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a b s t r a c t 

State modeling of whole-brain electroencephalography (EEG) or magnetoencephalography (MEG) allows to in- 

vestigate transient, recurring neurodynamical events. Two widely-used techniques are the microstate analysis of 

EEG signals and hidden Markov modeling (HMM) of MEG power envelopes. Both reportedly lead to similar state 

lifetimes on the 100 ms timescale, suggesting a common neural basis. To investigate whether microstates and 

power envelope HMM states describe the same neural dynamics, we used simultaneous MEG/EEG recordings at 

rest and compared the spatial signature and temporal activation dynamics of microstates and power envelope 

HMM states obtained separately from EEG and MEG. Results showed that microstates and power envelope HMM 

states differ both spatially and temporally. Microstates reflect sharp events of neural synchronization, whereas 

power envelope HMM states disclose network-level activity with 100–200 ms lifetimes. Further, MEG microstates 

do not correspond to the canonical EEG microstates but are better interpreted as split HMM states. On the other 

hand, both MEG and EEG HMM states involve the (de)activation of similar functional networks. Microstate analy- 

sis and power envelope HMM thus appear sensitive to neural events occurring over different spatial and temporal 

scales. As such, they represent complementary approaches to explore the fast, sub-second scale bursting electro- 

physiological dynamics in spontaneous human brain activity. 
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. Introduction 

A fundamental part of human neural dynamics is the spontaneous

mergence of brain rhythms, i.e., large-scale oscillations of neuroelec-

ric activity (for a review, see, e.g., ( Hari and Salmelin, 1997 )). These

hythms play a critical role for human brain functions such as sen-

ory, motor and cognitive processes (( Klimesch, 2012 ), for reviews, see

 Klimesch et al., 2010 ; Pfurtscheller and Lopes da Silva, 1999 )). They

lso wax and wane spontaneously at rest (i.e., in the absence of any ex-

licit task performance). The resulting fluctuations in their amplitude

re key to intrinsic functional brain connectivity ( Siegel et al., 2012 ).

hen measured with electroencephalography (EEG) or magnetoen-

ephalography (MEG), this oscillatory dynamics leads to signal power

ime courses whose correlation structure identifies functional brain net-

orks ( Brookes et al., 2011 ; Coquelet et al., 2020a ; Hipp et al., 2012 ;

iu et al., 2017 ; Siems et al., 2016 ; Wens et al., 2014 ). Further, sponta-
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eous MEG/EEG power fluctuations occur in transient, sub-second long

ursts of oscillatory activity ( van Ede et al., 2018 ). Short-lived power

ursts may actually correspond to the fast activation/deactivation of

unctional networks ( Baker et al., 2014 ; Britz et al., 2010 ; Vidaurre et al.,

018 ) and their co-occurrence, to the intrinsic functional connectivity of

hese networks ( Seedat et al., 2020 ). They might ultimately relate to the

etastable cross-network interactions characteristic of functional inte-

ration at the supra-second timescale ( de Pasquale et al., 2016 , 2012 ;

ella Penna et al., 2019 ; Wens et al., 2019 ). Power bursts also presum-

bly hold specific functions, such as the encoding of recently acquired

nformation by coactivation with spontaneous replays ( Higgins et al.,

020 ). Exploring the spontaneous dynamics of MEG/EEG power bursts

hus represents a fundamental step towards a better understanding of

he functional architecture of the human brain at rest. 

With their millisecond-scale temporal resolution, EEG and MEG

 Hari and Puce, 2017 ) are natural techniques to investigate power
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E  
ursts, although the role of short-time events has also been emphasized

ith functional magnetic resonance imaging (fMRI) ( Tagliazucchi et al.,

012 ). Accordingly, the two main data-driven methods used to de-

ect recurring events of high electrophysiological power are EEG mi-

rostate analysis (( Lehmann et al., 1987 ); for a review, see ( Michel and

oenig, 2018 )) and hidden Markov modeling (HMM) of MEG power

nvelopes ( Baker et al., 2014 ; Quinn et al., 2018 ). Both allow to parti-

ion EEG/MEG data into discrete brain states that recurrently activate

nd deactivate one after the other, yet the underlying clustering algo-

ithms strongly differ in their assumptions and methods. Microstates

re determined as time periods of quasi-stable scalp EEG topography

hat repeatedly occur, up to amplitude rescalings and polarity flips.

our canonical microstates have been identified with reported mean life-

imes ranging from 60 to 120 ms (for a review, see, e.g., ( Michel and

oenig, 2018 )). These microstates were associated with different classes

f mentation ( Lehmann et al., 1998 ) and partially correlated with the

pontaneous haemodynamics of some fMRI networks ( Britz et al., 2010 ;

usso et al., 2010 ; Yuan et al., 2012 ). Their temporal properties are also

ffected by brain disorders such as schizophrenia ( Koenig et al., 1999 ;

ehmann et al., 2005 ) or multiple sclerosis ( Gschwind et al., 2016 ). By

ontrast, the HMM relies on the more abstract concept of Markov chains

o describe brain power dynamics in terms of causal transitions among

hidden ” states ( Rabiner, 1989 ). These states are hidden in the sense

hat they are not explicitly expressed in the data and must be inferred

hrough implicit statistical features such as, e.g., the covariance matrix

f a state observation model ( Rezek and Roberts, 2005 ). Here, the HMM

tates are determined by transient patterns of MEG power envelope co-

ariance repeating over time ( Baker et al., 2014 ), but occurring on too

hort time periods to be measurable directly from the data, e.g., with

liding windows (for a review, see ( O’Neill et al., 2018 )). The HMM in-

erence applied to MEG power envelope signals has typically been used

o identify 6 or 8 states disclosing a spatial distribution reminiscent of

rain functional networks as well as mean lifetimes ranging from 50 to

00 ms ( Baker et al., 2014 ; Quinn et al., 2018 ). Temporal properties of

MM states are also altered by physiological processes such as aging

 Brookes et al., 2018 ; Coquelet et al., 2020b ) as well as brain disorders

uch as Alzheimer’s disease ( Puttaert et al., 2020 ; Sitnikova et al., 2018 )

r multiple sclerosis ( Van Schependom et al., 2019 ). 

Interestingly, despite fundamental methodological differences, EEG

icrostates and MEG power envelope HMM states appear to remain sta-

le over similar timescales. This raises the question of whether they de-

cribe similar neural dynamics (( Baker et al., 2014 ); for a review, see

 Khanna et al., 2015 )). Here, we investigate this key question using si-

ultaneous MEG/EEG recordings of resting-state activity. We started

y directly comparing the spatial topography and temporal dynamics

f EEG microstates as classically classified from EEG electrode signals

 Michel and Koenig, 2018 ), and of MEG power envelope HMM states as

lassically inferred from brain source activity reconstructed from MEG

ensor signals ( Baker et al., 2014 ). Still, such direct comparison entan-

les several effects and might leave the origin of potential differences

ndetermined, since it mixes the impact of the state clustering model

tself (microstates vs. HMM), the recording modality (EEG vs. MEG),

he type of signal inputted to the clustering model (scalp recordings vs.

ource-reconstructed brain activity), as well as several other parame-

ers (e.g., signal filters and the number of states to be classified). Of

articular interest is to assess the effect of the state clustering model

tself, all other parameters being fixed. Our strategy to do so was to feed

he exact same signals to both microstate and HMM state classification

lgorithms, so confounds related to recording modality or processing

arameters are avoided. This approach required adapting the classical

otion of microstate to MEG, and that of HMM state to EEG. To the

est of our knowledge, a microstate analysis of MEG data has not yet

een developed. The HMM approach has been applied to EEG power

nvelopes ( Hunyadi et al., 2019 ; Sitnikova et al., 2020 ), but the focus

as on the relationship with fMRI networks rather than microstates.

e also considered here an application of power envelope HMM to
2 
EG/EEG sensor signals (rather than MEG source signals as originally

one in ( Baker et al., 2014 ) and in our first, direct comparison) to fur-

her disentangle the impact of source reconstruction on state classifi-

ation. In addition, this setup provides an opportunity to establish how

ecording modality affects microstates and HMM states, which allows us

o extend a previous comparative study of MEG and EEG resting-state

ignals ( Coquelet et al., 2020a ). Finally, several other parameters were

aried in order to assess their importance in microstate and HMM state

lassification. 

