
Sarl Promotes Vesicle Budding from the 
Endoplasmic Reticulum but Not Golgi Compartments 
Osamu Kuge,* Christiane Dascher,* Lelio Orci,§ Tony Rowe,~ Myl~ne Amherdt,§ Helen Plutner,¢ 
Mariel la  Ravazzola,§ Ga ry  Tanigawa,* James E. Rothman ,*  and  Wil l iam E. Balch* 
* Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York 10021; ~ Departments 
of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, California 92037; and § Institute of Histology and 
Embryology, Department of Morphology, University of Geneva Medical School, 1211 Geneva 4, Switzerland 

Abstract. Two new members (Sarla and Sarlb) of the 
SAR1 gene family have been identified in mammalian 
cells. Using immunoelectron microscopy, Sarl was 
found to be restricted to the transitional region where 
the protein was enriched 20-40-fold in vesicular car- 
riers mediating ER to Golgi traffic. Biochemical anal- 
ysis revealed that Sarl was essential for an early step 
in vesicle budding. A Sad-specific antibody potently 
inhibited export of vesicular stomatitis virus glycopro- 
tein (VSV-G) from the ER in vitro. Consistent with 
the role of guanine nucleotide exchange in Sarl func- 
tion, a trans-dominant mutant (Sarla[T39N]) with a 
preferential affinity for GDP also strongly inhibited 

vesicle budding from the ER. In contrast, Sarl was 
not found to be required for the transport of VSV-G 
between sequential Golgi compartments, suggesting 
that components active in formation of vesicular car- 
riers mediating ER to Golgi traffic may differ, at least 
in part, from those involved in intra-Golgi transport. 
The requirement for novel components at different 
stages of the secretory pathway may reflect the re- 
cently recognized differences in protein transport be- 
tween the Golgi stacks as opposed to the selective 
sorting and concentration of protein during export 
from the ER. 

M 
ULTIPLE GTPases are now recognized to regulate 
vesicular traffic between compartments of the exo- 
cytic pathway. They include members of the Rab/ 

YPT/SEC4, Sarl, Arf, and G~a, gene families (reviewed in 
Goud and McCaffrey, 1991; Barr et al., 1992; Bomsel and 
Mostov, 1992; Pfeffer, 1992; Zerial and Stenmark, 1993). 
These proteins are proposed to serve as molecular switches 
which monitor and coordinate sequential interactions be- 
tween the components of transport machinery required for 
a single round of budding, targeting, and fusion of transport 
vesicles. Members of the Sarl family are evolutionarily dis- 
tant from both the Rab/YPT1/SEC4 family (<30 % identity), 
but show slight homology to the Arf family. Only one mem- 
ber has been identified to date in Saccharomyces cerevisiae 
(Nakano and Muramatsu, 1989), although homologues have 
been found in Schizosaccharomyces pombe and Arabidopsis 
thaliana (d'Enfert et al., 1992). In yeast, Sarlp plays a key 
role in the export of protein from the ER (Nishikawa and 
Nakano, 1991; Oka et al., 1991; Salama et al., 1993). Sarlp 
function requires Secl2p (a Sarlp-specific guanine nucleo- 
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tide exchange factor [GEF] ~) (Barlowe and Schekman, 
1993) and Sec23p (a Sarlp-specific GTPase activating pro- 
tein [GAP]) (Yoshihisa et al., 1993). Recently, these compo- 
nents in addition to three other soluble proteins have been 
purified to homogeneity and demonstrated to be sufficient 
for vesicle budding from the ER in yeast (Nakano et al., 
1988; Hicke and Schekman, 1989; d'Enfert et al., 1991; 
Hicke et al., 1992; Barlowe et al., 1993; Pryer et al., 1993; 
Salama et al., 1993; Yoshihisa et al., 1993). In mammalian 
cells, Sarl function has been indirectly linked to the require- 
ment for/~-COP in vesicle budding from the ER (Peter et al., 
1993). The possible involvement of Sarlp in other steps of 
the secretory pathway has not been investigated. 

To begin to understand the similarities and differences be- 
tween export from the ER and vesicular traffic through the 
Golgi apparatus in mammalian cells, we have identified two 
closely related mammalian homologues of yeast Sarlp 
(designated Sarla and Sarlb). We find that Sarl, unlike either 
Ar t  (Orci et al., 1991b, 1993; Serafini et al., 1991; Kahn 
et al., 1992; Taylor et al., 1992; Palmer et al., 1993) or Rabl 
(Davidson and Balch, 1993; Nuoffer et al., 1994; Pind et al., 

1. Abbreviations used in this paper: endo H, endoglycosidase H; GAP, 
GTPase activating protein; GEE guanine nucleotide exchange factor; RER, 
rough endoplasmic reticulum; VSV-G, vesicular stomatitis virus glycopro- 
tein; GTP),S, guanosine-5'-O-(3-thiotriphosphate). 
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1994), is not required for vesicular traffic between Golgi 
compartments. These results provide novel evidence that 
small GTPases (and their associated effectors) regulating 
vesicle budding from the ER and from compartments of the 
Golgi may, in part, be distinct. This could reflect differences 
in the need for these two organdies to recruit cargo to vesic- 
ular carriers (Balch et al., 1994; Pind et al., 1994). 

Materials and Methods 

cDNA Cloning 
Degenerate oligonucleotide mixtures corresponding to regions of identity 
among the reported SAR1 protein sequences of Saccharomyces cerevisiae, 
Schizosaccharomyces pombe, and Arabidopsis thaliana were used to am- 
plify Sarl eDNA from a CHO eDNA library (Uni-ZAP XR; Stratagene, 
La Jolla, CA) by two stage PCR. The primers used for the first round of 
amplification were GG(ATG-C)(TC)TIGA(TC)AA(TC)GC(AGTC)GG 
(codons Gly32-Gly 37, sense) and (GC)(AT)(AG)CACAT(AG)AA(AGTC)- 
AC(TC)TC (codons Glu174-Ser 179, antisense). The same antisense primer 
and GA(TC)AA(TC)GC(AGTC)GG(AGTC)AA(AG)AC (codons Asp 34- 
Thr 4°, sense) were used for the second round of amplification. All nucleo- 
tides in parentheses were included at that position. The amplification reac- 
tions were performed for five cycles with a denaturing temperature of 940C 
for 1 rain, annealing at 470C for 1 rain, and elongation at 720C for 2 min, 
followed by an additional 25 cycles with a denaturing temperature of 94°C 
for 1 rain, annealing at 55°C for 1 rain, and elongation at 720C for 2 min. 
For the second round of amplification, the first round reaction was diluted 
1O,000-fold and used as the template. The O.4-kb product of the second 
round amplification was subcloned into a plasmid, pBluescript II (Strata° 
gene), sequenced, and used as a probe for screening a CHO eDNA library 
constructed with the bacteriophage k vector (Uni-ZAP XR; Stratagene). 
Hybridizations were done for 24 h at 65 oC in 5 x SSPE (1 x SSPE -- 0.15 M 
NaC1, 1 mM EDTA, 10 mM NaI-i2PO4, pH 7.4), 5x Denhardt's solution, 
0.5% SDS, and 100/~g/ml herring sperm DNA. A final wash was performed 
in lx  SSPE, 0.1% SDS at 65°C for 1 h. Eleven positive h clones were iso- 
lated, and the DNA inserts with the vector sequence carried by the k clones 
were rescued by in vivo excision according to the manufacturer's procedure, 
analyzed by restriction enzyme digestion and partial sequencing, and then 
restricted to two sets of overlapping cDNAs. Both strands of each of the lon- 
gest cDNAs termed Sarla and Sarlb DNA, respectively, were fully se- 
quenced with Sequence (United States Biochemical Corp., Cleveland, OH) 
using walking primers. Plasmids, pBluescript H carrying Sarla and Sarlb 
cDNA, were termed pBluescript-Sarla and pBluescript-Sarlb, respectively. 

Expression of His-tagged Sarla, Sarlb, and Sarla- 
(T39N) Proteins in Escherichia coli 
The coding region of Sarla, Sarlb, and Sarla(T39N) (see below) cDNAs 
were engineered by PCR to add a BamHI site and a sequence (ATCGAGGG- 
TAGA) corresponding to a factor Xa cleavage site immediately upstream of 
the first ATG and to add a HindHI site immediately downstream of the ter- 
mination codon. The PCR products were digested with BamHI and HindRI 
and cloned into the pQE9 vector (QIAGEN Inc., Cbatsworth, CA). The 
resulting plasmids, termed pQE-Sarla, pQE-Sarlb, and pQE-SARIa-T39N, 
respectively, were introduced into Escherichia coli (MI5 harboring plasmid 
pREP4; QIAGEN). The transforraants were grown to a density of A600 ffi 
0.9 in Super medium (25 g bacto-tryptone, 15 g yeast extract, and 5 g NaC1 
per liter with 100/zg/ml arnpicillin and 500/~g/ml kanamycin) at 370C and 
further cultivated for 2 h in the presence of 2 mM isopropyl-thio-/~-D- 
galactoside at 37°C to induce the recombinant proteins. 

