-dimer interface is sufficient to allow a pair of active sites

from the opposing CCD dimers in CF2 to approach 14.9 Å

separation (measured as the distance between Cc atoms of the

active site Glu residues). For a comparison, the separation

between the structurally-equivalent active sites in CF1/ABEF is

27.5 Å, while that in the HIV-1 INNTD+CCD structure [15] is

,29 Å (Figure 1). In addition to the stable intermolecular NTD-

CCD interactions, the tetramerization interface involves a loop

connecting CCD helices a5 and a6 (residues 188–196 and 186–

195 in MVV and HIV-1 respectively, Figure S1), termed finger

[2]. Although rich in Gly residues, the loop adopts a constrained

conformation stabilized by a network of hydrogen bonds, the

aforementioned salt bridges with the NTD, and wields a

hydrophobic residue at the tip (Leu193 in MVV; Ile191 in

HIV) (Figure 2D–2F). Examination of the dimer-dimer interfaces

within individual tetramers reveals profound differences in

relative orientations and contacts made by the fingers of opposing

CCD dimers (Figure 1). Notably, the fingers switch positions

between CF1/CDEF and CF2 structures, with CF1/ABEF

representing an intermediate state (Videos S1 and S2). The most

defined, symmetric and potentially relevant interactions involving

this loop are observed in the CF2 structure, where side chains of

Leu193 residues nucleate a hydrophobic core, engaging Ile200,

Phe203 and Thr195 from the finger of the opposing CCD dimer

(Figure 3A). The chain of hydrophobic contacts propagates to

involve Leu24 and Val20 from the inner NTDs and Ile60 from

the CCD of the same chain and is further stabilized by a well-

defined salt bridge involving Arg58 and Asp18 side chains. These

interactions effectively zip the two halves of the tetramer together,

bringing a pair of active sites from the inner monomers into close

Figure 1. Observed lentiviral IN tetramers. MVV IN tetramers from
CF1 and CF2 structures (A–C), compared to the HIV-1 IN tetramer from
Wang et al. [15] (PDB ID 1k6y) (D). For clarity, the outer NTDs and LEDGF
chains are omitted. The CF1/CDA9B9 tetramer, which is very similar to
CF1/ABEF, is not shown. Protein chains, shown as cartoons, are color-
coded as indicated; cylinders represent a helices. Catalytic triad residues
(Asp66, Asp118 and Glu154 in MVV; Asp64, Asp116 and Glu152 in HIV-1)
belonging to the inner monomers of each tetramer (cyan and yellow
chains) are shown as sticks, the carboxylate oxygen atoms highlighted
as red spheres. The black arrowheads indicate the CCD fingers of the
inner monomers, which participate in tetramerization.
doi:10.1371/journal.ppat.1000515.g001

Functional Integrase Tetramerization
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proximity (Videos S1 and S2). A complementary interaction

between the active sites involves a symmetric pair of hydrogen

bonds formed by Gln150 residues of the inner monomers

(Figure 3B). Interestingly, the closure of the tetrameric structure

also subtly modifies the internal configuration of the congregated

active sites. Repulsive dipole-dipole interactions between re-

aligned a4 helices, exacerbated by the close stacking of Arg155

side chains (Figure 3B), result in a slight deformation of both

helices, forcing Glu154 to shift towards Asp66 and Asp118 of the

same active site. For example, the distance between the Ca atoms

of Glu154 and Asp66 decreases from 10.4 Å in the open CF1/

ABEF and CF1/CDEF conformations to 7.7 Å in CF2. The

active site separation in the closed tetramer observed in CF2 is

compatible with the spacing between scissile phosphodiester

bonds in B-form target DNA (Figure 3C). Hence, CF2 represents

an IN tetramer conformation committed for concerted integra-

tion.

The MVV IN-LEDGF interface
Predictably, the overall architecture of the MVV IN-LEDGF

interaction is similar to that described for HIV-1 and HIV-2 INs

[30,33]: it primarily involves the tip of the IBD, notably LEDGF

residues Ile365 and Asp366, and a cleft at the interface of the

CCD dimer. The stoichiometry of MVV INNTD+CCD:LEDGFIBD

complexes observed in both crystal forms is 1:1 (Figure S2), similar

to that in crystals of the HIV-1 INCCD:LEDGFIBD complex [33].

Thus, each MVV IN CCD dimer interacts with a pair of IBDs,

bound at two equivalent positions. All ten CCD:IBD interfaces

observed in CF1 and CF2 structures are very similar. LEDGF

Ile365 forms hydrophobic interactions with Met104, Leu131 and

Figure 2. The NTD-CCD interfaces and CCD finger structures of MVV, HIV-1 and HIV-2 INs. (A–C) The NTD-CCD interface as observed in
MVV INNTD+CCD:LEDGFIBD CF2, HIV-1 INNTD+CCD (PDB ID 1k6y) and HIV-2 INNTD+CCD:LEDGFIBD (PDB ID 3f9k) structures. A cartoon representation is
shown, viewed from the opposite side of the tetramer to Figure 1C, with carbon atoms colored by chain as in Figure 1C and other atoms colored blue
for nitrogen, red for oxygen and yellow for sulfur. Note the interface involving HIV-2 IN is intramolecular in contrast to that in the domain-swapped
tetrameric MVV and HIV-1 IN structures. (D–F) Configurations of the CCD fingers in structures from panels A–C. Side and main chains of the finger
residues are shown as sticks. The color scheme as in panels A–C. Hydrogen bonds are indicated with dashes. Residues discussed in the text are
indicated. Note that Lys185 in the HIV-1 structure in panel E replaces Phe, naturally occurring at this position.
doi:10.1371/journal.ppat.1000515.g002

Functional Integrase Tetramerization
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Tyr134 of one MVV IN chain and Met170 and Phe171 of the

second IN chain (Figure 4A). These interactions are related to

those observed for HIV-1, although the actual IN side-chains

involved differ due to lack of sequence identity (Figure S1). As

predicted [27], LEDGF Asp366 duplicates the previously

described bidentate hydrogen bond with backbone amides of

MVV IN residues Asn172 and Ala173 (Glu170 and His171 in

HIV-1).