Our main objective was therefore to compare microstates and HMM

tates, and to identify the specific impact of both the state clustering

odel and the recording modality on temporal and spatial signatures of

ransient brain states. To do so, we estimated to what extent two types

f states tend to co-activate by temporal correlation analysis of their

ctivation dynamics, and to what extent they involve similar brain re-

ions or networks by spatial correlation analysis of the associated power

istributions. Based on the idea that microstates and HMM states are

oth designed to identify discrete recurrent brain states and given the

eported similarity of their typical lifetimes ( Baker et al., 2014 ), we ex-

ected to identify similar features. In particular, we hypothesized that

he two state clustering models would reveal a close spatio-temporal re-

ationship within each recording modality. This would suggest that mi-

rostates and power envelope HMM states disclose similar neural events.

n the other hand, based on a previous comparison of MEG and EEG

ower envelope signals at rest ( Coquelet et al., 2020a ), we expected

imilar spatial signatures but substantially different temporal state dy-

amics across the two recording modalities. 

. Methods 

.1. Participants 

Forty-two young adults (14 females, mean age ± standard devia-

ion (SD): 24.4 ± 3.9 years, range: 18–35 years) were included in this

tudy, 19 of which were already used in a previous study of our group

 Coquelet et al., 2020a ). All participants were right-handed according to

he Edinburgh handedness inventory ( Oldfield, 1971 ), did not take any

sychotropic drug, and had no prior history of neurological or psychi-

tric disorder. Each of them signed a written informed consent before

canning. The CUB – Hôpital Erasme Ethics Committee approved this

tudy prior to their inclusion. 

.2. Data acquisition 

Participants underwent a resting-state recording session (eyes open,

xation cross, 5 min) with simultaneous MEG and high-density EEG.

euromagnetic activity was recorded with a 306-channel whole-scalp

EG system (band-pass: 0.1–330 Hz, sampling frequency: 1 kHz) in-

talled in a light-weight magnetically shielded room (Maxshield TM , ME-

IN, Helsinki, Finland; see ( De Tiège et al., 2008 ) for detailed charac-

eristics). Four coils continuously tracked subjects’ head position inside

he MEG helmet. The first 15 participants were scanned with a Neuro-

ag Vectorview 

TM MEG (Elekta Oy, Helsinki, Finland) and the other 27

ith a Neuromag Triux TM MEG (MEGIN, Helsinki, Finland) due to a sys-

em upgrade. These neuromagnetometers have identical sensor layout

i.e., 102 magnetometers and 102 pairs of orthogonal planar gradiome-

ers) and only differ in sensor dynamic range and background magnetic

nvironment, neither of which substantially affect data quality after pre-

rocessing. In particular, previous research mixing resting-state record-

ngs from these two systems did not disclose any significant difference

 Coquelet et al., 2020b , 2020a ; Naeije et al., 2020 ; Sjøgård et al., 2020 ).

Neuroelectric activity was measured with a MEG-compatible, 256-

hannel scalp EEG system (low-pass: 450 Hz; sampling frequency: 1 kHz)

ased on low profile, silver chloride-plated carbon-fiber electrode pellets

MicroCel Geodesic Sensor Net, Electrical Geodesics Inc., Magstim EGI,

ugene, Oregon, USA). The reference electrode was placed at Cz and all
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t  
mpedances were kept below 50 k Ω by application of a conductive gel

etween each electrode and the skin. Of note, good EEG signal quality

s maintained despite allowing for such high impedances (compared to

ther EEG systems, see ( Kappenman and Luck, 2010 )) thanks to the

sage of a high input-impedance amplifier (Net Amp GES 400, Electrical

eodesics Inc., Magstim EGI, Eugene, Oregon, USA), which eases subject

reparation and avoids the need for skin abrasion ( Ferree et al., 2001 ).

 100-ms long square-pulse trigger signal was generated by the MEG

ystem electronics every second and fed to the EEG amplifier in order to

nable clock synchronization of both systems. The location of the head

osition indicator coils, scalp EEG electrodes, and approximately 200

calp points were determined with respect to anatomical fiducials using

n electromagnetic tracker (Fastrack, Polhemus, Colchester, Vermont,

SA). 

Participant’s high-resolution 3D T1-weighted cerebral magnetic res-

nance images (MRIs) were acquired on a 1.5 T MRI scanner (Intera,

hilips, The Netherlands) after the MEG/EEG recordings. 

.3. Data preprocessing and source projection 

The MEG data were preprocessed using signal space separation

 Taulu et al., 2005 ) to subtract environmental magnetic noise and

orrect for head movements (Maxfilter v2.1, Elekta Oy, Helsinki,

inland). No bad channels were detected in the process. For EEG

ata, we started by eliminating 84 electrodes placed on cheeks and

eck as they often suffered from excessive muscle artefacts or poor

kin contact, leaving 172 scalp-matched electrodes. Remnant bad

hannels were then automatically detected and removed using ar-

ifact subspace reconstruction ( Kothe and Makeig, 2013 ) as imple-

ented in EEGLAB (( Delorme and Makeig, 2004 ); EEGLAB v2019.0,

ttps://sccn.ucsd.edu/eeglab/index.php) (number of bad channels:

1 ± 4 out of 172, range: 4–21). Cardiac, ocular and remain-

ng system artifacts were further eliminated from MEG and EEG

ata separately, using an independent component analysis of band-

assed (1–40 Hz) signals (( Vigário et al., 2000 ); FastICA v2.5,

ttp://www.cis.hut.fi/projects/ica/fastica, with dimension reduction to

0 components, symmetric approach, and cubic nonlinearity contrast).

rtefactual components were identified by visual inspection and re-

ressed out of the full-rank data (number of components removed for

EG: 4 ± 1, range: 2–7; for EEG: 14 ± 3, range: 9–21). Bad EEG elec-

rodes were subsequently reconstructed using spherical spline interpo-

ation ( Perrin et al., 1989 ) and EEG scalp topographies were spatially

ltered ( Michel and Brunet, 2019 ) to remove any last local outlier. The

esulting EEG data were then re-referenced to the average across the

72 scalp electrodes. The rank of the fully preprocessed data was 53 ± 3

mean ± SD, range: 47–59) for MEG and 18 ± 5 (range: 10–35) for EEG.

inally, the synchronization of MEG and EEG signals was ensured by

emporal realignment based on the trigger signal. 

Separate forward models for MEG and EEG were computed based

n the participants’ MRI, segmented beforehand using the FreeSurfer

oftware (( Fischl, 2012 ); FreeSurfer v6.0; Martinos Center for Biomedi-

al Imaging, Massachusetts, USA; https://surfer.nmr.mgh.harvard.edu,

reesurfer-x86_64-linux-gnu-stable6–20,170,118). The coordinate sys-

ems of MEG and EEG were co-registered to the MRI coordinate system

sing the three anatomical fiducials for initial estimation and the head-

urface points to manually refine the surface co-registration (MRIlab,

EGIN Data Analysis Package 3.4.4, MEGIN, Helsinki, Finland). The

ource space was built by placing three orthogonal current dipoles at

ach point of a grid derived from a regular 5-mm grid cropped within the

ontreal Neurological Institute (MNI) template MRI volume and non-

inearly deformed onto each participant’s MRI with the Statistical Para-

etric Mapping software (( Friston et al., 2007 ); SPM12, Wellcome cen-

re for Neuroimaging, London, UK; https://www.fil.ion.ucl.ac.uk/spm).

orward models were then computed on this source space using the

ne-layer boundary element method (BEM) for MEG and the three-

ayer BEM with default conductivity values for EEG (as used and dis-
3 
ussed in ( Coquelet et al., 2020a )) implemented in the MNE-C suite

( Gramfort et al., 2014 ); MNE-C v2.7.3, Martinos Center for Biomedi-

al Imaging, Massachusetts, USA; https://mne.tools/stable/index.html).

he EEG forward models were also re-referenced to their average across

he 172 scalp electrodes. 

Finally, neural source activity of MEG or EEG signals were recon-

tructed using minimum norm estimation (MNE, Dale and Sereno, 1993 )

s regularized inverse that allows to project the MEG (gradiometers

nly, see ( Garcés et al., 2017 )) or the EEG signals onto the 5 mm, dipolar

ource grid associated to the corresponding forward model. The noise

ovariance matrix was estimated individually on the basis of 5 min of

mpty-room data for MEG (with signal space separation), and as the

dentity projected in the sensor subspace corresponding to the average

eference for EEG. The regularization parameter was estimated from

he consistency condition derived in ( Wens et al., 2015 ). Each three-

imensional dipole time series was projected onto the direction of max-

mum variance. 