Purification of His,-tagged Sarl Proteins 
Method 1. Hiss-tagged Sarla protein purified by this procedure was used 
as an antigen to produce polyclonai antibody. E. coli transformants express- 
ing Hiss-tagged Sarla protein were suspended in sonication buffer (50 mM 
Na-phosphate [pH 8.0], 0.3 M NaCI) containing 1 mg/ml lysozyme, in- 
cubated on ice for 10 min, and then disrupted by sonication. The lysate was 
clarified by centrifugation at 10,000 g for 30 rain, and the supernatant was 
loaded on a nickel-nitrotriacefic acid (Ni-NTA)-agarose (QIAGEN Inc.) 
column (8-ml bed volume) previously equilibrated with sonication buffer. 

The resin was washed with sonication buffer containing 20 mM imidazole 
and then Hiss-tagged Sarla protein was eluted with a 100-ml imidazole 
gradient (20-500 mM) in sonication buffer. Hiss-tagged Sarla protein was 
pooled and precipitated with 60% saturated ammonium sulfate, dissolved 
in PBS, and then dialyzed against PBS. 

Method 2. Hiss-tagged Sarla proteins purified by this procedure were 
used for cell-free transport assays. E. coli transformants expressing Hiss- 
tagged wild-type Sarla and the T39N mutant were suspended in buffer A 
(10% glycerol, 150 mM KCI, 5 mM magnesium acetate, 0.1 mM DTT, 20 
mM Hepes-KOH, pH 7.0) containing 1 mM PMSF, disrupted in a French 
press, and then the lysate was clarified by centrifugation at 10,000 g for 30 
rain. The supernatant was loaded on a Ni-NTA-agarose column (1-ml bed 
volume) previously equilibrated with buffer A and washed with buffer A 
containing 20 mM imidazole. The Hiss-tagged protein was eluted with 
7 mi of buffer A containing 100 mM imidazole, precipitated with 60% 
saturated ammonium sulfate, dissolved in buffer A, and dialyzed against 
buffer A. 

Preparation of Antibody to Sarla Protein 
A rabbit was injected with 1 mg purified Hiss-tagged Sarla protein emul- 
sifted in Freund's complete adjuvant, followed with 1 rag purified Hiss- 
tagged Sarla protein emulsified in Freund's incomplete adjuvant every three 
weeks to boost the immune response. Antibody to Sarla protein was aitinity- 
purified as described (Harlow and Lane, 1988) by adsorption to Hiss- 
tagged Sarla protein conjugated to AminoLink ° coupling gel (Pierce Chem. 
Co., Rockford, IL) according to the manufacturer's procedure, precipitated 
with 60% saturated ammonium sulfate, dissolved in 10 mM MOPS-KOH 
(pH 7.5) and 150 mM KC1, and dialyzed against the same buffer. 

Construction of Sarla Mutants 
The T39N and N134I mutations were introduced into the wild-type Sarla 
sequence carried by pBluescript-Sarla, using site-directed mutngenesis as 
described (Higuchi et ai., 1988). The resulting plasmids were termed pBlue- 
script-Sarla-T39N and pBluescript-Sarla-N134I, respectively. For transieni 
expression of wild-type and mutant Sarla proteins in HeLa cells, the coding 
regions of wild-type and mutant Sarla cDNAs were engineered by PCR to 
add a NdeI site immediately upstream of the first ATG and a BamI-II site 
immediately downstream of the termination codon, using pBluescript- 
Sarla, pBluescript-Sarla-T39N, and pBluescript-Sarla-N134I as templates. 
The PCR products were digested with NdeI and BamHI, and subcloned into 
these restriction enzyme sites of the pET3a vector (Novagen, Inc., Madi- 
son, WI) for expression from the T7 promoter. All mutant and wild-type 
Sarl sequences engineered by PCR were verified by DNA sequencing. 

Immunoblot Analysis 
Proteins were fractionated by 12.5% polyacrylamide SDS-PAGE under 
reducing conditions (Laemmii, 1970) and electroblotted on to nitrocellu- 
lose in 25 mM Tris, 192 mM glycine, and 20% methanol at 22 V/cm for 
1 h. Sarl proteins were detected using the affinity-purified anti-Sarla 
antibody (25 ng/ml) and peroxidase-conjugated anti-rabbit IgG (diluted 
1:1,000). Peroxidase labeling was detected by chemiluminescence using the 
ECL reagent (Amersham Corp., Arlington Heights, IL) according to the 
manufacturer's recommendations. 

Cis- to Mediai-Goigi Transport Assay 
The preparation of assay components and standard incubation conditions 
were as described previously (Balch et al., 1984; Malhotra et al., 1988). 
Reactions (50 ~d) contained 25 mM Hepes (pH 7.0), 25 mM KCI, 2.5 mM 
magnesium acetate, 5 mM creatine phosphate, 0.25 mM UTP, 0.05 mM 
ATP, 8 IU/ml creatine kinase, 8/~M palmitoyl CoA, 0.4/tM UDP-3H-N - 
acetylglucosamine ([3H]GlcNac), bovine brain cytosol (5 t~l), donor stacks 
(5/~1), and acceptor stacks (5/~1). To test the effect of anti-Sarla antibody, 
the reactions were incubated on ice for 1 h to promote antibody-antigen 
binding and then incubated at 37°C for assay. 

Transport in Semi-intact and PermeabUized Cells 
NRK cells were infected with the ts045 strain of vesicular stomatitus virus 
(VSV) and pulse labeled with 10/tCi Trans [3sS]-label at the restrictive 
temperature (39.5°C) to accumulate the VSV-glycoprotein (VSV-G) mutant 
in the ER. The cells were then perforated by the swelling and scraping pro- 
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cedure as described (Balch et al., 1986; Beckers et al., 1987; Davidson and 
Balch, 1993). Transport between the ER and the cis/medial-Golgi compart- 
ments was measured biochemically by following the appearance of endogly- 
cosidase H (endo H)-resistant forms of VSV-G upon incubation at the per- 
missive temperature (32°C) in the presence of cytosol and ATP as described 
previously (Plutner et al., 1992; Davidson and Balch, 1993). Briefly, trans- 
port reactions were performed in a final volume of 40/~1 in a buffer contain- 
ing 25 mM Hepes-KOH (pH 7.2), 75 mM KOAc, 2.5 mM MgOAc, 5 mM 
EGTA, 1.8 mM CaC12, 1 mM N-acetyl glucosamine, an ATP regenerating 
system (1 mM ATP, 5 mM creafine phosphate, and 0.2 IU rabbit muscle 
creatine pbosphokinase, final concentrations), 2-6 /al rat liver cytosol 
(20-60 ~g/ml protein in 35 rnM Hepes-KOH [pH 7.2], 125 mM KOAc), 
and 5 ~,1 semi-intact cells (25-30/zg protein or 1-2 x 10 s cells in 50 mM 
Hepes-KOH [pH 7.2], 90 mM KOAc). The reactions were incubated at 
32°C for 2 h, membranes collected by centrifugation, solubilized, digested 
with endo H, and processed for SDS-PAGE and fluorography as described 
(Balch et al., 1986; Plumer et al., 1992; Davidson and Balch, 1993). Auto- 
radiographs were quantitated by a PhosphorImager (Molecular Dynamics, 
Palo Alto, CA). 

For morphological analysis of transport, the cells were permeabilized 
with digitonin as described (Plntner et al., 1992). Incubation conditions 
were as outlined above, except that the reactions were performed in a final 
volume of 200 ~l. The cells were processed for indirect immunofluores- 
cence as described previously (Balch, 1990; Plutner et al., 1992). An anti- 
body specific for ManH (Velaseo et al., 1993) was generously provided by 
M.G. Farquhar (Division of Cellular and Molecular Medicine, University 
of  California, San Diego, CA). 