Lentiviral INs display surprisingly little sequence conservation at

the positions directly involved in the interaction with LEDGF,

itself a well-conserved protein [27,33]. Predictably, some details of

the MVV IN-LEDGF interaction show marked differences with

those elaborated for HIV-1 or HIV-2 INs [30,33] (Figure 4). One

such difference occurs due to MVV encoding residues Arg100 and

Leu131 in place of two Ala residues at HIV-1 IN equivalent

positions 98 and 129. The bulky side-chains pry MVV IN CCD

helices a1 and a3 slightly apart, enlarging the cleft occupied by the

protruding IBD loop. The extra space is filled by the insertion of

LEDGF side chains Asn367 and Leu368, which make hydrogen

bonds with Gln97 and Arg100 and hydrophobic interactions with

Leu130, Leu131 and Tyr134, respectively (Figure 4A). The result

of this alternate binding orientation is a ,34u rotation of the IBD

with respect to the HIV-1 structure, centered at the site of

interaction with the CCD. Consequently, Phe406 and Val408

located on the second loop of the IBD make hydrophobic

interactions with MVV IN Tyr134. Such interactions would not

be possible with HIV-1 IN due to an inevitable steric conflict with

the side chain of Trp131; the equivalent position of MVV IN is

occupied by Lys133, whose flexible side chain makes way for

incoming Phe406 and Val408 (Figure 4). The rotation also allows

LEDGF Lys364 to form a hydrogen bond with the carbonyl group

of MVV IN Pro169 (Figure 4A). In the complex with HIV-1 IN,

Lys364 forms a salt bridge with non-conserved IN residue Glu170.

Additional interactions involving the positive patch on one side of

Figure 3. Details of the IN tetramer consistent with concerted integration. (A) Stereo view on the dimer-dimer interface in CF2, as viewed
from top of the orientation in Figure 1C. The contribution of Leu193, Phe203, Ile200, Thr195, Leu24, Val20, and Ile60 residues from the inner
monomers to the solvent exposed surface in CF2 structure is ,95 Å2, compared to ,280 Å2 in the open CF1/ABEF tetramer. Relevant side chains are
shown as sticks and indicated. Gray spheres are Zn atoms. Salt bridges involving Arg58 and D18 are indicated with gray dashes. The coloring scheme
is as in Figures 1 and 2. (B) Contacts involving the N-termini of inner monomeric CCD a4 helices. The structure is slightly tilted, compared to the
orientation shown in panel (A). Hydrogen bonds between chain B and C Gln150 residues are shown as gray dashes. Repulsive interaction between
guanidinium groups of Arg155 residues is highlighted with red dashes. (C) A conceptual model for the engagement of target DNA by a closed IN
tetramer. A 17-bp DNA duplex was aligned with the pair of active sites from the inner monomers of the CF2 tetramer. The scissile phosphodiester
bonds are indicated with red triangles, and the separating base pairs are numbered. Secondary structure elements discussed in the text are indicated.
doi:10.1371/journal.ppat.1000515.g003
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the IBD structure and carboxylates of HIV-1 and HIV-2 IN

NTDs are important for high affinity interaction [30]. In CF2,

LEDGF residues Lys401, Lys402 and Arg405 are sufficiently close

for electrostatic interactions with MVV IN Asp41, Glu10 and

Glu9, respectively (not shown). However, the side chains of the

interacting residues are not well defined in electron density maps.

The dimer-dimer interface is critical for HIV-1 IN
tetramerization

To test the relevance of the tetramerization interface observed

in the crystal structures, we designed a series of HIV-1 IN mutants.

The changes were introduced at the positions predicted to be

important for tetramerization by the earlier HIV-1 INNTD+CCD

[15] and current MVV structures. Multimerization properties of

purified proteins were studied using analytical size exclusion

chromatography (SEC) (Figure 5). All proteins displayed non-ideal

behavior, such as temperature-dependent interaction with Super-

dex and silica matrices (data not shown), and generated complex

elution profiles, indicative of multiple multimeric forms. Nonethe-

less, in agreement with previous results [34], the elution profile of

WT HIV-1 IN was consistent with a predominantly tetrameric

species (Figure 5A). Preincubation of IN with an excess of

LEDGFIBD prior to injection resulted in a slightly earlier elution of

the major species (Figure 5B). The peak shift of ,0.15 ml was

consistent with binding of four 10-kDa LEDGFIBD molecules per

IN tetramer. Zinc binding is essential for folding of the NTD and

promotes HIV-1 IN self-association [6,35–37]. Concordantly,

disruption of zinc coordination by the NTD H12N mutation

grossly affected the SEC elution profile (Figure 5A). Under these

experimental conditions, H12N IN behaved as a dimer or a

dimer-monomer mixture.

Remarkably, several mutations at the NTD-CCD interface

affected HIV-1 IN self-association properties to a similar extent as

the NTD-destabilizing H12N mutation. Thus, mutating Tyr15, a

residue involved in several hydrophobic interactions with the CCD

(Figure 2B), abolished multimerization (Figure 5A). Similarly,

disrupting the Glu11:Lys186 salt bridge with single point

mutations E11K or K186E resulted in pronounced shifts to lower

molecular weight species (Figure 5A). Interestingly, less dramatic

shifts were observed for D25K and K188D, suggesting lower

importance of the Asp25:Lys188 interaction for multimerization.

These results agree with an earlier report showing that the K186A

change had a greater effect on tetramerization than did K188A

[34] and are consistent with the crystal structures. Thus, in HIV-1

IN [15], the e-amino group of Lys188 is shared between the

carboxylates of Asp25 and Glu198, separated from either by

,4.6 Å (Figure 2B). In contrast, the e-amino group of HIV-1

Lys186 is only ,3.2 Å from the carboxylate of Glu11, indicating

strong bonding. In MVV IN, the Glu25:Lys190 salt bridge

appears to be the stronger of the two, with the Glu11:Lys188

interaction weakened by interactions between Glu11 and Lys14

(Figure 2A). Remarkably, combining the E11K and K186E

mutations in one protein led to a significant recovery of the higher-

multimeric HIV-1 species, as did mixing equimolar quantities of

single mutants (Figure 5A). Cross-linking with the homobifunc-

tional reagent BS3 confirmed that WT HIV-1 IN existed as a

predominantly tetrameric species, and that tetramerization was

highly sensitive to the E11K or K186E mutation (Figure S3).

Further corroborating results of the SEC experiments, partial

recovery of tetramer formation was observed in equimolar

mixtures of E11K and K186E mutants (Figure S3). These results

demonstrate that (i) the contact between Glu11 and Lys186 is

essential for the stability of higher-order HIV-1 IN multimers in

vitro and (ii) the salt bridge between these residues can be formed

intermolecularly, corroborating the NTD-CCD connectivity

observed in the MVV structures.