.4. Microstate clustering 

Microstate inference from EEG data followed stan-

ard steps (for reviews, see, e.g., ( Khanna et al., 2015 ;

ichel et al., 2009 ; Michel and Koenig, 2018 )) and was per-

ormed using the EEGLAB plugin for microstate analysis (v1.1,

ttp://www.thomaskoenig.ch/index.php/software/microstates-in- 

eglab). Microstates were built from wideband filtered (4–30 Hz) EEG

ignals, but we also report on the effect of widening this band to 1–

0 Hz (supplementary material S1) that is often used in the microstate

iterature (e.g., ( Britz et al., 2010 ; Gschwind et al., 2016 ; Tomescu et al.,

015 )). Sensor signals were then downsampled at 200 Hz with low-

ass filtering at 100 Hz ( Khanna et al., 2015 ; Michel et al., 2009 ;

ichel and Koenig, 2018 ) using moving-window averaging. In specific

omparisons of state clustering models and recording modalities, sensor

ignals were also downsampled at 40 Hz with low-pass at 10 Hz using

oving-window averaging, similarly to the power envelope signals

nputted to the HMM (see below). 

We also adapted microstate classification to MEG. The main differ-

nce is that we focused on planar gradiometers as they disclose the high-

st signal-to-noise ratio ( Hari and Puce, 2017 ) and combined each pair

f orthogonal sensors using their Euclidean norm. 

The first step of the microstate analysis consists in a two-level clus-

ering of time-varying sensor topographies in order to define the spatial

ignature of each microstate. Atomize-agglomerate hierarchical cluster-

ng (AAHC; ( Tibshirani and Walther, 2005 )) was used to partition each

ndividual dataset into a number K of prototypal topographical maps

etermined so as to maximize spatial variance, a.k.a. global field power

GFP). Briefly, AAHC starts from instantaneous sensor maps and itera-

ively builds clusters by breaking one cluster into its constituent maps

atomization) and reassigning each of them to the cluster whose topog-

aphy best fits theirs in terms of absolute spatial correlation (agglomera-

ion). In this algorithm, the topography associated to a cluster is defined

s the principal component of its constituent maps, and the cluster to at-

mize at each iteration is chosen deterministically as the one with least

FP. This procedure ensures that microstates are explicitly geared to-

ards the detection of recurring patterns of highest GFP. The number K

f clusters was merely fixed to K = 4 as this value is largely representa-

ive of the literature (( Koenig et al., 1999 ); for a review, see ( Michel and

oenig, 2018 )). However, such prior may represent a limitation (which

s why data-driven selection techniques are increasingly recommended;

or a review, see ( Murray et al., 2008 )), so we further checked the ro-

ustness of our results by considering the case K = 6 as well (see below).

he resulting set of individual-level topographies were then subjected

o a full permutation procedure ( Koenig et al., 1999 ) in order to obtain

he final group-level microstate topographies. 

It is noteworthy that this two-level clustering approach is common in

he microstate literature but differs from the group HMM approach (see
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(  
elow), so for better comparability we also considered a “group AAHC ”

pplied to instantaneous spatial maps across all subjects at once (supple-

entary material S2). Also noteworthy is the fact that AAHC is restricted

o time points corresponding to local maxima of the GFP time series in

rder to reduce computational complexity ( Khanna et al., 2015 ). Since

y design the HMM does not involve such subselection of time points,

e applied microstate clustering to the unrestricted, continuous signals

s well (supplementary material S3). 

The second step consists in obtaining a binary time series of mi-

rostate activation/inactivation. We defined here these time series us-

ng the criterion that the microstate active at any given time point

e the one whose topography best fits (again in terms of absolute

patial correlation) the instantaneous sensor topography at this time

oint ( Brunet et al., 2011 ). Microstate activation is thus exclusive , i.e.,

wo microstates cannot be simultaneously active, and complete , i.e., a

icrostate is active at any time. Importantly, this basic criterion is

airly close in spirit to the Viterbi algorithm used in the HMM (as ex-

lained below), but it is frequently altered in the microstate literature

y using a temporally smoothed version of these binary time series

 da Cruz et al., 2020 ; D’Croz-Baron et al., 2019 ; Krylova et al., 2020 ;

ascual-Marqui et al., 1995 ; Sikka et al., 2020 ). In our direct compar-

son, we implemented the popular approach whereby microstate acti-

ation is determined as described above but at GFP peaks only and is

hen extended between these peaks by nearest-neighbor interpolation

 Krylova et al., 2020 ; Sikka et al., 2020 ). The Viterbi algorithm does

ot involve such ad-hoc temporal smoothing, but at the same time the

MM itself intrinsically enforces a degree of causality, and thus tempo-

al smoothness, in state time courses. For this reason, we also considered

he raw (non-interpolated) microstate time series and examined the ef-

ect of temporal smoothing on microstate activation dynamics (supple-

entary material S4). 

.5. Hidden Markov modeling of power envelopes 

The HMM was inferred from power envelope time courses esti-

ated by Hilbert transformation of wideband filtered (4–30 Hz) sig-

als, using the GLEAN toolbox (GLEAN0.3, https://github.com/OHBA-

nalysis/GLEAN) originally developed for and applied to MEG source

ower ( Baker et al., 2014 ). The focus on continuous power envelopes

akes the HMM analysis geared towards the detection of power bursts

 van Ede et al., 2018 ). In our direct comparison, we considered HMM

tates inferred from power envelope MEG source signals reconstructed

ith MNE ( Coquelet et al., 2020b ). In our specific comparisons assessing

he impact of state clustering or recording modality, the HMM inference

as also done directly at the sensor level by adapting the aforemen-

ioned pipeline to both MEG gradiometer and EEG power envelopes. 

Individual datasets of power envelope signals were downsampled at

0 Hz with low-pass filtering at 10 Hz via moving-window averaging,

emeaned and normalized by the global variance across sensors, con-

atenated temporally across subjects to design a group-level analysis,

nd finally projected onto their N first principal components for dimen-

ionality reduction prior to HMM inference ( Baker et al., 2014 ). For MEG

ource power envelopes, we used N = 53, which retains about 55% of

ariance. For sensor-level MEG and EEG power envelope signals, the di-

ension reduction was chosen so as to explain a comparable fraction of

ariance across MEG and EEG sensor data. Specifically, N = 10 compo-

ents were retained for EEG and N = 41 for MEG, which corresponded

o 81% of explained variance in both cases. Such low dimensionality

or EEG presumably relies on the high spatial smoothness of EEG (see,

.g., ( Coquelet et al., 2020a )). So this approach takes into account the

ntrinsic difference in spatial smoothness of MEG and EEG. (See how-

ver supplementary material S5 for a version of the EEG power envelope

MM with N = 41 instead, which retains more than 99% of EEG power

nvelope variance.) 

A HMM with K = 6 states ( Quinn et al., 2018 ) was then inferred

rom the N principal component time courses using variational Bayesian
4 
ptimization, under several assumptions such as the normality of the

bservation model or the prior that hidden model parameters follow

onjugate distributions (making a parametric optimization possible; for

urther details, see (( Rabiner, 1989 ; Rezek and Roberts, 2005 )). Of note,

he low dimensionality for EEG ( N = 10, presumably due to high spatial

moothness of EEG; see, e.g., ( Coquelet et al., 2020a )) was still sufficient

o infer K = 6 states. The HMM optimization algorithm was run ten

imes, each with different initial conditions, and the model with lowest

ree energy was retained ( Baker et al., 2014 ). Binary time series of most

robable, temporally exclusive, and complete state activation were then

erived using the Viterbi algorithm ( Rezek and Roberts, 2005 ). 

Importantly, the mere difference in number of states for the HMM

nd microstate analyses may trivially induce discrepancies between

hem. We controlled for this possibility by re-running the HMM infer-

nce with K = 4 (see supplementary material S6) and the microstate

lassification with K = 6 (see supplementary material S7). 

.6. State temporal properties and power maps 

State activation time series allowed to compute several summary

tatistics of the temporal behavior of microstates or HMM states, such as

heir mean lifetime (mean duration of state activation events) and their

ractional occupancy (fraction of the total recording time during which

he state is active). The global effects of recording modality and state

lustering algorithm on these statistics were assessed using two-sided

aired Student’s t tests at 𝑝 < 0 . 05 applied to their average across the K

tates. 

Activation time series also allowed to produce spatial maps locating

here in the brain power increases or decreases occur upon state acti-

ation. Such brain power maps were built as images of the partial cor-

elation between each state activation time series and each MNE source

ower envelope signal concatenated across subjects ( Baker et al., 2014 ).

orresponding maps could also be derived at the individual level by

ere restriction of these partial correlations within each subject. In the

ensor-level HMM, this procedure was also performed at the level of

ensor power envelope signals used for state inference. 