Transient Expression and Analysis of Transport 
in HeLa Cells 

Experimental procedures for the transient expression of pET-Sarl con- 
structs in HeLa cells were essentially as described previously (Tisdale et 
al., 1992). Briefly, cells infected with the T7 RNA polymerasc-recombinant 
vaccinia virus vTF7-3 (Fuerst et al., 1986) were eotransfected with 1 Izg 
pAR-G (encoding VSV-G), and 2.5 ~g of the appropriate pET-Sarl con- 
structs using the Transfect ACE TM (GIBCO BRL, Gaithersburg, MD) pro- 
cedure. After pulse labeling the cells for 10 rain with 20/~Ci Trans [3~S]- 
label (1,192 Ci/mmol; ICN Biomedicals Inc., Irvine, CA) followed by a 
60-rain chase, transport between the ER and the cislmedial-Golgi compart- 
ments was assessed biochemically by monitoring the processing of VSV-G 
for endo H-sensitive to endo H-resistant forms as described (Tisdale et al., 
1992; Davidson and Balch, 1993). For morphological analysis of transport, 
cells cotransfected with pAR-tsO45-G (encoding the temperature-sensitive 

tsO45 mutant of VSV-G [Lafay, 1974]) and appropriate pET-Sarl constructs 
were incubated at the restrictive temperature (39.5°C) for 4 h to accumulate 
the protein in the ER. Transport was initiated by shifting the cells to the 
permissive temperature (32°C). After a 2-h incubation the cells were pro- 
cessed for indirect immunofluorescence as described (Tisdale et al., 1992). 

Immunocytochemistry 

Indirect Immunofluorescence. Monolayer cultures of NRK cells, CHO- 
cells, and islet cells of neonatal rat pancreas were fixed with Bouin's fluid. 
Cells were permeabilized by dehydration and rehydration with ethanol and 
processed by the immunofluorescence technique. Affinity-purified rabbit 
antibodies raised against bacterially expressed His6-tagged Sarla protein 
(40-80 ~g IgG/ml) were applied for 2 h at room temperature in a moist 
chamber followed by washing with PBS and exposure to FITC-conjugated 
goat anti-rabbit IgG. Cells were washed with PBS and counterstained with 
0.03 % Evans blue before examination with a confocal fluorescence micro- 
scope. As a control, preimmune IgG was applied instead of the primary an- 
tibody. 

lmmunoelectronmicroscopy. Fragments of pancreatic tissue freshly re- 
moved from normal adult rats were fixed with 1% gintaraldefiyde in 0.1 M 
sodium phosphate (pH 7.4). After 1 h of fixation, the tissue was washed with 
buffer, infiltrated with sucrose, and processed for cryoultramicrotomy as 
described by Tokuyasu (1980). Islets of Langerhans isolated from rat pan- 
cw, as by collagenase digestion were similarly fixed and processed. Im- 
munolocalization of Sarl on cryosections was carried out by the protein 
A-gold technique. Thin sections were incubated at room temperature with 
affinity-porified anti-Sarl antibodies. Sections were subsequently washed 
with PBS, exposed to the protein A-gold solution (gold particles size 10 
rim), and absorption stained with uranyl acetate according to Tokuyasu 
(1986). 

Quantitative Evaluation. For qnantitation of the immunolabeling, fields 
of insulin cells showing Golgi regions and associated transitional areas were 
photographed and printed at a calibrated magnification of 78,864 ×. Transi- 
tional areas were defined as the areas of the cytoplasm bordered by transi- 
tional elements of the ER and cistemae of the Golgi apparatus, and containing 
the transfer vesicles. For the quantitative evaluation of Sarl immunolabel- 
ing, the transitional areas or the vesicles were delimited with an electronic 
pen and the number of gold particles in this area was recorded with the same 
pen connected to a microprocessor programmed to calculate the number of 
gold particles per unit area (~,m2). Gold particles were also quantitated on 
RER and Golgi stacks. On the latter, a line was traced in the middle of the 
stack: the half proximal to the transitional area was quantitated as the cis- 
Golgi, the half distal to the transitional area as trans-Golgi. 

1 
CHO (sarla) MSFIFDWIYS GF$SVLQFLG LYKKTGKLVF LGLDNAGKTT 
CHO (sarlb) *********E **N******* ****S***** *****~**** 

S. cerevisiae MAGWDIFG WFRDVLASLG LWNKHGKLLF LGLDNAGKTT 
S. pombe MFIIN WFYDALAMLG LVNKHAKMLF LGLDNAGKTT 
A. thaliana MFLFD WFYGILASLG LWQKEAKILF LGLDNAGKTT 
Consensus F L LG L K K F LGLDNAGKTT 

61 
CHO (sarla) SEELTIAGMT FTTFDLGGHI 
CHO (sarlb) ********** *********E 
S. cerevisiae SEELAIGNIK FTTFDLGGHI 
S. pombe SEELAIGNVR FTTFDLGGHQ 
A. thaliana SEELSIGKIK FKAFDLGGHQ 
Consensus SEEL F FDLGGH 

121 
CHO (sarla) DETIANVPIL ILGNKIDRPE 
CHC (sarlb) ****S***** ********TD 
S. cerevisiae IAELKDVPFV ILGNKIDAPN 
S. pombe MEELARVPFL ILGNKIDAPG 
A. thaliana DEALATVPFL ILGNKIDIPY 
Consensus VP ILGNKID 

181 
CHO (sarla) LKRQGYGEGF RWMAQYID 
CHO (sarlb) ********** **LS**** 
S. cerevisiae VMRNGYLEAF QWLSQYI 
S. pombe VLRQGYGEGF KWLAQYV 
A. thaliana VRKMGYGEGF KWLSQYIN 
Consensus GY E F W QY 

6O 
LLHMLKDDRL GQHVPTLHPT 

LLHMLKNDRL ATLQPTWHPT 
LLHMLKNDRL AVMQPTLHPT 
LLHMLKDERL VQHQPTQHPT 
LLHMLK RL PT HPT 

QARRVWKNYL PAINGIVFLV 
********** ********** 

QARRLWKDYF PEVNGIVFLV 
QARRLWRDYF PEVNGIVYLV 
IARRVWKDYY AKVDAVVYLV 
ARR W Y V LV 

120 
DCADHERLLE SKEELDSLMT 
*****S**M* **V**NA*'* 
DAADPERFDE ARVELDALFN 
DCCDFERLSE SKAELDALLA 
DAYDKERFAE SKRELDALLS 
D D R E EL L 

180 
AISEERLREM FGLYGQTTGK GSVSLKELNA RPLEVFMCSV 
*****K***I ********** *N******** *M******** 
AVSEAELRSA LGLLN.TTG .... SQRIEGQ RPVEVFMCSV 
AISEDELKAA LGLYQ.TTGK G.VSKPVPGI RPIEVFMCSV 
AASEDELRYH LGLTNFTTGK GKVTLGDSGV RPLEVFMCSI 
A SE L GL TTG V R EVFMC$ 

Figure I. Comparison of protein 
sequences of the members of the 
SARI family (single letter amino 
acid code). The ORFs of the cor- 
responding eDNA clones were 
translated and compared by 
BESTFIT alignment (Devereux 
et al., 1984). The underlined 
areas indicate conserved GTP- 
binding domains found in all 
members of the ras-superfamily 
(Bourne et al., 1991; Witting- 

hofer and Pal, 199D. Asterisks 
denote identity between the CHO 
Sarla and Sarlb sequences. Con- 
sensus (identical) amino acids 
found in all of the members of the 
SARI family are shown in the 
bottom line. 
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Results 

Isolation of Mammalian Homologues of Yeast SARI 

Degenerate oligonucleotide mixtures corresponding to re- 
gions of homology between the reported S. cerevisiae, S. 
pombe, and A. thaliana sequences (d'Enfert et al., 1992) 
were used to generate DNA fragments from a eDNA library 
of CHO cells by the polymerase chain reaction. A eDNA 
fragment that encoded a SARl-like protein was used as a 
probe to screen a CHO eDNA library. Two different eDNA 
clones were obtained, both of which encode SARl-like pro- 
teins, designated Sarla and Sarlb (Fig. 1). The mammalian 
Sarla and Sarlb cDNAs contain open reading frames of 597 
nucleotides, encoding proteins of 198 amino acids with pre- 
dicted molecular masses of 22,413 and 22,388 D, respec- 
tively. Fig. 1 shows a comparison of the amino acid sequence 
of five Sarl proteins cloned to date. Sarla and Sarlb are 91% 
identical (Table I). They share 60-67 % identity with yeast 
and plant Sarlp (Table I), indicating that the Sarl family is 
evolutionarily conserved. In contrast, the Sarl proteins are 
<30% identical to other members of the Ras superfamily 
(Table I), suggesting that they play a distinct role in vesicular 
trafficking. The regions which confer homology to other 
members of the Ras superfamily are the amino acids under- 
lined in Fig. 1. These comprise the three highly conserved 
motifs involved in GTP binding and hydrolysis found in all 
GTP-binding proteins examined to date (Valencia et al., 
1991; Wittinghofer and Pal, 1991). 