Deletion of residues 190Gly-Ile-Gly192 from the CCD finger

abrogated multimerization (D190-2, Figure 5C), although the

I191E point mutant multimerized as well as WT (Figure 5C).

Therefore, while the whole of the constrained loop structure is

clearly essential for multimerization, the conserved aliphatic

residue at its tip is not. LEDGF was shown to enhance HIV-1

IN tetramerization [34], an effect likely dependent on the IBD-

NTD interface [30,34]. Accordingly, preincubation with LEDG-

FIBD led to at least partial rescue of multimerization for all NTD-

CCD interface mutants (Figure 5B and 5D). These results are

Figure 4. The LEDGFIBD:INCCD interface. Comparison of IBD:CCD interactions in MVV INNTD+CCD:LEDGFIBD (CF2) (A) and HIV-1 INCCD:LEDGFIBD (PDB
ID 2b4j) (B) structures. The view is from the same side as in Figure S2D. Note the increase in inter helix spacing between MVV CCD a1 and a3, caused
by the replacement of small side-chains (HIV-1 IN residues Ala98 and Ala129) with larger Arg and Leu side-chains (MVV residues 100 and 131,
respectively). The resulting ,34u rotation of the IBD is indicated by the black symbol.
doi:10.1371/journal.ppat.1000515.g004
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wholly consistent with the crystal structures (Figure S2), where

LEDGF binding is expected to stabilize IN tetramers.

The NTD-CCD interface is vital for IN enzyme activity and
HIV-1 infection

Next, we tested the HIV-1 IN mutants for the ability to catalyze

39-processing and DNA strand transfer using either a blunt-ended

500-bp (Figure 6A), or blunt or pre-processed 23-bp mimic of the

viral U5 DNA end (Figure 6B and 6C). The assay with the longer

viral DNA substrate distinguishes concerted strand transfer

reaction products from those that result from the integration of

a single donor DNA end into only one strand of target DNA,

whereas the oligonucleotide-based assays do not. The Y15A and

D190-2 mutants were almost devoid of 39-processing activity

(Figure 6B), and did not produce strand transfer products in either

assay format (Figures 6A–6C). Interestingly, I191E IN, which

multimerized as well as WT, was attenuated for both 39-processing

(Figure 6B) and strand transfer (Figures 6A and 6C), suggesting

that I191E tetramers might exist in a defective conformation.

Mutants D25K and K188D functioned relatively well in 39-

processing (Figure 6B) and retained near WT strand transfer

activity in the oligonucleotide assay (Figure 6C). However D25K

and, to a lesser degree, K188D, displayed a specific concerted

integration defect, with D25K generating half-site products at near

WT level (Figure 6A).

Mutations E11K and K186E, targeting the Glu11:Lys186 salt

bridge, decreased 39-processing and strand transfer activities

(Figures 6B and 6C) while completely eliminating concerted

integration (Figure 6A, lanes 8–13). The importance of the salt

bridge was further illustrated by the recovery of concerted

integration activity to almost WT levels with the double E11K/

K186E mutant (Figure 6A, lanes 14–16). This result also

confirmed that the mutations do not affect the intrinsic catalytic

properties of the enzyme, or its functional association with donor

or target DNA. Likewise, mixing the two individual mutants

(E11K+K186E), each incapable of forming intramolecular NTD-

CCD interactions, recuperated concerted integration (lanes 17–

19). Consistent with the observation that LEDGF binding aids IN

multimerization (Figures 5B and 5D, see also [34]), the concerted

integration activities of E11K, D25K, K188D, and, to a lesser

extent, K186E, were rescued in the presence of the host factor

(Figure 6D).

IN mutations were next introduced into the single round HIV-

Luc vector, and infectivity was assessed 2 days post-infection.

Based on the results with purified enzymes, E11K, K186E, and

E11K/K186E mutants were initially compared to D64N/D116N

(N/N) active site mutant virus. N/N supported 0.2560.06%

Figure 5. Multimerization of WT and mutant HIV-1 INs. (A) SEC elution profiles of IN proteins versus elution volumes of protein standards
(black arrows). WT (black) and H12N (light gray) IN indicate the tentative volumes of tetramers and dimers, respectively. The profiles of E11K, K186E,
E11K/K186E double, E11K+K186E mixture and Y15A mutants are shown in cyan, red, purple, pink and dark gray, respectively. (B) The elution profiles
of the same mutant INs as in panel A, but pre-mixed with LEDGFIBD prior to chromatography; colors are as in panel A. (C) SEC elution profiles of D25K,
K188D, I191E and D190-2 mutant INs (respectively cyan, red, yellow and green) compared to the profile of WT (black) and H12N (gray) proteins. (D)
Elution profiles of indicated panel C IN proteins in complex with LEDGFIBD.
doi:10.1371/journal.ppat.1000515.g005
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Figure 6. Enzymatic activities of WT and mutant HIV-1 INs. (A) Concerted integration activity. Three IN concentrations, 0.05, 0.1 and 0.2 mM
(left to right) were used. The migration positions of DNA standards, the donor and the reaction products are indicated. Concerted integration of two
0.5-kb donor DNAs into the circular ,3 kb plasmid target results in a linear ,4 kb product, whereas half-site integration results in a tailed open
circular molecule. The faint band on the gel above the first half site band is likely two half-site integration events into the same target plasmid. The
fuzzy band migrating at ,1 kb is the result of half-site integration of a donor molecule into a second donor. (B) 39-processing and overall strand
transfer activities for each IN mutant, at three different IN concentrations: 0.1, 0.2 and 0.4 mM. Migration of the radiolabeled reactive strand of the
oligonucleotide substrate (23 nt), its processed form (21 nt) and the ladder of the strand transfer products are indicated. (C) Assays conducted in the
same conditions as those in (B) but using pre-processed substrate, which allows the enzyme to by-pass 39-processing. IN was used at 0.2 mM
throughout. (D) LEDGF-dependent concerted integration assay using short, unprocessed (32 bp) oligonucleotides as donor DNA. Lanes 1–3
contained a mock (no protein added) reaction, LEDGF- and donor substrate-omit controls. Concerted integration in this assay results in a product
migrating close to the linearized form of the target DNA, whereas half-site integration a branched form of target DNA, migrating as an open circular
[30]. The smear below the concerted integration product for highly reactive INs is a result of re-targeting of the main product by additional concerted
integration events. Migration of the donor DNA, supercoiled (s.c.) and open circular (o.c.) form of target DNA, and reaction products are indicated.
doi:10.1371/journal.ppat.1000515.g006
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(n = 6) residual HIV-Luc infectivity, whereas E11K, K186E, and

E11K/K186E faired less well, each scoring near the assay

detection limit (,0.025% of HIV-Luc). This suggested that

E11K, K186E, and E11K/K186E might exert class II mutant

behavior: certain mutants, like N/N, are referred to as class I

because they are specifically blocked at integration and accord-

ingly support residual levels of gene expression from unintegrated

DNA, whereas the majority of mutant viruses, class II, display

additional reverse transcription and/or virus assembly defects

[38]. The preliminary assignment of class II mutant behavior is

consistent with the previously reported K186Q reverse transcrip-

tion defect [39,40].