All these maps were thresholded statistically using two-tailed para-

etric correlation tests at 𝑝 < 0 . 05 against the null hypothesis that

isher-transformed correlations follow a Gaussian with mean zero and

D 

1 √
𝜈−3 

, where 𝜈 = 𝑁 𝑡𝑑𝑜𝑓 − ( 𝐾 − 1 ) . The number N tdof of temporal de-

rees of freedom was estimated as one-quarter of the total number of

ime samples in group-concatenated envelope signals at 40 Hz sampling

requency to take into account the low-pass filter at 10 Hz. The subtrac-

ion of K – 1 degrees of freedom is due to the regression inherent to the

artial correlation. The critical p -value was Bonferroni corrected with

he number of independent states (i.e., K – 1) multiplied by the number

f spatial degrees of freedom estimated from the rank of the forward

odel ( Wens et al., 2015 ), i.e., 58 for MEG and 32 for EEG. Statisti-

al thresholding on state power maps was thus slightly tighter for MEG

han EEG, which is merely a reflection of the higher spatial smoothness

n EEG data ( Coquelet et al., 2020a ). 

.7. State correlation analyses 

The spatial and temporal profiles of each pair of states were com-

ared quantitatively using correlation analyses. The spatial similarity

f two states was assessed using Pearson correlation of their source-

evel brain power maps, and their tendency to co-activate using Spear-

an correlation of their binary activation time series, both computed

ithin each subject. Statistical significance was then established using

ne-sided one-sample parametric t -tests against the null hypothesis that

he group-averaged sample correlation vanishes (reflecting the absence

f topographical resemblance or of temporal co-activation between two

tates) and with the alternative hypothesis that this average is positive

reflecting significant topographical overlap or temporal co-activation).
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Fig. 1. Direct comparison of microstates ( left ) and power envelope HMM states ( right ). The scalp topographies of EEG microstates (four-cluster AAHC of the 200 Hz- 

downsampled sensor maps at time points of local GFP maxima) are shown after normalization with respect to their GFP and alongside their associated source-level 

brain power maps. Different color scales are used to emphasize their difference. The HMM states of source-projected MEG power envelopes are visualized as brain 

power maps as well. Positive (negative) values in the brain power maps indicate increasing (decreasing) power upon state activation. The scale of these brain power 

maps represents partial correlation values which were thresholded statistically, and the lower/upper limits are adapted to the minimum/maximum values. Note that 

the statistical thresholding of brain power maps is slightly tighter for MEG HMM than for EEG microstates due to a difference in the number of temporal degrees of 

freedom. 
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he significance level was set to 𝑝 < 0 . 05 Bonferroni corrected for the

umber of possible state pairs included in the comparison at stake. 

.8. Data and code availability statement 

The MEG/EEG data and analysis code used in this study will be made

vailable upon reasonable request to the corresponding author and after

pproval of institutional authorities (CUB Hôpital Erasme and Université

ibre de Bruxelles). 

. Results 

.1. Direct comparison of EEG microstates and hidden Markov modeling of

EG source power envelopes 

We started with a comparison of the spatial signature and temporal

ynamics disclosed by microstates as classically obtained from EEG sig-

als (AAHC with K = 4 applied to 200 Hz-downsampled sensor maps at

ime points of local GFP maxima, with temporally smoothed microstate

ctivation time courses) on the one hand, and MEG power envelope

MM ( K = 6 states inferred from 40 Hz-downsampled MNE source

ower envelopes) on the other hand. The scalp topographies of the four

icrostates are shown in Fig. 1 (left) alongside the corresponding brain
5 
ower maps that locate significant power increases (positive values)

nd decreases (negative values) upon microstate activation. Microstates

ere sorted and labeled so as to match the denomination typically used

n the literature (see, e.g., ( Michel and Koenig, 2018 )), and scalp to-

ographies were normalized with respect to their GFP. The brain power

aps of the six HMM states are depicted in Fig. 1 (left), in no particu-

ar order. These maps locate significant power increases/decreases upon

MM state activation. 

.1.1. Microstates 

Fig. 1 (left) reproduces the canonical scalp topographies well estab-

ished in the literature ( Michel and Koenig, 2018 ). Each microstate dis-

layed a scalp potential distribution reminiscent of one current dipole

notwithstanding the difficulty of interpreting scalp EEG in this way;

ee, e.g., ( Hari and Puce, 2017 )) approximately located centrally and

riented along the right posterior to left frontal line (microstate A EEG ),

he left posterior to right frontal line (microstates B EEG ), the posterior

o anterior midline (microstate C EEG ), or predominantly vertically (mi-

rostate D EEG ). The corresponding brain power maps in Fig. 1 (left)

llowed to identify cortical areas modulated by microstate activation.

icrostate A EEG was dominated by a broad power decrease peaking at

he left sensorimotor cortex alongside a weaker power increase at the

ight sensorimotor cortex. Microstate B EEG exhibited an opposite pat-
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Fig. 2. Spatial ( left ) and temporal ( right ) correlations between EEG microstates 

(four-cluster AAHC of the 200 Hz-downsampled sensor maps at time points of lo- 

cal GFP maxima) and six-state HMM of source-projected MEG power envelopes. 

Spatial correlations were estimated between brain power maps and temporal 

correlations, between temporally smoothed microstate activation time series 

and HMM state activation time series upsampled to 200 Hz. The correlation 

scales match those of Fig. 5 . Stars denote significant correlations after Bonfer- 

roni correction for the number of state pairs involved in each comparison. 
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ern. Microstate C EEG was dominated by a power increase at the visual

ccipital cortex, alongside a weaker power decrease peaking in the mid-

ine frontal area, and microstate D EEG involved an opposite pattern. All

our brain power maps also disclosed deep cerebellar patterns that may

e related to EEG source reconstruction errors. 

.1.2. Hidden Markov model states 

In accordance with previous studies ( Baker et al., 2014 ;

rookes et al., 2018 ; Coquelet et al., 2020b ), the HMM states identi-

ed MEG power modulations within well-known intrinsic functional

etworks, here the bilateral sensorimotor network (SMN), the visual

ccipital network (VoN), the posterior part of the default-mode network

pDMN; encompassing the precuneus), and a presumed bilateral audi-

ory network (AN). More specifically, state 1 MEG displayed a pattern

f SMN deactivation along with pre-frontal activation. State 2 MEG 

nvolved SMN deactivation alongside pDMN/VoN activation, and state

 MEG showed an opposite pattern, i.e., SMN power activation along

ith pDMN/VoN power deactivation. These two states are thus remi-

iscent of a dynamic competition between the SMN and pDMN/VoN

 Wens et al., 2019 ). States 3 MEG and 4 MEG identified pDMN activation

nd deactivation, respectively. Of note, similar states involving pre-

uneus activity were also identified in previous works ( Coquelet et al.,

020b ; Puttaert et al., 2020 ) and not in others (e.g., ( Baker et al., 2014 ;

rookes et al., 2018 )) due to different choices of source projection

for details, see ( Sjøgård et al., 2019 )). Finally, state 6 MEG involved

N activation alongside deactivation at the precuneus, which is once

gain reminiscent of a dynamic cross-network competition ( Wens et al.,

019 ). 

.1.3. State correlations 

Fig. 2 shows the group-level spatial and temporal correlations be-

ween EEG microstates and MEG power envelope HMM states, the

ormer to quantify the spatial correspondence of their brain power

aps discussed qualitatively above and the latter, their tendency to co-

ctivate. Given the different sampling rates for microstates (200 Hz) and

MM states (40 Hz), temporal correlations required upsampling HMM

tate activation time courses to 200 Hz beforehand. 

A number of significant spatial correlations emerged between three

icrostates and four HMM states ( Fig. 2 , left; significant 𝑅 > 0 . 11 , 𝑡 41 >
 . 2 , 𝑝 < 0 . 0013 Bonferroni corrected for 24 comparisons). Inspection of

he corresponding brain power maps ( Fig. 1 ) revealed that most of these

orrelations merely reflect the overlapping involvement of brain areas

lose to the visual occipital cortex (VoN activation for microstate C EEG 

s. pDMN/VoN activations for HMM states 2 MEG and 3 MEG ; VoN deacti-

ation for microstate D EEG vs. pDMN/VoN deactivations for HMM states
6 
 MEG and 5 MEG ). The correlation between microstate A EEG and HMM

tate 4 MEG appears to be an artefact of MEG/EEG spatial smoothness,

hich led to a large area of power deactivation in both maps. 

On the other hand, temporal correlations were not significant and

ctually exhibited very small effect sizes ( 𝑅 < 0 . 003 , 𝑡 41 < 1 . 58 , 𝑝 > 0 . 06 
ncorrected). This demonstrates that microstates and HMM states barely

o-activate. This result further suggests that the above-mentioned spatial

orrelations do not reflect a state-specific relationship, and points at a

ack of correspondence between EEG microstates and HMM states of

EG source power envelopes. 