Mammalian Sarl Is Highly Enriched on 
Vesicular Carriers Found in the Transitional Region 
of the ER 

To establish that the cDNAs isolated encoded functional Sarl 
proteins, Sarla and Sarlb cDNAs were cloned into the pQE9 
vector to produce proteins containing histidine residues at 
their NH: termini (Hochuli et al., 1988). These proteins 
were expressed in E. coli and purified by affinity chromatog- 
raphy on nickel-nitrolotriacetic acid (Ni-TCA)-agarose (Fig. 
2, A and B). Affinity-purified anti-Sarla antibody was pre- 
pared and its specificity examined by Western blotting. The 
polyclonal antibody recognized two prominent proteins in 
CHO lysates with molecular masses of 27 to 28 kD (Fig. 3). 

Table 1. Percentages of Amino Acid Identities between 
SAR1, Human ARF, and Human RAB Proteins 

CHOa CHOb S.c.S.p.A.t. ARF1 ARF5 rabl rab2 rab6 

CHOa 100 91 61 67 61 30 30 22 22 23 
CHOb 100 61 65 60 29 30 22 22 25 
S.c. 100 72 64 37 34 24 17 22 
S.p. 100 67 35 35 26 19 21 
A.t. 100 34 34 24 20 20 
ARF1 100 80 25 24 19 
ARF5 100 28 21 19 
rabl 100 48 37 
rab2 100 39 
rab6 100 

Identities of each pairs of proteins were obtained by BESTFIT program. Ab- 
breviations used are CHOA, sarla protein of CHO; CHOB, sarlb protein of 
CHO; S.c., Sarl protein ofS. cerevisiae; S.p., Sarl protein of S. pombe; A.t.. 
Sarl protein of A. thaliana. 

Figure 2. Expression and purification of wild-type and mutant pro- 
teins. (A) E. coil transformants harboring pQE-Sarla (lanes 1 and 
2), pQE-Sarlb (lanes 3 and 4), and pQE-Sarla-T39N (lanes 5 and 
6) were grown to a density of A600 = 0.9 and further cultivated 
for 2 h at 37°C in the absence (lanes 1, 3, and 5) or in the presence 
(lanes 2, 4, and 6) of 2 mM isopropyl-thio-/~-D-galactoside. Pro- 
teins of the cell lysates (30/zl culture) were fractionated by 12.5 % 
polyacrylarnide SDS-PAGE and stained with Coomassie blue. 
Open triangles indicate the induced Sarl proteins. (B) Wild-type 
Sarla (lane 1 ) and Sarla(T39N) mutant (lane 2) proteins purified 
by the method 2 as described in Materials and Methods were run 
on 12.5% polyacrylamide SDS-PAGE (LaemmU, 1970) and stained 
with Coomassie blue. 

The mobilities of these two species correspond to the slightly 
differing mobilities of recombinant His-tagged Sarla and 
Sarlb (Fig. 3), suggesting that these two species may be the 
endogenous proteins corresponding to the eDNA clones. 

The affinity-purified anti-Sarla antibody was used to deter- 
mine the distribution of Sarl in mammalian cells. Using in- 
direct immunofluorescence, Sarl was not routinely abundant 
in the extensive cisternae comprising the bulk of the ER 
membrane. Rather, Sarl was largely localized to the juxta- 
nuclear Golgi region in NRK (Fig. 4 B) and CHO cells (Fig. 
4 C). In pancreatic insulin cells (Fig. 4 A), the Sarla distribu- 
tion had a more extended reticular pattern due to the highly 
amplified secretory compartments found in these cells. In 
general, the pattern of Sarl distribution is in part characteris- 
tic of the distribution of p53 and p58, markers for pre-Golgi 
intermediates which are abundant in the juxtanuclear Golgi 
region (Sehleifer et al., 1982; Schweizer et al., 1988, 1990, 
1991; Saraste and Svensson, 1991). 

Using immunoelectron microscopy, Sarl immunogold par- 
ticles were found in rat pancreatic insulin cells to be abun- 

Figure 3. CHO cells contain two Sarl 
isoforms. 60/zg protein of CHO cell 
lysate (lane/) and lysates (5 ng pro- 
tein) of E. coil transformants ex- 
pressing His6-tagged Sarla (lane 2) 
and Hiss-tagged Sarlb (lane 3) were 
separated by 12.5 % polyacrylamide 
SDS-PAGE and probed on Western 
blot with the affinity-purified anti- 
Sarla antibody as described in Mate- 
rials and Methods. 
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Figure 4. Sarl is enriched in a juxtanuclear region. Immunofluores- 
cence microscopy of insulin-secreting pancreatic endocrine cells 
(A), NRK cells (B) and CHO cells (C) stained with the affinity- 
purified anti-Sarl IgG. A juxtanuclear fluorescent pattern corre- 
sponding to the location of the Golgi region is seen in the three cell 
types. In insulin cells, it has an extended reticular pattern due to 
the highly amplified secretory compartment. Bar, 20/~m. 

dant on smooth transitional elements of the ER and on vesic- 
ular profiles in the proximal Golgi cisternae facing the 
transitional region (Fig. 5, A and B). The transitional region 
contained clusters of immunolabeled 40-60-nm vesicles, to- 
gether with clusters of unlabeled vesicles. Sarl was prin- 
cipally detected as a membrane-associated form (Table II). 
Quantitation of the distribution of Sarl revealed that the car- 
rier vesicles present in the transitional region were enriched 
approximately fourfold compared to the cis-Golgi cisternae 
and nearly 20-fold enriched compared to either the bulk of 
the ER or the trans-Golgi cisternae (Table II). The density 
on the trans-Golgi face was similar to that found over the nu- 

cleus (Table H), while the density over the bulk of the ER 
was approximately twofold greater than this level. Assuming 
the concentration of immunogold particles detected over the 
nucleus and the trans-Golgi compartments represents non- 
specific background, then the enrichment of Sarl in the 
pre-Golgi vesicular carriers is exceptionally high (up to 
40-50-fold). These results are, in part, consistent with in- 
direct immunofluorescence studies in yeast where Sarlp was 
detected in a diffuse, perinuclear, and reticular localization 
which overlapped with Kar2p and Sec62p, both resident ER 
proteins (Nishikawa and Nakano, 1991). Interestingly, Sarlp 
could also be detected in punctate structures in yeast which 
did not overlap with either ER or Golgi markers (Nishikawa 
and Nakano, 1991). These may represent pre-Golgi inter- 
mediates. 

Sarla(T39N) Inhibits Export of VSV-G 
from the ER In Vivo 
To identify the potential role of Sarla in the regulation of ER 
to Golgi traffic in mammalian cells, mutations were gener- 
ated with motifs involved in guanine nucleotide interactions. 
Extensive mutational and structural analysis of Ras and Rab 
proteins have defined the essential amino acid residues in 
these motifs which are involved in the binding and hydrolysis 
of GTP (reviewed in Barbacid, 1987; Bourne et al., 1991). 
Two mutations were initially generated. These mutations are 
located in two of the four conserved guanine nucleotide- 
binding regions (Table III). The first mutant, Sarla(N134I) 
contains a single point mutation (N134I) in the NKxD motif 
(residues 116-119 in p21 "-r~) which is essential for stabili- 
zation of the nucleotide-binding pocket (Pai et al., 1989, 
1990). The equivalent substitution in p21H-*~ (Nll6I) has a 
dominant negative phenotype and triggers oncogenic trans- 
formation. This mutant protein is defective in guanine 
nucleotide binding and has an exceptionally high exchange 
rate (Walter et al., 1986). In yeast, the corresponding muta- 
tions in the yptl or sec4 alleles (involved in ER to Golgi and 
post-Golgi transport, respectively) result in dominant lethal 
phenotypes which correlate with severe secretory defects 
(Schmitt et al., 1986, 1988; Walworth et al., 1989). In mam- 
malian cells, an equivalent Rablb(N121I) mutant inhibits ER 
to Golgi transport resulting in the accumulation of VSV-G 
in pre-Golgi intermediates in vivo (Tisdale et al., 1992) and 
in vitro (Pind et al., 1994). 