The activities of class II mutant viral enzymes can be analyzed

during infection via trans-incorporation of Vpr-IN fusion proteins

into assembling virus particles [40,41]. Various mutant proteins

were therefore compared to Vpr-INWT for their ability to stimulate

N/N-Luc infectivity. Vpr-INWT enhanced N/N-Luc infection

approximately 6- to 16-fold, yielding overall infectivities that

ranged from 1.4% (Figure 7) to 6.8% (data not shown) of HIV-

Luc. Vpr-INE11K and Vpr-INK186E displayed partial activities,

yielding 3965.8% and 3361.6% of Vpr-INWT function in repeat

(n = 5) experiments (Figure 7 and data not shown). Akin to the

result with purified enzymes, the Vpr-INE11K/K186E double

mutant was significantly more active than either single mutant,

actually outshining Vpr-INWT to restore 21.5% of HIV-Luc

activity (Figure 7). Trans incorporation of separate Vpr-INE11K

and Vpr-INK186E single mutants also significantly stimulated N/N-

Luc, yielding 15.7% of overall HIV-Luc infectivity. Importantly,

incorporating the D116A active site mutation into either Vpr-

INE11K or Vpr-INK186E counteracted the stimulatory affect of the

mixture (Figure 7). Immunoblotting revealed similar levels of

functional and non-functional Vpr-IN protein incorporation into

virions (Figure 7).

Discussion

Retroviral INs function as multimers [16–19,41–43]. Due to

obvious structural restraints, such as distances between active sites

in their dimeric CCDs, minimally a tetramer of IN would be

required to carry out concerted integration of both viral DNA

ends. Because a structure of a full-length IN has remained elusive,

much effort is being expended to model a full-length IN tetramer

based on the available partial crystal structures [15,44–46]. In this

work we present two crystal structures containing a two-domain

construct of a divergent lentiviral IN in complex with the isolated

IBD of its natural host cofactor LEDGF. Together with earlier

results [15,30], these structures elucidate the mechanism for IN

tetramerization, indicate the dramatic flexibility of the IN

tetramerization interface (Videos S1 and S2) and for the first time

reveal a tetramer conformation that is compatible with concerted

integration (Figure 3).

It is important to note that the CTD, which is also involved in

IN multimerization [7,47], is not present in our structures.

Figure 7. WT and mutant virus infectivity. The level of N/N active site mutant virus infection, either without added Vpr-IN (left) or with the
indicated Vpr-IN protein(s), as percentage of WT HIV-Luc infectivity. Error bars indicate the variation attained from duplicate experiments (four
independent infections). The western blot below the graph shows total levels of IN, uncleaved Vpr-IN and viral capsid (CA) in pelleted N/N-Luc (lane
1), HIV-Luc (lane 2) or N/N-Luc containing the indicated Vpr-INs (lanes 3–12). Lane 13 contained 3 ng recombinant His6-tagged IN.
doi:10.1371/journal.ppat.1000515.g007
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Nonetheless, we were able to validate the tetramerization interface

observed in the crystals using a range of functional assays with

mutants of full-length HIV-1 IN. Herein we demonstrated that the

main proponent of IN tetramerization is the conserved NTD-

CCD interface brought about by swapping a pair of NTDs

between participating IN dimers. We recently showed that within

an IN dimer, the NTDs fold back onto their own CCDs [30]. In

contrast, in the context of a tetramer, interacting IN dimers swap a

pair of NTDs (Figure 1). Although similar connectivity was

postulated earlier [15], hitherto direct evidence for NTD swapping

was not available. The absence of structured NTD-CCD linkers

and the open conformation of the HIV-1 INNTD+CCD tetramer

described by Wang et al. [15] allow various alternative NTD-CCD

connectivities (for more discussion see [30] and [2]). Detailed

analyses of the NTD-CCD interfaces in the current MVV as well

as earlier HIV-1 and HIV-2 IN structures [15,30] revealed a

network of conserved interactions (Figure 2) that are essential for

multimerization (Figure 5). The key interaction involves a

conserved salt bridge, which in HIV-1 IN is mediated by Glu11

and Lys186, and the latter residue has been shown to be important

for HIV-1 IN multimerization [34,48]. Herein we demonstrate

that the Glu11:Lys186 salt bridge is functionally reversible,

allowing us to significantly extend prior observations. Thus, while

individual mutations of both residues abrogated tetramerization

and concerted integration, mixing HIV-1 IN E11K and K186E

single mutants partially recovered tetramerization (Figure 5 and

S3), rescued concerted integration in vitro (Figure 6), and

moreover robustly stimulated N/N-Luc infection (Figure 7). These

results imply that the intermolecular NTD-CCD interface is

functional. The behavior of the E11K+K186E mixture in the virus

complementation assay highlights this functionality. A significant

fraction of inner monomers from the N/N+Vpr-INWT mixture

will contain inactivating D64N/D116N mutations, poisoning

tetramer function. In the N/N+Vpr-INE11K+Vpr-INK186E case,

N/N IN would only be allowed to assume the role of the outer

monomers to accommodate the reversible salt bridge between

inner INE11K+INK186E pairs. Hence the activity of the Vpr-

INE11K+Vpr-INK186E mixture outshines that of Vpr-INWT in this

assay (Figure 7). Furthermore, because the double E11K/K186E

mutant is functional, we can conclude that the mutations do not

affect the intrinsic catalytic properties of the enzyme or its

interactions with DNA. Not only did the double mutant E11K/

K186E recover concerted integration activity and HIV-1 infec-

tion, it also supported greater levels of 39-processing and half-site

integration activities over the individual mutant proteins. This

indicates that while it could be possible for a dimer of IN to

catalyze 39-processing and half-site integration, both reactions are

more efficiently catalyzed by a tetramer (or possibly a larger

aggregate of IN dimers). A similar conclusion was made based on

kinetic studies utilizing a mutant of an alpharetroviral IN that was

unable to form tetramers [49]. Furthermore, this finding is in

agreement with Li and Craigie [50], who observed that 39-

processing and concerted HIV-1 integration are functionally

coupled. We speculate that tetramerization could play a role in the

correct organization of the active site. Indeed, closure of the

tetramerization interface leads to a slight compression of the MVV

IN active site, with active site residue Glu154 relocating closer to

its Asp66 and Asp118 mates. In addition, IN tetramerization and

engagement of the viral DNA termini are likely to be co-

dependent.