.2. Effects of state clustering and recording modality 

We sought to untangle the factors underlying the discrepancy be-

ween EEG microstates and MEG power envelope HMM states by com-

aring specifically the results of microstate and HMM state classification

lgorithms applied on MEG/EEG signals processed with the same filters.

.2.1. Microstates 

For definiteness and comparability with the HMM approach, we fo-

us on sensor-level MEG/EEG data downsampled at 40 Hz. Fig. 3 shows

he spatial signature of the four microstates derived from EEG and MEG

esting-state data (AAHC with K = 4 applied to 40 Hz-downsampled

ensor maps at time points of local GFP maxima). The EEG microstates

 Fig. 3 , left) were sorted and labeled according to Fig. 1 . For MEG ( Fig. 3 ,

ight), microstate labels were arbitrary and no pairing with EEG mi-

rostates was attempted given the lack of spatial comparability between

lectric potentials (EEG) and magnetic field gradients (MEG gradiome-

ers) ( Hari and Puce, 2017 ). In both cases, sensor-level topographical

aps were normalized with respect to their GFP. The spatial distribu-

ion of microstates can be compared across recording modalities only

ased on the source-level brain power maps that identify power in-

reases/decreases upon microstate activation. 

The EEG microstate scalp topographies in Fig. 3 (left) exhibit a high

orrespondence with canonical microstates ( Michel and Koenig, 2018 )

nd those obtained from 200-Hz sampling rate EEG signals ( Fig. 1 , left).

n fact, the lowest spatial correlation of scalp topographies between

hose of Fig. 1 (left) and Fig. 3 (left) was 𝑅 = 0 . 83 (corresponding to

icrostates B EEG ) . This indicates that changing the sampling rate from

00 Hz to 40 Hz has no substantial effect on the spatial signature of mi-

rostates. The main noticeable difference is that power modulations in

he corresponding brain power maps appear narrower at 40 Hz sampling

ate, but this is a mere consequence of the reduction in the number 𝑁 𝑡𝑑𝑜𝑓 

f temporal degrees of freedom that increases the statistical threshold. 

We further examined temporal characteristics of microstates such as

heir mean lifetime to assess the impact of different options regarding

ignal filtering and temporal smoothing of microstate activation time

ourses. Although the spatial signature of these microstates matches the

iterature, it turns out that their temporal statistics differed substantially,

ith mean lifetimes shorter than expected (mean ± SD: 37 ± 2 ms, range:

5–38 ms; see Table 1 , left). These lifetimes were only moderately longer

mean ± SD: 57 ± 6 ms; range: 55–58 ms) when widening the signal fre-

uency band (1–40 Hz; see supplementary material S1) and even shorter

mean ± SD: 14 ± 1 ms, range: 13–15 ms) when clustering EEG topogra-

hies at a higher sampling rate of 200 Hz or when increasing the number

f microstates to K = 6 (see supplementary material S7). The cause of

his discrepancy appeared to be the absence of temporal smoothing on

he microstate activation time series in this implementation, as the in-

erpolation approach allowed recovery of typical lifetimes (mean ± SD:

26 ± 8 ms, range: 121–138 ms; see also supplementary material S4).

ractional occupancies ranged from 19% to 27% ( Table 1 , left) and were

ot substantially affected by temporal smoothing (23–28%). 

A similar analysis applied to MEG gradiometer signals led to mi-

rostates that were dominated by dipolar sensor topographies ( Fig. 3 ,

ight), much like EEG microstates. Microstates A MEG and B MEG were

haracterized by gradiometers peaking respectively above the right and
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Fig. 3. Spatial signature of EEG ( left ) and MEG ( right ) microstates. The scalp topography of EEG microstates (four-cluster AAHC of the 40 Hz-downsampled sensor 

maps at time points of local GFP maxima) is shown on the far left and the corresponding brain power maps on the middle left. The gradiometer topography of MEG 

microstates is shown on the far right and the corresponding brain power maps on the middle right. Scales for sensor-level topographical maps and source-level brain 

power maps are shown using different colors to emphasize their difference. The scales for sensor topographies correspond to electric potential (EEG) or magnetic 

gradient (MEG) distributions of each microstate normalized to their GFP. Positive (negative) values in the brain power maps indicate increasing (decreasing) power 

upon microstate activation. The scale of these brain power maps represents partial correlation values which were thresholded statistically, and the lower/upper limits 

are adapted to the minimum/maximum values. 

Table 1 

Mean lifetimes and fractional occupancies (mean ± SD) associated with each microstate inferred from EEG or MEG topographies at 40 Hz 

sampling rate and without temporal smoothing on microstate activation time series. 

EEG microstates MEG microstates 

Mean lifetimes (ms) Fractional occupancies (%) Mean lifetimes (ms) Fractional occupancies (%) 

A EEG 38 ± 3 26.9 ± 4.4 A MEG 32 ± 1 14.7 ± 1.8 

B EEG 35 ± 2 19.5 ± 3.9 B MEG 37 ± 2 25.1 ± 3.7 

C EEG 37 ± 3 25.8 ± 4.8 C MEG 47 ± 2 41.1 ± 2.9 

D EEG 38 ± 2 27.6 ± 4.3 D MEG 34 ± 2 19.1 ± 2.3 
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he left parietal sensors, which was explained by unilateral power in-

reases at the sensorimotor cortices. These two microstates also involved

n occipital power decrease. Microstates C MEG and D MEG disclosed re-

pectively right and left parieto-occipital gradiometer activity corre-

ponding to unilateral occipital power increases. The brain power map

or microstate D MEG also showed right sensorimotor power decrease.

he neural generators behind MEG microstates thus appeared qualita-

ively different from those of EEG microstates. 

On the other hand, their mean lifetimes (mean ± SD: 37 ± 7 ms,

ange: 32–47 ms; Table 1 , right) tended to be similar ( 𝑡 41 = 1 . 8 , 𝑝 =
 . 08 ). Fractional occupancies appeared less homogenous for MEG (14–

1%; Table 1 , right) than for EEG, with microstate C MEG showing the

ighest fractional occupancy. Analogously to the EEG case, temporal

moothing on the MEG microstate activation time series lengthened life-

imes substantially (mean ± SD: 114 ± 21 ms, range: 94–141 ms; see

upplementary material S4) but did not affect fractional occupancies

17–38%). Widening the frequency band lengthened lifetimes moder-

tely (mean ± SD: 55 ± 4 ms; range : 37 – 102 ms; see supplementary

aterial S1) and increasing the sampling rate further shortened lifetimes

mean ± SD: 11 ± 3 ms, range: 8–16 ms). It is noteworthy that these life-

imes were also not influenced by the MEG system type (unpaired t -tests

etween the group of 15 participants scanned with the Vectorview sys-

em and the group of 27 participants scanned with the Triux system,

𝑡 | < 1 . 95 , 𝑝 > 0 . 24 Bonferroni corrected for K = 4 microstates). 
40 

7 
It is finally interesting to mention that the fraction of global vari-

nce explained by the microstate classification ( Murray et al., 2008 )

as larger for EEG (55%) than MEG (35%), which is reminiscent of the

act that EEG data are spatially smoother, and thus of lower dimension-

lity N , than MEG data (as was explained above). The fraction of global

xplained variance increased slightly (61% in EEG and 37% in MEG)

hen increasing the number of microstates to K = 6 (see supplementary

aterial S7). 

Several minor variations of the microstate clustering approach are

xplored in supplementary materials. These analyses show that the

bove features of microstates are robust against methodological changes

uch as widening the signal frequency band (except for the effect on life-

imes, see supplementary material S1), using group clustering (supple-

entary material S2), or lifting the restriction to GFP local maxima (sup-

lementary material S3). Further, increasing the number of microstates

o K = 6 preserved the four microstates identified for K = 4 and did

ot substantially modify the clustering model, especially for MEG (see

upplementary material S7 for details). 