The second mutant, Sarla(T39N) carries a substitution in 
the GxxxxGKS/T domain (residues 10-17 in p21H-~) which 

Table II. Sarl lmmunogold Labeling of Transitional 
Area, ER and Golgi of Pancreatic 13-cells* 

Number of  gold particles 
per t~m 2 + SEM 

N u c l e u s  8 + 3 *n = 8 

E R  19 -t- 5 n = 8 

Transitional area§ 123 ± 23 n = 7 
Transitional vesicles of transitional area 388 ± 72 n = 7 
Cis Golgi 108 + 23 n = 8 
Trans Golgi 13 + 3 n = 8 

* Quantitation of  the immunogold-labeled sarl  on compartments was per- 
formed as described in Materials and Methods. 
) n = number of  pictures evaluated. 
§ 98 + 2 % of  the particles was associated with the vesicles. 
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Figure 5. Immunogold distri- 
bution of Sarl in pancreatic 
/3-cells. (A) Field of a pancre- 
atic insulin cell comprising 
transitional elements (TE) of 
the ER, the proximal part of 
the Golgi complex (G) and 
abundant intervening vesicles. 
Sarl immunogold particles are 
preferentially associated with 
transitional elements and prox- 
imal Golgi cistemae. The 
transitional region contains 
clusters c~ immunolabeled vesi- 
cles, together with clusters of 
unlabeled vesicles. (B) Pan- 
creatic insulin cell showing a 
bell-shaped transitional cis- 
tcrna (TE), transfer vesicles 
and the Golgi complex (G). 
Sarl immunolabeling is asso- 
ciated with the transitional 
cisterna and vesicles, and the 
proximal Golgi cisternae fac- 
ing the transitional region. 
The trans-Golgi cisterna is 
identified by a condensing in- 
sulin secretory vesicle (aster- 
isk). It has a low level of Sarl 
labeling. The inset details Sarl- 
immunolabeled transitional 
elements (TE) and transfer 
vesicles. See the quantitative 
evaluation of immunolabeling 
in Table 1I. Bars: (A and B) 
0.25 #m; (B inset) 0.21 #m. 

The Journal of Cell Biology, Volume 125, 1994 56 



Table IlL Comparison of GTP-binding Domains of Sarl to Other Members of the ras Superfamily 

H-ras (human) 
rabl (human) 
ARFI (human) 
SARI (S. cerevisiae) 
SARI (S. pombe) 
SARI (A. thaliana) 
Sarlb (Chinese hamster) 
Sarla (Chinese hamster) 

5 53 112 
NH2 . . . .  KLVVVGAGGVGKS . . . . .  LDILDTAGQE . . . . .  VLVGNKCD . . . .  COOH 
N H 2  . . . .  K L L L I G D S G V G K S  . . . . .  I Q I W D T A G Q E  . . . . .  L L V G N K C D  . . . .  C O O H  

N H 2  . . . .  R I L M V G L G A A G K T  . . . . .  F T V W D V G G Q D  . . . . .  L V F A N K Q D  . . . .  C O O H  

N H 2  . . . .  K L L F L G L D N A G K T  . . . . .  F T T F D L G G H I  . . . . .  V I L G N K I D  . . . .  C O O H  

N H 2  . . . .  K M L F L G L D N A G K T  . . . . .  F T T F D L G G H Q  . . . . .  L I L G N K I D  . . . .  C O O H  

N H 2  . . . .  K I L F L G L D N A G K T  . . . . .  F K A F D L G G H Q  . . . . .  L I L G N K I D  . . . .  C O O H  

N H 2  . . . .  K L V F L G L D N A G K T  . . . . .  F T T F D L G G H E  . . . . .  L I L G N K I D  . . . .  C O O H  

N H 2  . . . .  K L V F L G L D N A G K T  . . . . .  F T T F D L G G H I  . . . . .  L I L G N K I D  . . . .  C O O H  

Phospho~l- Phospho~l- Guanine ring 
binding site binding site c o n ~  site 

The amino acid sequences of sarl-related proteins, which make up GTP-binding domain, are compared t~ H-ras and other members of the ras superfamily. The 
numbering is that of H-ras. Mutations used in this study which alter GTP-binding for ras are indicated by the asterisk. 

is involved in phosphate binding and Mg 2+ coordination 
(Pal et al., 1989, 1990). It is analogous, in principle, to the 
p21"-~(S17N) mutant, which is restricted to the inactive 
(GDP-bound) conformation and inhibits cell proliferation 
(Feig and Cooper, 1988; Farnsworth et al., 1991). The 
equivalent mutation in Rablb (Rablb[S22N]), is a potent in- 
hibitor of both ER to Golgi and intra-Golgi transport in vivo 
(Tisdale et al., 1992) and in vitro (Davidson and Balch, 
1993; Nuoffer et al., 1994). Competition experiments were 
performed to compare the relative affinities of the wild-type 
Sarla and the Sarla(T39N) mutant for GDP and GTP. The 
recombinant proteins were incubated with [3H]-GDP (1 
/zM) in the presence of Mg 2+ (1 raM) and increasing con- 
centrations of unlabeled GDP (Fig. 6, open symbols) or GTP 
(Fig. 6, closed symbols). As expected, in the case of both the 
wild-type protein or mutant proteins, supplementing the 

100, 

80 

j. oo 
a , m  

° ' 6  40 

10-9 10-8 10-7 I0-6 10-5 10-4 10-3 

GDP or GTP (M) 

Figure 6. The Sarla(T39N) mutant has a reduced affinity for GTP. 
The wild-type (t~, m) and mutant (o, o) proteins were incubated 
for I h with [3H]-GDP in the presence of 0.1% Triton X-100 and 
I mM MgCI2 and the indicated concentrations of unlabeled GDP 
(o, n) or GTP (o, m). Exchange reactions were performed by in- 
cubating 0.5 #g (20 pmol) of recombinant protein at 320C with I 
#M t~H]-GDP (~5,000 cpm/pmol), 50 mM Hepes-KOH (pH 
8.0), 0.1% Triton X-100, l mM MgCI2, I mM DTT, and 0.1 mg/rnl 
BSA. Bound [3H]-GDP was quantitated by liquid scintillation 
counting following capture of the proteins on nitrocellulose mem- 
branes as described previously (Nuolfer ct al., 1994). The results 
are expressed as the percentage of the amount of [3H]-GDP bound 
in the absence of additional nucleotide. 

reaction with "01 #M GDP was sufficient to reduce pH]- 
GDP binding by ,050% (Fig. 6, open symbols). However, an 
excess of GTP was necessary for half-maximal inhibition of 
[3H]-GDP binding for the wild-type and mutant proteins 
(Fig. closed symbols), suggesting that both proteins have a 
higher affinity for GDP than GTP. Moreover, an "010-fold 
higher concentration of GTP was required for half-maximal 
inhibition of pH]-GDP binding to the Sarla(T39N) mutant 
that wild-type Sarla (Fig. 6, closed symbols), indicating that 
the predominant consequence of the T39N substitution with 
respect to guanine nucleotide binding is to reduce the affinity 
of the protein for GTP without altering its affinity for GDP. 

To test if mutated forms of Sarl inhibit ER to the Golgi 
transport in intact mammalian ceils, a transient expression 
system was employed in which HeLa cells infected with vac- 
cinia recombinant virus (vTF7-3) expressing "1"7 polymerase 
were cotransfected with a wild-type or mutant Sarla plasmid 
DNA and a plasmid encoding for VSV-G under control of the 

Figure 7. Sarla(T39N) ("GDP") potently inhibits ER to Golgi trans- 
port in vivo. Transient expression of wild-type VSV-G in combina- 
tion with Sarla wild-type (B) or mutant proteins (C and D) in 
vaccinia-infected Hela ceils was performed as described (Tisdale et 
al., 1992). The mount of VSV-G remaining in the endo H-sensi- 
tive ER form (S), the amount processed to the cis/medial-Golgi in- 
termediate endo H-resistant forms (RI) or the amount processed 
to the complex, sialic acid containing form (Rr) in terminal Golgi 
compartments was determined as described (Plutner et al., 1992; 
Tisdale et al., 1992; Davidson and Balch, 1993). The control (A) 
contained only the VSV-G expression construct. 
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T7 promoter (Tisdale et al., 1992). Briefly, 4 h post-infec- 
tion/transfection cells were pulsed with 35S-Met for 10 min. 
The pulse was followed by a chase for 90 min in the presence 
of unlabeled Met. The extent of transport of VSV-G from the 
ER to different Golgi compartments was quantitated by fol- 
lowing the processing of VSV-G N-linked oligosaccharides 
acquired in the ER to various Golgi forms using SDS-PAGE 
(Tisdale et al., 1992). In HeLa ceils, three distinct processed 
forms of VSV-G can be detected after increasing time of in- 
cubation during the chase period (Plutner et al., 1992; Tis- 
dale et al., 1992; Davidson and Balch, 1993). One form cor- 
responds to the endo H-sensitive form found in the ER and 
pre-Golgi intermediates (S in Fig. 7). A second form appears 
coincident with the transport of VSV-G to the early cis/ 
medial-Golgi compartments which generates an early endo 
H-resistant form lacking terminal Gal and sialic acid resi- 
dues (R1 in Fig. 7). Subsequently, VSV-G is processed in 
the terminal (trans) Golgi compartments to the complex 
forms containing Gal and terminal sialic acid (Rr in Fig. 7). 