Intriguing questions remain as to the nature of the class II

phenotype of HIV-1 IN mutants [38]. Although E11K/K186E

HIV-1 IN was fully competent to carry out concerted integration

starting with blunt ended substrate (Figure 6), the virus carrying

these mutations was not infectious. It is possible that Glu11 and/or

Lys186 impact important noncatalytic IN function(s) at a step prior

to integration, such as reverse transcription [51]. Alternatively, the

mutations might disrupt interaction with a host factor that would

engage the outer IN monomers of the tetramer during integration.

It is important to note that the IN tetramer structure contains two

structurally and functionally-distinct pairs of IN subunits, with the

inner pair (painted cyan and yellow in Figure 1) swapping their

NTDs and providing the active sites, and the other pair (green and

orange) playing a supporting role. Therefore, many residues in the

IN sequence likely have two distinct functions.

The current MVV and the earlier HIV-1 IN [15] structures

(Figure 1), as well as our analyses of the D190-2 mutant, clearly

indicate that the CCD finger is involved in multimerization.

Similarly, alterations within the CCD finger structure impaired

tetramerization of alpharetroviral IN [48]. Truncation of the

constrained loop structure is expected to affect salt bridges

involving HIV-1 Lys186 and Lys188 side chains, and thus the

crucial intermolecular NTD-CCD interface. The significance of

the aliphatic residue at the tip of the finger structure (Ile191 in

HIV-1 or Leu193 in MVV) is highlighted by its conservation in all

lentiviruses. A substitution of HIV-1 IN Ile191 for Glu produced a

protein that was able to multimerize (Figure 5), but was essentially

devoid of enzymatic activity (Figure 6). These results are consistent

with the importance of the aliphatic residue for the formation of

the closed tetramer conformation, represented by the CF2

structure, where a pair of Leu193 residues from opposing CCD

fingers nucleate a hydrophobic core at the dimer-dimer interface

(Figures 1 and 3A).

Superposing partial HIV-1 IN structures onto the CF2 MVV

structure results in a plausible full-length tetrameric model devoid

of significant steric conflicts (Figure S4). Although the majority of

the residues involved in the closure of the dimer-dimer interface

are not conserved between MVV and HIV-1 INs (Figure S1), the

model suggests a potential role of HIV-1 IN residue Tyr194 in

formation of the closed structure via hydrophobic interactions with

Ile191 from the opposing dimer. The conformational variability of

the dimer-dimer interface described here suggests that the

committed IN tetramer is likely stabilized via IN-DNA interac-

tions. It is noteworthy that the synaptic Tn5 transposase:DNA

complex is primarily stabilized via protein-DNA interactions [20].

An earlier model based on the open conformation of HIV-1 IN

tetramer suggested that target DNA would bind into the cleft

between widely separated active sites [15,44]. This implies that the

active sites would approach target DNA duplex from opposing

sides, a configuration not easy to reconcile with the size of target

DNA duplications flanking integrated proviruses. On the other

hand, the closed tetramer conformation would preclude target

DNA access to the interior of the dimer-dimer interface. We

speculate that the target duplex binds roughly along the vector

connecting the active sites, affording them direct access to the

scissile phosphodiester bonds located across the major groove

(Figures 3C and S4). This binding mode is supported by findings of

Katzman and colleagues, who demonstrated that HIV-1 IN

residue Ser119, located within CCD a2, is involved in target DNA

capture [52,53]. More recent results from this laboratory further

confirm a target DNA binding platform extending along this

direction [54]. The locations of the CTDs in the current model

(Figure S4) are compatible with a role in binding viral DNA

termini. It is noteworthy that although the CCD-CTD linker

adopted alpha helical conformation in the structure of the HIV-1

INCCD+CTD fragment [13], similar studies with INs from Rous

sarcoma and simian immunodeficiency viruses [55,56] highlighted

significant flexibility of this region. DNA binding moreover
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induced considerable structural rearrangements within the CCD-

CTD linker of HIV-1 IN [57]. Hence positions and orientations of

the CTDs within the tetramer cannot be directly inferred from the

available partial structures.

Because the current MVV (Figure S2) and earlier HIV-1 IN

[15] tetrameric structures disagree on the locations of the outer

NTDs, their roles remain uncertain. In particular, the NTD-NTD

interfaces observed in MVV CF1 tetramers (Figure S2) differ both

from each other and from those observed in HIV-1 INNTD+CCD or

the isolated HIV-1 NTD dimer in solution [12]. These interfaces

likely represent packing artifacts in crystal structures, which

contain continuous chains of dimers linked by tetramerization

interfaces, with the outer NTDs in one tetramer assuming roles of

inner NTDs in another (not shown). In contrast, the tetramer in

CF2 is isolated and does not have NTD:NTD contacts, with the

outer NTDs folding back to lock onto the connected CCDs (Figure

S2D). We expect that the outer NTDs would reveal their role in a

tetramer of full-length retroviral IN or within its complex with

DNA.

Materials and Methods

Recombinant DNA and proteins
The plasmid pCDF-MVV-INNTD+CCD, used for bacterial

expression of non-tagged MVV INNTD+CCD, was made by ligating

a PCR fragment encoding residues 1–219 of IN from molecular

clone KV1772 [58] between NcoI and XhoI sites of pCDF-Duet1

(Novagen). The MVV INNTD+CCD:LEDGFIBD complex, used for

crystallography, was produced and purified essentially as described

previously for HIV-2 INNTD+CCD:LEDGFIBD [30]. Briefly, MVV

INNTD+CCD was co-expressed with His6-SUMO-tagged LEDG-

FIBD in Escherichia coli PC2 cells [27] transformed with pCDF-

MVV-INNTD+CCD and pES-IBD-3C7 [30]. The protein complex,

enriched by absorption to NiNTA agarose (Qiagen), was treated

with SUMO and human rhinovirus (HRV) 14 3C proteases to

release LEDGFIBD from the N-terminal His6-SUMO tag and the

C-terminal flexible tail, respectively. The complex, purified by

SEC on a Superdex-200 column in 1 M NaCl, 50 mM Tris HCl,

pH 7.4, was supplemented with 5 mM DTT, concentrated to 12–

15 mg/ml and stored on ice.