.2.2. Hidden Markov model states 

For comparability with the microstate clustering based on sensor sig-

als, we focus on a version of the HMM analysis based on the power

nvelopes of resting-state MEG/EEG sensor data rather than source-

rojected data. Fig. 4 depicts the spatial signature of the resulting six
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Fig. 4. Spatial signature of EEG ( left ) and MEG ( right ) sensor-level power envelope HMM states. Both sensor and brain power maps locate power increases (positive 

values) and decreases (negative values) upon state activation. The scale of these power maps represents partial correlation values which were thresholded statistically, 

and the lower/upper scales are adapted to the minimum/maximum values. States were ordered and labelled based on a visual pairing of EEG and MEG brain power 

maps. 
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MM states, which were sorted and labeled in order to pair EEG states

 Fig. 4 , left) and MEG states ( Fig. 4 , right) with the best apparent spa-

ial correspondence in their brain power maps. An important difference

ith Fig. 3 is that the sensor maps in Fig. 4 do not disclose electric

otential or magnetic field gradient topographies (as was the case in

ig. 3 ), but rather sensor-level power increases or decreases upon state

ctivation, in complete analogy with the brain power maps that locate

ource-level power modulations. Both sensor and brain power maps are

irectly comparable for MEG because planar gradiometers are sensi-

ive to source activity just beneath them, but this comparison is less

traightforward for EEG given the source sensitivity profile of electrodes

 Hari and Puce, 2017 ). For this reason, we focus in the following on a

escription of their brain power maps. 

We start with the MEG states ( Fig. 4 , right). Comparison with

ig. 1 (left) shows that MEG power envelope HMM inference based on

ensor signals and source signals led to brain power maps that are largely

imilar. The only two qualitative differences were that power activation

as located in the SMN rather than in prefrontal areas for state 1 MEG ,

nd that the SMN was activated in isolation rather than in competition

ith the pDMN/VoN for state 5 MEG . We conclude that there is a good

patial correspondence between power envelope HMM states inferred

rom sensor and source-projected MEG signals. 

State mean lifetimes obtained with this sensor-level HMM (mean

 SD: 151 ± 31 ms; range: 128–211 ms; see Table 2 , right) were

ignificantly shorter than with the source-level HMM ( 𝑡 41 = 5 . 1 , 𝑝 =
 . 7 × 10 −6 ), but still significantly longer than the mean lifetime of non-

moothed MEG microstates, i.e., without temporal smoothing of mi-

rostate activation time series ( 𝑡 41 = 31 . 6 , 𝑝 = 0 ). Fractional occupan-

ies ranged between 7% and 23% ( Table 2 , right). Similarly to the
8 
EG microstates, the lifetime of MEG power envelope HMM states

as not significantly impacted by the type of MEG recording system

 |𝑡 40 | ≤ 2 . 39 , 𝑝 ≥ 0 . 12 Bonferroni corrected for K = 6 states). 

The power envelope HMM states inferred from scalp EEG involved

ower modulations within intrinsic networks similar to the MEG states,

lthough not with the same degree of bilaterality ( Fig. 4 , left). State

 EEG was characterized by the activation of the right part of the SMN

longside a power decrease in the left precuneus, and as such may be

iewed as a unilateral version of MEG state 1 MEG . This state was the

nly EEG state exhibiting both power increases and decreases. The VoN

ctivation state 2 EEG was comparable to state 2 MEG but lacked SMN de-

ctivation, and the pDMN states 3 EEG and 4 EEG closely matched states

 MEG and 4 MEG . State 5 EEG was characterized by a power increase in

he left part of the SMN, so it appeared as a unilateral version of state

 MEG . Finally, state 6 EEG consisted in a right-hemispheric posterior pari-

tal power decrease, which was thus qualitatively different from the

N/precuneus state 6 MEG . The mean lifetime of these states (mean ±
D: 165 ± 40 ms, range: 136–204 ms; see Table 2 , left) was significantly

onger than the non-smoothed EEG microstates ( 𝑡 41 = 31 . 46 , 𝑝 = 0 ) and

he MEG HMM states ( 𝑡 41 = 4 . 83 , 𝑝 = 1 . 9 × 10 −5 ). Fractional occupan-

ies were between 8% and 24%, which is also similar to those observed

sing MEG ( Table 2 ). 

It is noteworthy that increasing the dimensionality of the EEG data

nputted to the HMM algorithm to the same dimension used in MEG, led

o qualitatively similar states, although with a higher degree of bilater-

lity for some states (supplementary material S5). Reducing the number

f states to four led to HMM states closely related to states 2 MEG –5 MEG 

or MEG and to states 1 EEG , 3 EEG –5 EEG for EEG (supplementary material

6). 
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Table 2 

Mean lifetimes and fractional occupancies (mean ± SD) associated with each of the six HMM states inferred from EEG or MEG 

power envelope signals. 

EEG HMM MEG HMM 

Mean lifetimes (ms) Fractional occupancies (%) Mean lifetimes (ms) Fractional occupancies (%) 

State 1 EEG 136 ± 19 17 ± 3.7 State 1 MEG 138 ± 34 22.2 ± 10.9 

State 2 EEG 145 ± 39 13.3 ± 4.5 State 2 MEG 144 ± 41 16.4 ± 8.2 

State 3 EEG 204 ± 70 8.4 ± 1.4 State 3 MEG 153 ± 52 7.5 ± 3.2 

State 4 EEG 226 ± 109 22.4 ± 9 State 4 MEG 211 ± 98 23.1 ± 10.6 

State 5 EEG 137 ± 20 14.6 ± 4.7 State 5 MEG 128 ± 40 12.5 ± 7.7 

State 6 EEG 141 ± 23 24.3 ± 6.2 State 6 MEG 130 ± 54 18.3 ± 15.4 

Fig. 5. Spatial ( top ) and temporal ( bottom ) state correlations. Each matrix shows the group-level correlation values comparing: EEG microstates vs. MEG microstates 

( first column ; corresponding to four-cluster AAHC of the 40 Hz-downsampled sensor maps at time points of local GFP maxima), EEG HMM states vs. MEG HMM 

states ( second column ; six-state HMM of sensor-level power envelopes), EEG HMM states vs. EEG microstates ( third column ), and MEG HMM states vs. MEG 

microstates ( fourth column ). Temporal correlations were obtained from the raw (non-smoothed) microstate activation time series. The same correlation scale is 

used across the four comparisons. Stars denote significant correlations after Bonferroni correction for the number of state pairs involved in each comparison. 
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.2.3. State correlations 

The spatial correspondence among different states was assessed sta-

istically using spatial correlations of brain power maps ( Fig. 5 , top).

rain power maps were used rather than sensor topographies given their

ack of comparability across recording modalities. The degree of state

o-activations was estimated in terms of temporal correlations of state

ctivation time courses ( Fig. 5 , bottom). We detail results obtained us-

ng non-smoothed microstate activation time series, but it is noteworthy

hat temporal smoothing yielded very similar results (see supplementary

aterial S4 for details). The two first columns of Fig. 5 assess the effect of

ecording modality (MEG vs. EEG) on microstates ( Fig. 5 , first column)

nd HMM states ( Fig. 5 , second column) and the two last columns, the

ffect of state clustering algorithm (microstate vs. HMM) for both EEG

 Fig. 5 , third column) and MEG ( Fig. 5 , fourth column). It is worth men-

ioning that both spatial and temporal correlations between MEG mi-

rostates and MEG power envelope HMM states were not significantly

ffected by the MEG system type ( |𝑡 40 | ≤ 2 . 66 , 𝑝 ≥ 0 . 53 Bonferroni cor-

ected for two types of correlation matrices and 24 entries each). 

The comparison of EEG vs. MEG microstates confirmed the absence

f a clear relationship. Some cross-modal pairs did disclose significant

patial correlations ( Fig. 5 , top of left column; significant 𝑅 > 0 . 09 , 𝑡 41 >
 . 21 , 𝑝 < 0 . 021 Bonferroni corrected for 16 comparisons). They could

e explained by a gross overlap of their power maps presumably due to
9 
heir intrinsic blurriness, i.e., EEG microstates A EEG and C EEG tended to

xhibit posterior power increases and antero-central power decreases as

id the MEG microstates C MEG and D MEG , and reversely for microstates

 EEG , A MEG , and B MEG ( Fig. 3 ). More importantly, the corresponding

emporal correlations were not significant with very small effect sizes

 Fig. 5 , bottom of left column; 𝑅 < 0 . 002 , 𝑡 41 < 1 . 14 , 𝑝 > 0 . 13 uncor-

ected), indicating that EEG and MEG microstates scarcely co-activate

t all. 