VSV-G was first cotransfected with the Sarla wild-type 
plasmid. As shown in Fig. 7, the extent of VSV-G detected 
in the cis/medial R~ form (17%) or the trans/TGN Rr form 
(60%) was identical to the control lacking the Sarla wild- 
type plasmid (Fig. 7 b). The level of expression of the Sarla 
wild-type and mutant proteins was generally two- to fourfold 
higher than the level of the endogenous Sarl pool based on 
Western blotting (data not shown). Thus, overexpression of 
wild-type Sarla neither inhibited nor stimulated transport. In 
contrast, overexpression of the Sarla(T39N) "GDP-bound" 
form strongly inhibited transport (Fig. 7 c). In this case, less 
than 20% could be detected in the Rr terminally processed 
form, with over 70 % retained in pre-Golgi endo H-sensitive 
forms. A weak, but reproducible inhibition was also ob- 
served with Sarla(N134I) (Fig. 7 d). In a typical experiment, 
32% of the VSV-G remained in the endo H-sensitive S form 

as Compared to the control in which generally 20-22 % re- 
mained in the unprocessed form after a 90-min chase. The 
inability of this mutant to strongly inhibit transport may re- 
flect its instability in vivo (see Discussion). 

To determine the morphological site of inhibition by 
Sarla(T39N) in vivo, the distribution of VSV-G was exam- 
ined using indirect immunofluorescence. In this case, HeLa 
cells were transfected with a plasmid expressing a ther- 
moreversible form of VSV-G (tsO45) which fails to exit the 
ER when cells are incubated at the restrictive temperature 
(39.5°C) (Lafay, 1974) (Fig. 8 A), but is efficiently trans- 
ported to the Golgi when ceils are subsequently shifted to 
the permissive temperature (32°C) (Fig. 8 B, arrow). When 
cells were cotransfected with tsO45 VSV-G and wild-type 
Sarla, transport to the Golgi was normal (Fig. 8 B), consis- 
tent with the inability of the wild-type protein to prevent 
oligosaccharide processing during transient expression. In 
contrast, overexpression of Sarla(T39N) by two- to fourfold 
potently inhibited export from the ER (Fig. 8 C). Quantita- 
tively, >80-90% of the transfected cells failed to export 
VSV-G from the ER in the presence of Sarla(T39N). This 
result supports the interpretation that the role of mammalian 
Sarla, like that observed in yeast, is to regulate export from 
the ER. 

Sarla Is Required for ER to Golgi Transport In Vitro 

To examine the biochemical role of Sail in transport, we uti- 
lized an assay which efficiently reconstitutes ER to Golgi and 
intra-Golgi transport in semi-intact cells (Beckers et al., 
1987; Baker et al., 1988; Schwaninger et al., 1991; Plutner 
et al., 1992; Davidson and Balch, 1993). The assay was sup- 
plemented with UDP-GlcNAc to promote processing of 
VSV-G to the R~ endo H-resistant form (Davidson and 
Balch, 1993). Addition of affinity-purified antibody was 

Figure 8. Transient expression of Sarla(T39N) in vivo inhibits the export of VSV-G from the ER. Vaccinia-infected HeLa cells were trans- 
fected with a plasmid expressing the temperature-sensitive (tsO45) form of VSV-G for 4 h at 39.5°C. 4 h after transfection, cells were 
either retained at the restrictive temperature (39.5°C) (A) or shifted to the permissive temperature (32°C) and incubated for 2 h in the 
presence of wild-type Sarla (B) or Sarla(T39N) (C) as described previously (Tisdale et al., 1992). Cells were fixed, permeabilized, and 
the distribution of tsO45 VSV-G determined as described previously (Plutner et al., 1992). In (B, arrow), VSV-G exactly overlaps with 
Lens culinaris lectin which binds principally to terminal N-acetylglucosamine, a marker for cis/medial compartments of the Golgi. 
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Figure 9. An antibody specific for Sarl inhibits ER to Golgi, but 
not intra-Golgi transport in vitro. Semi-intact cells and cytosol 
were preincubated for 60 min on ice in the presence of the indicated 
concentration of affinity purified antibody specific for Sarl (open 
circles). In the closed circles, Sarla wild-type protein was added 
at a fivefold molar excess during preincubation on ice. Cells were 
subsequently transferred to 32°C, and incubated for 75 min in the 
presence of ATP and UDP-GIcNAc as described previously (David- 
son and Balch, 1993). The amount VSV-G processed to the endo 
H-resistant fR O form was determined as described in Materials 
and Methods. (Inset) Isolated Golgi stacks were incubated in the 
presence of preimmtme IgG (a) or 15/zg of Sarl specific antibody 
(b) as described in Materials and Methods. The extent of [3H]- 
GIcNAc incorporation is expressed as % of the control lacking ad- 
ditional Sarla protein. 

found to inhibit ER to Golgi transport by >90% (Fig. 8, open 
circles). Inhibition was specific since incubation of the anti- 
body in the presence of  recombinant Sarla wild-type protein 
at molar excess neutralized inhibition (Fig. 9, closed cir- 
cles). Since the antibody inhibition may result from aggrega- 
tion of Sarla in the membrane, F,b fragments were prepared 
and also found to potently inhibit transport (data not shown). 
In contrast, when the effects of  the antibody were tested on 
an assay which reconstitutes the transport of  VSV-G between 
isolated Golgi stacks, no significant inhibition was observed 
(Fig. 9, inset). These results provide evidence that Sarl may 
be a GTPase required for export of protein from the ER, but 
not for transport through subsequent compartments of  the 
Golgi complex. 

Given the striking effects of  expression of Sarla(T39N) on 
ER to Golgi transport in vivo (Figs. 7 and 8), the effect of 

Figure 10. Sarla T39N inhibits an early step in ER to Golgi trans- 
port in vitro. Semi-intact cells were incubated at 32°C in the pres- 
ence of UDP-GIcNAc as described in Materials and Methods. (A) 
The amount of VSV-G protein processed to the endo H-resistant 
R1 form in the presence (ctl) or absence of cytosol (-cyt) (a), or 
(b) in the presence of cytosol supplemented with increasing concen- 
trations of the Sarla wild-type or the Sarla(T39N) recombinant pro- 
teins. (B) Semi-intact cells were incubated for increasing time (A0 
at 32"C prior to transfer to ice to terminate transport (open circles), 
or supplemented with 5 ttg Sarla(T39N) for 10 min on ice prior to 
reincubation at 32°C for a total time of 90 min (closed circles). In 

the open squares, cells were mock treated by the addition of buffer 
lacking Sarla(T39N). (B, inset) Semi-intact cells were incubated in 
the presence of either 5 ttg Sarla wild-type or Sarla(T39N) for 75 
min. The amount of VSV-G processed to either the RI or Rr forms 
in the presence of UDP-GIcNAc, UDP-Gal and CMP-SA was deter- 
mined as described (Davidson and Balch, 1993). (C) Isolated Golgi 
stacks were incubated in the presence of increasing concentration 
of Sarla wild-type or Sarla(T39N) as described in Materials and 
Methods. The extent of [3H]-GIcNAc incorporated is expressed 
as the % of the control level of transport lacking additional Sarla 
protein. 
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recombinant Sarla wild-type and the T39N mutant on 
VSV-G transport in vitro was examined. As shown in Fig. 10 
A, addition of increasing concentrations Sarla(T39N) in- 
hibited transport in vitro by nearly 95 %. Transport hras in- 
hibited by 50 % in the presence of ~ 2.5 ~g Sarla(T39N) with 
maximal inhibition above 5 tzg. No inhibition was detected 
in the presence of an equivalent concentration of the wild- 
type protein (Fig. 10 A). The level of inhibition by the mutant 
was found to vary between different preparations of recom- 
binant protein. The most active preparation inhibited trans- 
port with an IC5o of 0.5 Izg with maximal inhibition in the 
presence of 1.5 #g. 

Transport of VSV-G from the ER to the cis-Golgi compart- 
ment generally has a 15-20-min lag period during which 
time 40-80-nm carrier vesicles bud and target to the cis face 
of the Golgi stack (Plutner et al., 1992; Balch et al., 1994). 
To determine whether Sarla was required for an early step 
reflecting vesicle budding or a later step involved in targeting 
or fusion, the T39N mutant protein was added at increasing 
time after initiation of transport. As shown in Fig. 10 B, 
transport became rapidly (within 5-10 min) insensitive to the 
addition of Sarla(T39N) to the assay. For example, after only 
10 rain of incubation in vitro, a time-point in which Golgi 
processed forms of VSV-G cannot be detected, >60% of the 
total VSV-G transported in the control lacking Sarla(T39N) 
was processed to the endo H-resistant R, form in the pres- 
ence of the mutant (Fig. 10 B). Therefore, Sarla is clearly 
recruited at a very early step in transport. 