For purification of isolated LEDGFIBD, E. coli PC2 cells

transformed with pES-IBD-3C7 [30] and grown in LB medium

to an A600 of 0.8–1.0 were induced with 0.25 mM isopropyl-thio-

b-D-galactopyranoside at room temperature for 3–4 h. Bacteria

were lysed by sonication in 500 mM NaCl, 0.5 mM PMSF,

20 mM imidazole, 50 mM Tris HCl, pH 7.4, and the pre-cleared

lysate was incubated with NiNTA agarose (Qiagen). The resin was

extensively washed with 20 mM imidazole, 500 mM NaCl,

50 mM Tris HCl, pH 7.4. The protein, eluted in 200 mM

imidazole, 500 mM NaCl, 50 mM Tris HCl, pH 7.4, was

supplemented with 5 mM DTT and SUMO protease (20 mg

protease per mg protein) [30,59] and dialyzed overnight against

cold 250 mM NaCl, 25 mM Tris HCl pH 7.4, 5 mM DTT,

40 mM imidazole. The protease and the released His6-SUMO tag

were depleted by passing the sample through a 5-ml HisTrap

column (GE Healthcare). To remove the disordered C-terminal

tail (residues 436–471) [60], the protein was digested with HRV14

3C protease (20 mg protease per mg protein) at 7uC in the

presence of 10 mM DTT. Minimal LEDGFIBD was then purified

by chromatography through a HiLoad 16/60 Superdex-200

column (GE Healthcare).

To obtain HIV-1 IN mutants, the corresponding changes

were introduced into pCPH6P-HIV1-IN [30] using quick-

change procedure (Stratagene). Full-length LEDGF, HIV-1 IN

and the mutant proteins were produced in bacteria and

purified as previously described [27,30]. All proteins used in

activity assays and analytical chromatography experiments were

tag-free.

Crystallization and structure determination
Hanging drop vapor diffusion crystallization experiments were

conducted at 18uC, mixing 1 ml MVV INNTD+CCD:LEDGFIBD

complex (5 mg/ml in 400 mM NaCl, 2 mM DTT, 20 mM Tris

HCl, pH 7.4) with 1 ml of a reservoir solution. CF1 was

obtained using a reservoir solution of 25–30% (w/v) Jeffamine

M600 (Hampton Research) in 100 mM Bis-Tris propane-HCl,

pH 6.6. The crystals, grown over 5–10 days to a size of

,50650630 mm, were cryoprotected in the reservoir solution

supplemented with 20% (v/v) glycerol and frozen by immersion

in liquid nitrogen. CF1 belonged to space group P21 with unit

cell constants a = 91.1 Å, b = 148.9 Å, c = 91.1 Å, a= c= 90u,
b= 113.4u. A dataset, collected at 100 K on beamline I04 of the

Diamond Light Source (Oxford, UK), was integrated and scaled

in XDS [61] to 3.28 Å (Table 1). The structure was solved by

molecular replacement using Molrep [62] with three search

models: HIV-1 IN CCD dimer (residues 50–212, from 2b4j),

followed by LEDGF IBD (residues 347–426, 2b4j), and finally

HIV-1 IN NTD (residues 1–43, 1k6y). The resulting model

containing six IN and six LEDGF chains was refined using rigid

body, maximum likelihood and simulated annealing routines as

implemented in Phenix [63] with manual building in Coot [64].

Group isotropic B factors (one per residue) and 6-fold non-

crystallographic symmetry (NCS) were applied throughout;

translation, libration and screw-rotation (TLS) displacements

[65] were accounted for towards the end of the refinement. The

final refined model has good geometry and Rwork/Rfree of 21.3/

25.5% (Table 1).

CF2 was obtained using a reservoir solution containing 0.7–

0.9 M (NH4)2HPO4, 2.5% Jeffamine M600 and 100 mM Bis-Tris

propane-HCl, pH 7.0. Crystals, cryoprotected in the reservoir

solution supplemented with 20% glycerol, were frozen by

immersion in liquid nitrogen, and the data were acquired at

100 K on the Diamond Light Source beamline I02. CF2 belongs

to space group P21 with unit cell constants a = 102.7 Å,

b = 83.0 Å, c = 115.3 Å, a= c= 90u, b= 101.8u. Diffraction in-

tensity data were corrected for the observed lattice translocation

defect [66]; full details of the detwinning procedure will be

reported elsewhere (S.H., P.C., J.W., submitted for publication).

The structure was solved by molecular replacement, using Molrep

with the MVV IN CCD dimer (from CF1) as a search model,

followed by IBD (from 2b4j) and MVV IN NTD. Two CCD

dimers were found to form a tetramer with four associated NTDs

and IBDs. Following additional cycles of building, TLS and

restrained refinement in Refmac [67] the final model had Rwork/

Rfree of 22.6/25.5% and good geometry (Table 1). Weighted 2Fo-

Fc electron density maps for chain B of CF1 (showing the ordered

NTD-CCD linker) and for three parts of the CF2 structure

(NTD:CCD and IBD:CCD interfaces, as well as the chain B active

site with an associated phosphate ion) are shown in Figure S5.

Transition states between observed conformations of the MVV IN

tetramer (Videos S1 and S2) were simulated using Yale Morph

Server [68]. Protein structure images and animations were

generated using PyMOL software (DeLano, W.L., http://www.

pymol.org). The coordinates and structure factors for CF1 and

CF2 have been deposited in the Protein Data Bank with pdb IDs

3hpg and 3hph, respectively. Raw diffraction images are available

upon request.
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Analytical SEC and cross-linking
SEC was carried out using a 4.3-ml KW403-4F column

(Shodex) attached to an ÄKTA Purifier system (GE Healthcare).