On the other hand, Fig. 5 (second column) revealed a number of sig-

ificant correlations between MEG and EEG HMM states, both spatially

significant 𝑅 > 0 . 15 , 𝑡 41 > 3 . 85 , 𝑝 < 7 . 2 × 10 −3 Bonferroni corrected for

6 comparisons) and temporally (significant 𝑅 > 0 . 025 , 𝑡 41 > 4 . 02 , 𝑝 <
 . 2 × 10 −3 corrected), and with higher effect sizes and smaller p values

han microstates. The qualitative pairing of MEG and EEG states based

n their brain power maps ( Fig. 4 ) was reflected in the significance along

he diagonal of the correlation matrix ( Fig. 5 , top of second column),

ith particularly high effect size and low p value for the pDMN deac-

ivation state 4 MEG /4 EEG ( 𝑡 41 = 32 . 73 , 𝑝 = 0 ). The two exceptions were

tates 1 MEG /1 EEG (where the correlation did not reach significance pre-

umably due to the sign reversal above the left sensorimotor cortex) and

tates 6 MEG and 6 EEG . Analogously to the case of microstates, and given

he qualitative pairing of MEG and EEG states ( Fig. 4 ), off-diagonal sig-

ificance may be a reflection of spatial blurriness. Temporal correlations
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ollowed a similar pattern ( Fig. 5 , bottom of second column), with the

DMN states 3 MEG /3 EEG and 4 MEG /4 EEG standing out regarding their ef-

ect size and p value ( 𝑡 41 > 14 . 11 , 𝑝 = 0 ). Globally, the HMM inference

n power envelopes was thus able to identify common states across the

wo recording modalities. 

We turn now to the comparison of microstates and HMM states

ithin each modality. Spatial correlations appeared significant in a

umber of microstate/HMM state pairs (EEG: Fig. 5 , top of third col-

mn, significant 𝑅 > 0 . 16 , 𝑡 41 > 3 . 2 , 𝑝 < 0 . 031 Bonferroni corrected

or 24 comparisons; MEG: Fig. 5 , top of fourth column, significant

 > 0 . 15 , 𝑡 41 > 4 . 02 , 𝑝 < 2 . 29 × 10 −3 corrected). For EEG, these correla-

ions mainly reflect spatial blurriness since microstate and HMM states

ower maps peaked at distinct locations, except for similar power in-

reases at the visual cortices (microstates B EEG , C EEG and HMM state

 EEG , see Figs. 3 and 4 , left). This is important since spatial extent is

ot interpretable in EEG/MEG source reconstructed maps, but peak lo-

alization is ( Bourguignon et al., 2018 ). For example, the strongest spa-

ial correlation emerged between HMM state 1 EEG and microstate A EEG ,

owever the former exhibits a power decrease located at the left parietal

ortex ( Fig. 4 ) and the latter, a power decrease at the midline posterior

rontal area ( Fig. 3 ). This correlation is thus driven by the large blurr

f negative values in both maps. For MEG, Figs. 4 and 5 (right) indi-

ated some degree of co-localization in microstate and HMM state power

odulation within the SMN (activation for microstates A MEG , B MEG and

MM states 1 MEG , 5 MEG ; deactivation for microstate D MEG and HMM

tate 2 MEG ) and VoN (activation for microstates C MEG , D MEG and HMM

tates 2 MEG , 3 MEG ). Temporal correlations followed once again a some-

hat similar pattern of significance (EEG: Fig. 5 , bottom of third col-

mn, significant 𝑅 > 0 . 01 , 𝑡 41 > 3 . 19 , 𝑝 < 0 . 034 corrected; MEG: Fig. 5 ,

ottom of fourth column, significant 𝑅 > 0 . 007 , 𝑡 41 > 3 . 52 , 𝑝 < 0 . 013 
orrected). However, the raw value of these significant correlations re-

ained low (EEG: 𝑅 < 0 . 09 , MEG: 𝑅 < 0 . 04 ), so temporal co-activations

ere marginal. This could merely reflect the fact that both clustering

ethods were applied on the same signals. 

Importantly, equalizing the number of HMM states and of mi-

rostates (by decreasing the number of HMM states to K = 4, see sup-

lementary material S6; or by increasing the number of microstates to

 = 6, see supplementary material S7) did not alter our main observa-

ions on the lack of temporal co-activation. In fact, temporal correlations

etween microstates and HMM states remained marginal. Our results

hus appear robust against changes in the number of microstates and

MM states at stake. 

. Discussion 

This study used simultaneous MEG/EEG recordings at rest to com-

are two notions of discrete metastable brain states, i.e., microstates

nd power envelope HMM states. Direct comparison of classical imple-

entations of EEG microstate analysis and source-projected MEG power

nvelope HMM revealed a poor correspondence between the two types

f states. Exploring further the roots of this discrepancy, we found that

icrostates were not reproducible across the two recording modalities,

.e., microstates inferred from MEG signals did not correspond to the

anonical EEG microstates. On the other hand, MEG and EEG HMM

tates identified transient activations of similar intrinsic functional net-

orks, with a related, but marginal, temporal correspondence. We also

ound no clear evidence that microstates and HMM states share common

eural dynamics, as spatio-temporal correlations appeared sensitive to

iases such as the blurriness of source reconstructions. In fact, contrary

o our expectation based on the literature ( Baker et al., 2014 ; Michel and

oenig, 2018 ), all microstates were substantially less stable in time than

he HMM states (at least in the absence of ad-hoc temporal smoothing

f microstate activation). That said, the MEG version of microstates in-

olved power activity within the same networks as HMM states, but was

estricted to isolated nodes of these networks, and with a poor temporal

orrespondence. 
10 
.1. Microstates and power envelope HMM states probe different aspects of

lectrophysiological power bursts 

The primary result of this paper is that microstates and power en-

elope HMM states differ substantially, both in the localization of the

rain areas they (de)activate and in their temporal stability. These two

tate clustering algorithms share the common goal of identifying pat-

erns of high-power electrophysiological activity that repeat at rest,

o this raises the questions of what methodological features lead to

his discrepancy, and what aspect of brain functional dynamics they

re preferentially sensitive to. The fundamental distinction discussed

ere is that (i) microstates focus on high-power activity by biasing

he topographical clustering to time points of locally maximum GFP

 Michel and Koenig, 2018 ), whereas (ii) the power envelope HMM en-

odes states based on the spatial patterns of continuous-time oscillatory

ower ( Baker et al., 2014 ). 

The GFP maximization for microstate topographies is fully built-in

he AAHC algorithm ( Murray et al., 2008 ). In fact, the convergence of

he AAHC with and without explicit restriction to GFP peaks indicates

hat microstates are mostly sensitive to time points of locally maximal

FP. This concurs with the reportedly high levels of EEG topograph-

cal dissimilarities in between GFP peaks ( Skrandies, 1990 ) and with

he difficulty of discrete microstates to model continuous EEG record-

ngs ( Mishra et al., 2020 ). Accordingly, in our data, the duration of mi-

rostate activation appeared very short, and was actually only slightly

bove the minimum timescale allowed by signal processing (at least in

he absence of temporal smoothing). Reaching such small timescales de-

pite the fact that signals were effectively low-pass filtered, was due to

he fact that the moving-window averaging technique for downsampling

mposes a soft (rather than a hard) filter, allowing higher frequencies to

till contribute. Classical lifetimes of 120 ms appear to require an ad-

oc temporal interpolation procedure that does not reflect the raw GFP

eak events underlying microstate clustering per se , nor the high topo-

raphical dissimilarities in between these events ( Skrandies, 1990 ). This

emporally-smoothed microstate dynamics exhibits by design longer-

ived activation events, but these are not necessarily representative of

he actual MEG/EEG signal events that underlie the very construction of

icrostates (i.e., repeating sensor topographies). These events captured

y the raw, non-smoothed microstate time series revealed shorter-lived

icrostate activations with a mean lifetime of 37 ms. This is actually

nly 150% the 25 ms timestep of our signals sampled at 40 Hz, and the

act that it decreased by merely increasing the sampling rate indicates

hat microstate events are actually even sharper. Extrapolating the ob-

ervation that raw microstate lifetimes are 150% the timestep would

ave led us to expect a mean lifetime of about 7 ms at 200 Hz sam-

ling rate (corresponding to a 5 ms timestep), but our data proved it

wice longer. This is presumably a sign that microstates do reflect neu-

al events, since neurophysiological activity as recorded by MEG/EEG

hould typically not occur over timescales shorter than the 10 ms du-

ation of postsynaptic potentials ( Baillet, 2017 ; Buzsáki et al., 2012 ),

hereas pure noise events can be as short as the timestep. Microstates

hus appear to probe quasi-instantaneous electrophysiological events. 