Is Sarl required only for export of protein from the ER, 
or, is it required also for vesicle formation from Golgi com- 
partments? To address this question directly semi-intact cells 
were incubated in vitro in the presence of the sugar nucleo- 
tide precursors UDP-GlcNAc, UDP-Gal, and CMP-SA to 
promote the processing of VSV-G to the terminally gly- 
cosylated (RT) form during transport to the trans-Golgi 
compartment (Davidson and Balch, 1993). As shown in Fig. 
10 B (inset), in the presence of wild-type Sarla, VSV-G was 
efficiently processed to the R~ (22%) and R7 (50%) forms 
after a 90-rain incubation, similar to control values obtained 
in the absence of exogenous Sarla. In contrast, in the pres- 
ence of the T39N mutant the small proportion of VSV-G 
which was exported from the ER (18 % of total) was quantita- 
tively chased to the mature, RT form with less than 5% 
found in the Rt form, suggesting that the mutant was inca- 
pable of blocking intra-Golgi transport. 

To pursue the above important observation, we examined 
the effect of the addition of the Sarl(T39N) mutant after in- 
creasing times of incubation. As a control, GTP,ySt (a non- 
hydrolyzable analog of GTP which inhibits both ER to Golgi 
and intra-Golgi transport in semi-intact cells [Beckers and 
Balch, 1989; Schwaninger et al., 1992; Davidson and Balch, 
1993]) was added in a parallel set of incubations. In these 
experiments, addition of the reagent was followed by further 
incubation of cells for a total time of 120 rain to allow 
any VSV-G which had matured past a particular T39N- or 
GTP,yS-sensitive step(s) to be processed in the subsequent 
Golgi compartment(s) (Fig. 11). As illustrated in Fig. 11 A 
and quantitated in Fig. 11, B-D, whereas GTP-yS led to the 
accumulation of VSV-G in the Rt form when added to early 
time points (see Fig. 11 C), addition of Sarla(T39N) consis- 
tently led to maturation of VSV-G to the RT form with little 
accumulation in the R~ form (see Fig. 11, C and D). In each 

Figure 11. Sarl is required only for export from the ER. Incubation 
condRions for transport of VSV-G in vitro were as described in the 
Materials and Methods. (a), (top) Semi-intact cells were incubated 
in the presence of 50 ~tM UDP-GIcNAc, 0.5 mM UDP-Gal, and 100 
~M CMP-sialic acid for increasing time at 32°C prior to transfer 
to ice to terminate transport (time course Tc). (Middle and bottom) 
Cells were supplemented with 25 #M GTP3,S (middle, GTP'),S) or 
1 Izg Sarla(T39N) (bottom, T39N) at the indicated time, followed 
by incubation at 32°C for a total time of 120 rain. (B-D) Quantita- 
tion of the data shown in a. (Closed squares) Time courses (Tc) for 
the processing of VSV-G to the R1 +RT forms (b), the R~ form (c) 
or the RT form (d). (Open circles) The amount (% of total) of 
VSV-G recovered in the R1 +RT form (b), the R1 form (c) or the RT 
form (d) in the presence of GTP3,S added at the indicated time. 
(Open triangles) The extent of VSV-G recovered in the RI +RT 
form (b), the R~ form (c) or the RT form (d) after 120 rain incuba- 
tion in the presence of Sarla(T39N) (1 ~g) added at the indicated 
time. The amount of R~ recovered in the presence of the T39N 
mutant at later time points (c, open triangles) reflects the residual 
VSV-G which was not transported from the cis/medial-Golgi com- 
partments to the trans-Golgi compartment in the control (c, closed 
squares). The amount of VSV-G processed to either the R1 or RT 
formS waS determined as described in Materials and Methods. 

case, the inhibitory effect of the mutant (or GTP~S) 
preceded processing by •5-10 min, consistent with the no- 
tion that both reagents inhibit an early step in vesicle func- 
tion. Thus, it is evident that while the general reagent 
GTP'yS inhibits vesicle formation between multiple com- 
partments, Sat1 is required only for export from the ER. 

The effects of Sarla were also examined using an assay 
which reconstitutes the transport of VSV-G between isolated 
Golgi stacks (Balch et al., 1984). When Sarla(T39N) was 
added at a concentration sufficient to inhibit ER to Golgi 
transport by >80% (5 ~tg) (Fig. 10 A) only partial inhibition 
of transport was observed. In this case, inhibition was less 
than 25 % of a control incubation containing an equivalent 
concentration of wild-type Sarla (Fig. 10 C). The latter pro- 
tein also partially inhibited (by *25%)  transport. The weak 
inhibition of transport between isolated Golgi stacks by ei- 
ther the wild-type or Sarla(T39N) mutants may reflect non- 
specific effects of the recombinant protein on the assay. Nei- 
ther wild-type nor mutant Sarla were found to have any effect 
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Figure 12. Sarla T39N inhibits the export of VSV-G from the ER in vitro. Cell permeabilization, incubation conditions, and morphological 
analysis of transport using indirect immunofluorescence were performed as described (Plutner et al., 1992). (A and B) Distribution of 
VSV-G (A) and Man 1I (B, arrows) prior to incubation in vitro. Man II is a marker protein for the cis/medial-Golgi compartments in NRK 
cells (Plutner et al., 1992; Velasco et al., 1993). (C and D) Transport of VSV-G in cells incubated for 45 min at 32°C in vitro to pre-Golgi 
intermediates (C, open arrows) and Golgi compartments (C, VSIZ-G, arrows; D, Manll, arrows) in the presence of 5 #g Sarla wild-type 
protein. The structures denoted by the open arrows in C overlap with the distribution of the pre-Golgi marker protein p58 (Saraste and 
Svensson, 1991) (not shown). (E and F) Distribution of VSV-G (E) and Golgi (F,, Manll, arrows) in permeabilized ceils incubated for 
45 rain at 32°C in the presence of 5 #g of Sarla(T39N). Small arrows in (E) denote transport of VSV-G to punctate, pre-Golgi intermediates 
which overlap with the distribution of p58 (not shown). 

on the steady state distribution of B-COP on Golgi compart- 
ments (data not shown). 

Sarla(T39N) Specifically Inhibits Budding 
from the ER In Vitro 

To identify the step in transport between the ER and the Golgi 
which requires Sarl, digitonin-permeabilized cells (Plumer et 
al., 1992) were incubated for 45 min in the presence of the 
mutant protein and the distribution of tsO45 VSV-G was ex- 
amined using indirect immunofluorescence. As shown in 
Fig. 12, prior to incubation in vitro, VSV-G is restricted to 
the ER (Fig. 12 A). As expected, incubation of cells in the 
presence of the Sarla wild-type protein leads to the efficient 
transport of VSV-G from the ER to pre-Golgi intermediates 
(Fig. 12 C, open arrows) and compartments of the Golgi 

stack containing the Golgi marker enzyme a-l,2 mannosi- 
dase II (compare Fig. 12, C and D, arrows). In contrast, in- 
cubation in the presence of the T39N mutant largely in- 
hibited exit from the ER (Fig. 12 E). Most of the VSV-G was 
retained in a diffuse ER staining pattern, although some 
migration of VSV-G to punctate pre-Golgi could be detected 
(Fig. 12 E, small arrows), presumably reflecting the small 
amount of VSV-G able to escape the block at this concentra- 
tion of T39N. Addition of an inhibitory concentration of the 
afffinity-purified Sarl-specific antibody also completely pre- 
vented export of VSV-G from the ER in vitro (not shown). 
These data are consistent with the results observed in vivo 
(Fig. 7), and suggest that the Sarl GDP-bound mutant rap- 
idly and efficiently competes with the endogenous wild-type 
pool for an effector molecule critical for the generation of 
transport vesicles from the ER. 
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Discussion 

Sarl Is Enriched on ER to Golgi Carrier Vesicles 
in Mammalian Cells 

The localization of Sarl to the transitional region of the ER 
provides one of several lines of evidence that it functions in 
ER to Golgi transport. Sarla was enriched 20-40-fold on 
putative ER to Golgi carrier vesicles and nearly 10-fold in 
the transitional region relative to its distribution in the bulk 
of the ER membrane. Transitional elements are believed to 
be specialized sites of export of newly synthesized protein 
from the labyrinth of rough Ell (RER), an organelle which 
is exceptionally abundant in insulin-secreting pancreatic 
cells. In contrast to A r t  (Stearns et al., 1990) or Rabl/Ypflp 
(Segev et al., 1988; Plutner et al., 1991; Pind et al., 1994), 
which are abundant on pre-Golgi carrier vesicles and multi- 
ple compartments of the Golgi stack, Sarl was confined to 
the cisternal elements of the proximal face of the Golgi. In 
yeast, Sarlp has been detected using indirect immunofluores- 
cence on perinuclear ER elements which contain Kar2p and 
Sec62p, and small punctate structures which are likely to be 
pre-Golgi intermediates, but not in Golgi compartments con- 
taining the KEX2 gene product, a trans-Golgi marker 
(Nishikawa and Nakano, 1991). Sarlp has also been detected 
in exaggerated ER structures which accumulate at the re- 
strictive temperature in the presence of the temperature- 
sensitive secl2 and secl8 alleles, but was not detected in 
Golgi-like compartments which accumulate at the restrictive 
temperature in the presence of either the secl or sec7 mutant 
alleles (Nishikawa and Nakano, 1991). Consistent with the 
distribution of mammalian Sarlp, a protein which cross- 
reacts with an antibody specific for the yeast Sarlp-specific 
GAP (Sec23p) has also been localized to the transitional re- 
gion of the ER in insulin-secreting cells (Orci et al., 1991a). 