The column was immersed in ice and operated at 0.275 ml/min

in 750 mM NaCl, 10 mM MgCl2 and 20 mM HEPES-NaOH,

pH 7.0. Thirty-five ml IN (WT or mutant) diluted to 0.6 mg/ml in

gel filtration buffer supplemented with 25 mM ZnCl2 and 2.8 mM

CHAPS was injected into the column. Where indicated, 0.3 mg/

ml LEDGFIBD was pre-incubated with IN on ice for 5 min prior to

injection.

For cross-linking, 6 ml WT, E11K or K186E IN, or an

equimolar IN mutant mixture (0.54 mg/ml protein in 1 M NaCl,

5 mM DTT, 7.5 mM CHAPS, 25 mM Hepes-NaOH, pH 7.5)

was diluted with 21 ml reaction buffer (0.75 M NaCl, 2 mM

MgSO4, 25 mM ZnCl2, 25 mM Hepes-NaOH, pH 7.5). Cross-

linking was initiated by addition of 4 ml BS3 (Pierce; fresh 15–

1.7 mM stock in water). Where indicated, reactions were

supplemented with 0.3% SDS prior to addition of the cross-

linking reagent. Reactions, allowed to proceed for 30 min at 18uC,

were stopped by addition of Laemmli SDS PAGE sample buffer.

The products were separated in Novex 10–20% Tricine SDS

PAGE gels (Invitrogen) and detected by staining with Sypro

Orange (Invitrogen).

Integrase enzymatic assays
Oligonucleotide-based 39-processing assays were carried out as

previously described [40]. Briefly, blunt 23-bp DNA substrate was

obtained by annealing 59-end labeled 59-CAGTGTGGAA-

AATCTCTAGCAGT with 59-ACTGCTAGAGATTTTCCA-

CACTG. Reactions (20 ml) contained 0.1–0.4 mM IN, 25 nM

substrate DNA in 20 mM NaCl, 7.5 mM MnCl2, 10% glycerol,

10 mM b-mercaptoethanol, 0.1 mg/ml BSA and 25 mM MOPS-

NaOH, pH 7.2. Reactions, initiated by addition of 0.5 ml IN in

750 mM NaCl, 5 mM DTT and 10 mM Tris-HCl, pH 7.4 (DB),

were allowed to proceed for 1 h and were stopped by addition of

15 mM ethylenediaminetetraacetic acid (EDTA) and 0.3%

sodium dodecyl sulfate (SDS). Products, separated on denaturing

17% polyacrylamide gels, were visualized and quantified by

phosphor autoradiography using a Storm 860 imager. Strand

transfer reactions using pre-processed donor DNA were carried

out under the same conditions, except the 59-CAGTGTG-

GAAAATCTCTAGCA oligonucleotide was radiolabeled.

The concerted integration assay [50,69] used pGEM-9Zf(-) as

target and 59- end labeled 500-bp HIV-1 RU5 fragment [30] as

donor. Reactions (25 ml) contained 50–200 nM IN, 15 nM donor

DNA and 11 nM pGEM in 100 mM NaCl, 10 mM MgSO4,

5 mM DTT, 20 mM ZnCl2, 5% dimethyl sulfoxide (DMSO), 12%

polyethylene glycol (PEG) 6000 and 20 mM HEPES-NaOH,

pH 7.5. Reactions were started with the sequential addition of

donor DNA, target DNA, 1 ml IN in DB and 1.25 ml DMSO,

followed by a 2–4 min pre-incubation at room temperature before

addition of 6 ml 50% PEG6000. Reactions, incubated for 1 h at

37uC, were stopped by addition of 15 mM EDTA and 0.3% SDS.

The products, deproteinized by digestion with proteinase K and

precipitation with ethanol, were analyzed by electrophoresis

through 1.5% agarose gels in Tris-acetate buffer. Products were

visualized in dried gels using a Storm 860 imager (GE Healthcare).

The LEDGF-dependent concerted integration assay [30] used

blunt 32-bp donor DNA substrate, obtained by annealing

oligonucleotides 59-CCTTTTAGTCAGTGTGGAAAATCTC-

TAGCAGT and 59-ACTGCTAGAGA TTTTCCACACTGAC-

TAAAAGG, and supercoiled pGEM target. Reactions (40 ml)

contained 1 mM IN, 0.6 mM LEDGF, 0.6 mM donor DNA and

34 nM pGEM in 20 mM Hepes-NaOH pH 7.4, 10 mM DTT,

110 mM NaCl, 5 mM MgSO4 and 4 mM ZnCl2. Reactions were

initiated by the addition of 2 ml IN in DB, followed by a 10-min

incubation at room temperature, before addition of 2 ml LEDGF

in DB. Reactions were allowed to proceed for 30 minutes at 37uC
and stopped by addition of 25 mM EDTA and 0.5% SDS. DNAs

recovered by ethanol precipitation following deproteinization with

40 mg proteinase K for 1 h at 37uC were resolved by electropho-

resis through 1.5% agarose gels and detected by staining with

ethidium bromide.

HIV-1 infection
Single-round HIV-1 strain NLX.Luc.R- carrying luciferase in

place of nef (HIV-Luc) and either WT or D64N/D116N (N/N)

active site mutant IN was pseudotyped with vesicular stomatitis

virus G envelope glycoprotein as described [22,30,40]. WT or

mutant IN protein was incorporated in trans during virus assembly

by co-transfecting pRL2P-Vpr-IN plasmids [40]. Resulting cell-

free virus titers were determined by reverse transcriptase

incorporation of [a-32P]TTP. HeLa-T4 cells [70] (40,000 in 12

well plates) infected in duplicate with 106 RT-cpm in 0.8 ml for

8 h were washed, lysed at 44 h post-infection, and luciferase

activities were normalized to total protein content. Levels of

virion-associated IN and capsid proteins were compared using

western blotting as described [71,72].

Sequence analysis of LEDGF/p75 cDNA from Ovis aries
GenBank entries EE831415 and EE774051, identified using

translated BLAST to span portions of Ovis aries LEDGF/p75

cDNA, were used to design oligonucleotide primers to isolate its

entire coding region. To this end, total RNA prepared from

phytohemagglutinin-stimulated sheep peripheral blood mononu-

clear cells was reverse-transcribed using Superscript III (Invitro-

gen) and gene-specific primer 59-CTATCAATTACACATTAA-

CATACACAC. A fragment spanning the entire coding region of

sheep LEDGF cDNA was PCR-amplified using EasyA DNA

polymerase (Stratagene) and primers 59-CCTGAAACAT-

GACTCGCGACTTCAAACC, 59-ACTTCTCAAATGTTC-

TTTATATTCCAGG. The sequence determined using a pool

of products from four independent amplification reactions was

deposited with GenBank with the accession number FJ497048

(RefSeq: NM_001143892).

Supporting Information

Figure S1 Amino acid sequence alignment of MVV and HIV-1

INs. Invariant residues are highlighted in bold print; residues

constituting the HHCC and D,D-35-E motifs are blue and red,

respectively. Blue triangles indicate HIV-1 IN residues targeted by

mutagenesis in this study. Residues involved in the interaction with

LEDGF are highlighted in pink, those involved in the intermo-

lecular NTD-CCD interface in cyan, and those participating in

the closure of the MVV IN tetramer in pale green; note that MVV

Tyr134 and HIV-1 Trp132 are both pink and cyan. NTD, CCD

and CTD spans are indicated, with the CCDs boxed. Residue

numbering above and below the alignment corresponds to the

MVV and HIV-1 sequences, respectively. Secondary structure

elements, shown atop the alignment, are numbered starting from

the beginning of each domain. Note that the CTD is not present in

the MVV structures. HIV-1 secondary structure was extracted

from PDB entries 1k6y and 1ex4. This figure was prepared using

ESPript (http://espript.ibcp.fr/).

Found at: doi:10.1371/journal.ppat.1000515.s001 (0.70 MB PDF)
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Figure S2 Various tetrameric arrangements of MVV IN

observed in CF1 (A–C) and CF2 (D). For each structure the

tetrameric chains are colored as in Figure 1 of the main text and

are aligned with respect to the green and cyan CCD dimer;

LEDGF chains are pink. Active site residues Asp66, Asp 118 and

Glu154 are indicated by red sticks. For the majority of inner

monomers, NTD-CCD connectivities are indicated by dashes.

The ordered NTD-CCD linker for CF1 chain B is shown as

backbone stick representation in panel C.

Found at: doi:10.1371/journal.ppat.1000515.s002 (5.39 MB PDF)

Figure S3 Cross-linking experiments. WT (lanes 1–4), E11K

(lanes 5–8), or K186E (lanes 9–12) HIV-1 IN (3 mM), or a mixture

of the E11K and K186E mutants (1.5 mM each) (lanes 13–16)

were incubated with 2 - 0.2 mM BS3, in the presence (lanes 1, 5, 9,

13) or absence of 0.3% SDS, as indicated. The reaction products,

resolved in SDS PAGE gels, were detected by staining with Sypro

Orange. Positions of molecular weight markers are indicated to

the left of the gel image. To the right of the gel migration positions

of the tetramers as well as the products of partial cross-linking

(monomers, dimers, and trimers) are shown. The gel is shown in

reverse contrast.

Found at: doi:10.1371/journal.ppat.1000515.s003 (3.96 MB PDF)

Figure S4 Composite model of a full-length HIV-1 IN tetramer

in closed conformation. The model was obtained by superposition

of partial HIV-1 INNTD+CCD (PDB ID 1k6y) and INCCD+CTD

(PDB ID 1ex4) structures onto the INNTD+CCD tetramer observed

in CF2 (Figure 1C, Figure S2D). The CCDs and inner NTDs are

colored as in Figure 1, LEDGF chains are omitted for clarity. The

outer NTDs belonging to the green and orange IN chains are

shown pale green and pale orange, respectively. The CTD regions

derived from HIV-1 INCCD+CTD are gray. Note that the CCD-

CTD linker region, here shown in alpha helical conformation, is

flexible (see main text for more discussion) and is likely to adopt a

different conformation in the context of the full-length protein.

Four orientations of the model, related by 90u rotations, are

shown. The orientation on the top left is identical to that of the

CF2 tetramer in Figure 1C. The lower right inset shows a

magnified view of the dimer-dimer interface, with residues Ile191

and Tyr194 shown as sticks. The other inset magnifies the

potential target DNA binding face, with Ser119 and Glu152

residues from the inner monomers highlighted. Red triangles mark

the scissile phospodiester bonds across the major groove.

Found at: doi:10.1371/journal.ppat.1000515.s004 (3.43 MB PDF)

Figure S5 Examples of weighted 2Fo-Fc electron density maps

for the refined structures. (A) IN chain B in CF1. Electron density,

displayed as chicken wire, is colored blue for the NTD-CCD linker

region (residues 44–61) and gray for the rest of the chain. The

protein is shown as sticks and semitransparent cartoon. The NTD,

CCD and linker are indicated. (B) The interface involving chain C

NTD and the AB CCD dimer in CF2. (C) The interface of

LEDGF chain E with AB CCD in CF2. (D) Active site of IN chain

B with an associated phosphate ion in CF2. Note that a phosphate

ion has been observed in a structurally identical position in two

HIV-1 IN structures (PDB IDs 1k6y and 2b4j). The map in panel

A is contoured at 1s and those in panels B–D at 1.2s. Carbon

atoms are colored by chain as indicated in the legends to the right,

and other atoms are colored blue for nitrogen, red for oxygen,

yellow for sulfur, or orange for phosphorus. The gray sphere is

zinc; red spheres are water molecules.

Found at: doi:10.1371/journal.ppat.1000515.s005 (9.87 MB PDF)

Video S1 Simulation of transitions between the open and closed

conformations of the MVV IN tetramer (side view). Experimen-

tally determined structures CF1/CDEF, CF1/ABEF and CF2

correspond to the first, middle and the last frames of the

animation, respectively. IN chains are shown as cartoons; residues

discussed in the main text are shown in ball-and-stick style. The

color code is preserved from Figure 1 of the main text. Running

numbers show separation of the active sites (measured as distance

between Cc atoms of Glu154 residues in cyan and yellow chains).

Asp66, Asp118 and Glu154 in the inner monomers are collectively

indicated as DDE motifs. Residues 148–151 from the inner

monomers (cyan and yellow) are omitted for clarity. Note a slight

deformation of a4 helices and compression of the active sites

towards the end of the animation. Transitions states were

interpolated using Yale Morph Server (http://molmovdb.org/),

and the movie was created with PyMOL (http://pymol.source-

forge.net/).

Found at: doi:10.1371/journal.ppat.1000515.s006 (4.83 MB

MOV)

Video S2 Simulation of transitions between the open and closed

conformations of MVV IN tetramer (view from top). Same as in

Video S1, with the tetramers viewed from top, as in Figure 1 of the

main text.

Found at: doi:10.1371/journal.ppat.1000515.s007 (4.97 MB

MOV)
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