Two additional lines of evidence support a role for Sarl in 
vesicle budding from the ER. First, a Sarl-specific antibody 
inhibited export, possibly by preventing the assembly of a 
Sarl-regulated coat complex. Second, the T39N mutant was 
a potent inhibitor of transport of VSV-G between the ER and 
the cis-Golgi compartment. While we reported inhibition of 
transport based on the inability of VSV-G to be processed to 
the endo H-resistant R1 form, we have observed identical 
levels of inhibition in the processing of VSV-G to the endo 
D-sensitive, 5 mannose (Mans) containing form in a CHO 
cell line (clone 15B) defective in modification of VSV-G 
NH2-1inked oligosaccharides beyond the Man5 structure 
(Rowe, T. and W. E. Balch, unpublished observations). This 
processing intermediate immediately precedes the appear- 
ance of the R1 form and is a hallmark for delivery of 
VSV-G protein to the cis-Golgi compartment (Beckers et al., 
1987; Plutner et al., 1992; Davidson and Balch, 1993). 

How does the Sarla(T39N) mutant inhibit export? This 
mutation is equivalent to the S17N substitution in p21 e .... 
which disrupts the contribution of the hydroxyl group of Set- 
17 to the Mg 2+ ion involved in guanine nucleotide binding 
(Feig and Cooper, 1988; Farnsworth et al., 1991). This abol- 
ishes the high affinity of p21 ~-r~ for GTP producing a GDP- 
bound form. Improper complexing of Mg 2+ also restricts 
p21R-~ to a conformationally inactive state. The S17N mu- 
tant is believed to interfere with wild-type Ras function in 
vivo by serving as a competitive inhibitor for the nucleotide 

exchange factor (GEF), thereby preventing GDP/GTP ex- 
change on the endogenous wild-type pool and leading to in- 
hibition of cell growth (Farnsworth et al., 1991). The capac- 
ity of the Sarla(T39N) mutant to efficiently inhibit export 
from the ER suggests that it is rapidly equilibrated with the 
endogenous, functional Sarl pool. Given the altered guanine 
nucleotide binding properties of the Sarla(T39N) mutant, a 
reasonable interpretation at this time is that the T39N mutant 
may compete with the wild-type protein for a Sarla-speeific 
GEE interfering with the recruitment of Sarl to the ER 
membrane. This interpretation is consistent with the effects 
of a temperature-sensitive allele of the Sarlp-specific ex- 
change factor (Secl2p-GEF) which, in yeast leads to the 
proliferation of ER elements in cells incubated at the restric- 
tive temperature (Novick et al., 1980; Nakano et al., 1988). 
The reduced ability of the Sarlp-GEF in the presence of the 
T39N mutant to support vesicle budding is consistent with 
the proposed role of other GEF's involved in the recruitment 
and activation of A r t  (Donaldson et al., 1992a,b; Helms 
and Rothman, 1992; Daseher and Balch, 1994), Rabl 
(Nuoffer et al., 1994), and SEC4 (Moya et al., 1993). In 
general, molecules promoting nucleotide exchange may play 
a crucial first step in the recruitment and subsequent activa- 
tion of small GTP-bindlng proteins involved in vesicular 
transport between compartments of the exocytic and endo- 
cytic pathways. 

The N134I substitution was considerably less potent than 
the T39N mutant in inhibiting ER to Golgi transport. We 
found this surprising given the fact that equivalent mutations 
in Rabla (N124I), Rablb(N121D, and Rab2 (N1191I) are po- 
tent trans dominant inhibitors of ER to Golgi transport in 
vivo and in vitro (Tisdale et al., 1992; Pind et al., 1994). 
Rabl mutants allow vesicles to bud from the Ell, but prevent 
their fusion to the cis-Golgi compartment (Tisdale et al., 
1992; Pind et al., 1994). In yeast, the equivalent yptl or see4 
mutant alleles are dominant lethal with marked secretory 
defects (Schmitt et al., 1986, 1988; Walworth et al., 1989). 
In the case of p21H-~', the Nll6I substitution destabilizes 
the nucleotide-bindlng pocket (Der et al., 1986; Feig and 
Cooper, 1988; John et al., 1993), resulting in a high ex- 
change rate. This altered conformation restricts p21H-r.s to 
the activated state, triggering oncogenic transformation 
(Walter et al., 1986). One possible explanation for the inabil- 
ity of Sarla(N134I) to inhibit transport is that the folding or 
stability of the protein is compromised. Consistent with this 
interpretation, we found that expression of the Sarla(N134I) 
mutant in E. coli leads to extensive aggregation. Unlike 
similar mutations in Rabl (Nuoffer et al., 1994; Pind et al., 
1994), we have been unable to purify a soluble form of the 
N134I mutant to test its function in vitro. Further analysis 
of this mutant and a mutant restricted to the GTP-form are 
currently under investigation. 

Sarl, a GTPase Specific for Export from the ER 

The striking enrichment of Sarl on transitional carrier vesi- 
cles, and the ability of both Sarl-specific antibodies and 
the T39N mutant to inhibit ER to Golgi, but not intra-Golgi 
transport in semi-intact cells, supports the conclusion that 
Sarl regulates vesicle budding at only one step of the secre- 
tory pathway-export from the ER. While the biochemical 
evidence for this interpretation is compelling, it is inconsis- 
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tent with data from a genetic analysis in yeast where SEC23 
(Sarlp-GAP) function was required for at least two sequen- 
tial steps: transport from the ER to the cis-Golgi compart- 
ment, and between early, but not late Golgi compartments 
(Graham and Emr, 1991). At this time there are three possi- 
ble explanations for this apparent contradiction. One possi- 
bility, albeit one which we consider unlikely, is that the com- 
partmental organization of the early secretory pathway in 
yeast is different from that found in mammalian cells. Alter- 
natively, an interpretation of the genetic analysis which can- 
not be ruled out is that Sarlp/Sec23p are essential for deliv- 
ery of factor(s) which is subsequently required for transport 
between early, but not late Golgi compartments (Graham and 
Emr, 1991). Finally, it remains to be established whether a 
larger Sar gene family exists, similar to that observed for Rab 
and which may contain many more divergent species special- 
ized for individual stages of the exocytic (or endocytic) path- 
way. In this case, Sec23p may serve as a common GAP for 
several of these related GTPases. In any case, the presence 
of Sarlp on the cis-face of the Golgi stack is consistent with 
the possibility that this distribution represents its site of recy- 
cling for reuse in multiple rounds of transport. 

The requirement for a unique GTPase-regulating export 
from the ER is intriguing given recent evidence that export 
of protein from the ER may involve both the sorting and con- 
centration of cargo from resident ER proteins during vesicle 
budding (Mizuno and Singer, 1993; Balch et al., 1994). In 
contrast, transport between sequential Golgi compartments 
occurs without further concentration (Orci et al., 1989; Balch 
et al., 1994). These observations can be rationalized if the 
transport machinery governing export from the ER differs, 
at least in part, from that involved in transport between com- 
partments of the Golgi stack. It is now recognized that coat 
components found on nonclathrin-coated vesicles mediating 
transport between Golgi compartments (Serafini et al., 
1991a,b; Waters et al., 1991; Taylor et al., 1992; Orci et al., 
1993; Palmer et al., 1993) as well as components involved 
in fusion of Golgi carrier vesicles (Wilson et al., 1989; Roth- 
man and Orci, 1992; S611ner et al., 1993) are also required 
for ER to Golgi transport in mammalian cells (Beckers et al., 
1989; Pepperkok et al., 1993; Peter et al., 1993; Pind et al., 
1994) and in yeast (Kaiser and Schekman, 1990; Hosobuchi 
et al., 1992). One possible role for Sarl may be to provide 
an additional level of regulatory control, perhaps related to 
the need to sort and concentrate cargo to ensure efficient ex- 
port from the bulk of the ER (Balch et al., 1994). 
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