Further understanding what these microstate events represent re-

uires careful consideration of the notion of GFP. Instantaneous GFP

spatial variance of time-dependent sensor topographies) is not trivially

ynonymous with instantaneous global power (magnitude squared sig-

al summed over all sensors). For EEG, the two concepts coincide only

hen using the average reference (where the potential summed over

ll electrodes is constrained to vanish), which approaches the ideal-

zed reference to infinity because asymptotically vanishing electric po-

entials generated by current dipoles inside the brain integrate to zero

ver the scalp ( Bertrand et al., 1985 ), at least to some approximation

 Yao, 2017 ). From a physical perspective, GFP maximization of EEG

icrostates is thus theoretically equivalent to global power maximiza-

ion. In practice though, the GFP formulation is preferred because it

s strictly independent of the choice of reference ( Murray et al., 2008 ;
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krandies, 1990 ). No such subtlety arises with MEG, where GFP and

lobal power coincide because neuromagnetic field patterns generated

y dipolar brain sources also sum up approximately to zero over whole-

ead-covering sensor arrays (meaning in a sense that the “average ref-

rence ” holds automatically for MEG). Thus, the quasi-instantaneous

icrostate events correspond to moments of high global power. Given

hat spontaneous electrophysiological activity exhibits power bursts

 Hari and Salmelin, 1997 ; van Ede et al., 2018 ), microstates may be

xpected to probe short-time events of maximum power within power

ursts. More specifically, since the EEG/MEG spectrum is dominated

y the alpha band ( Hari and Puce, 2017 ), microstates are bound to

e driven by, and phase-locked to, moments of high-amplitude alpha

hythms within alpha bursts ( von Wegner et al., 2021 ). 

In any case, by focusing on quasi-instantaneous and temporally dis-

rete electrophysiological events of high power, microstates provide at

est a partial characterization of power bursts. Their full exploration re-

uires instead to focus on the transitioning between low and high power.

y running over the whole power envelope signal, the HMM is more

ensitive to such transitions and may thus be better suited to fully cap-

ure bursting activity ( van Ede et al., 2018 ). The Markovian character of

he HMM (i.e., the probability of state activation at the next time step

epends on what state is currently active; see, e.g., ( Rabiner, 1989 ))

lso enforces a degree of deterministic causality that further helps de-

ecting transient periods of sustained power burst, rather than quasi-

nstantaneous events of high power. Accordingly, bursts generated by

rain rhythms typically last for a few hundreds of milliseconds ( Hari and

almelin, 1997 ), which is consistent with the typical power envelope

MM mean lifetime of 100–200 ms. The fact that these lifetimes are well

bove the minimum timestep allowed in our power envelope signals (in

ur case, 25 ms) further shows that they provide a reliable estimate of

he duration of the underlying power bursts. 

.2. Microstates identify synchronized neural events whereas power 

nvelope HMM states encompass neural activity across intrinsic networks 

Besides temporal stability, microstates and power envelope HMM

tates also differed in their spatial distribution. Microstates exhibited

ipolar scalp topography and power modulations at one isolated re-

ion along with a few other subdominant regions. On the other hand,

he HMM states disclosed distributed (de)activations of functional net-

orks that are reminiscent of classical resting-state networks as re-

ealed by intrinsic functional connectivity analysis ( Baker et al., 2014 ).

he first methodological reason to consider to explain this difference is

hat microstate clustering relies on topographical similarity ( Michel and

oenig, 2018 ) whereas the HMM encodes the whole covariance struc-

ure ( Baker et al., 2014 ; Woolrich et al., 2013 ). In theory, HMM states

re thus driven by a mixture of power topography and intrinsic func-

ional connectivity. This being said, the contribution of functional con-

ectivity (more specifically, the cross-covariance feature in the HMM)

ay not dominate HMM state inference in practice ( Vidaurre et al.,

018 ). In fact, functional networks can also be identified successfully

sing classification schemes that do not encode explicitly for envelope

ross-covariance, such as the independent component analysis of power

nvelopes (which is, however, generally applied at slower timescales

round 1 s; see, e.g., ( Brookes et al., 2011 ; Wens et al., 2014 )). 

The involvement of functional networks in HMM states and the lack

hereof in microstates might alternatively be rooted in their difference in

emporal stability discussed at length above. The physiological process

f binding distant neural populations into a functional network entails a

ierarchy of timescales, from hundreds of milliseconds accessible to the

MM for certain networks (i.e., SMN, DMN and visual network) to sev-

ral seconds for others (e.g., the fronto-parietal network) ( Baker et al.,

014 ; Vidaurre et al., 2018 ). With lifetimes below these timescales

without temporal smoothing) and associated with quasi-instantaneous

EG/EEG events, microstate clustering may thus be mostly sensitive to

ighly transient neural activity taking place locally without enough time
11 
o establish network-level coordination. A somewhat related hypothe-

is was put forth when comparing EEG microstates to fMRI networks

 Britz et al., 2010 ; Musso et al., 2010 ; Yuan et al., 2012 ). This is also in

ine with our observation that MEG microstates appeared as unilateral

ersions of some HMM states. For example, correlation results suggested

hat HMM state 1 MEG may be viewed as a combination of microstates

 MEG and B MEG . 

Closely related to this timescale argument, the spatial locality of mi-

rostates may also be interpreted in light of their being phase locked to

lpha rhythms ( von Wegner et al., 2021 ). A putative “network-level ” mi-

rostate involving distinct brain regions would then imply the existence

f a zero-phase lag synchronization among them, and as such it would

resumably not reflect neurophysiological activity. This is because zero-

ag synchronization among separated brain areas evidences instanta-

eous interactions, which are generally thought to be non-physiological

 Schoffelen and Gross, 2009 ; Wens, 2015 ). That said, the notion of mi-

rostate network was put forth by ( Custo et al., 2017 ), who identified

rain generators of microstate dynamics mostly in the anterior and pos-

erior midline cortices. The existence of such a (nearly) zero-lag synchro-

ization between these two major regions of the default-mode network

s closely related to the identification via MEG functional connectivity

f spontaneous linear correlations within that network ( Sjøgård et al.,

019 ). It is however unclear why our microstate brain power maps

ailed at revealing a similar pattern. One possible reason may be that

icrostate clustering is sensitive to phase relationships, which are thus

eflected in the maps shown in ( Custo et al., 2017 ) and not in our brain

ower maps as power envelopes ignore phase dynamics. One way to

urther investigate the relationship between microstates and synchro-

ization would then be to compare them to another implementation

f the HMM ( Vidaurre et al., 2018 ) that is not applied on MEG/EEG

ower envelopes but on the MEG/EEG signals with time-delay embed-

ing ( Kantz and Schreiber, 2003 ; Takens, 1981 ), which gives access

o classification features closely related to phase synchrony (Stam and

an Dijk, 2002). Compared to the power envelope HMM, this time-

mbedded HMM exhibits shorter lifetimes (50–100 ms), richer spec-

ral details, and network-level phase locking ( Vidaurre et al., 2018 ).

iven that these lifetimes are still well above the smallest accessible

imestep (4 ms at the 250 Hz sampling rate used in ( Vidaurre et al.,

018 )) and thus cannot be deemed quasi-instantaneous, and that this

etwork synchrony occurred at non-zero phase lag, we surmise that

he time-embedded HMM provides yet another state description, more

table than microstates but more transient than power envelope HMM

tates. Still, it would be useful to perform such comparisons explicitly

n the future. 

In sum, the above considerations suggest that microstates and HMM

tates are sensitive to neural events occurring at different timescales,

ighly transient for the former, more stable and distributed over intrin-

ic functional networks for the latter. 

.3. Cross-modal comparisons reveal poor correspondence of state 

ctivations 

The conclusion that microstate classification depends on highly tran-

ient events is also key to understanding the lack of qualitative corre-

pondence between EEG and MEG microstates. This discordance con-

rasted with the HMM, which disclosed good spatial similarity across

he two recording modalities. The pDMN state pairs 3 MEG /3 EEG and

 MEG /4 EEG exhibited a substantial overlap of their activation periods,

ut the others lacked such strong temporal correspondence. The pDMN

tates were also the most stable ( Coquelet et al., 2020b ; Puttaert et al.,

020 ), suggesting that state co-occurrence rate increases with state

tability. The difficulty of short-lived states to co-activate explains in

articular the poor cross-modal temporal correlation for the quasi-

nstantaneous microstates. This observation is also in line with a pre-

ious comparison of MEG and EEG intrinsic functional connectomes,

hich were spatially similar but with rather discordant temporal dy-
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amics ( Coquelet et al., 2020a ). The hypothesis raised to explain this re-

ult was that MEG and EEG are sensitive to different components of tran-

ient functional integration processes, but that these differences smooth

ut after minute-scale time averaging. Our results suggest that this

moothing effect extends to the finer timescales accessible to MEG/EEG

tate analyses. In fact, it fits well with the observation discussed above

hat some relatively stable, network-level HMM states break into highly

ransient, spatially local MEG microstates. 

The spatial discordance between EEG and MEG microstates can then

e understood on this basis. A sensitivity of EEG and MEG to differ-

nt transient neural events (as hypothesized above) would lead to dif-

erent GFP maxima and thus, to microstates inferred from totally dif-

erent time points. More generally, the concept of GFP maxima turns

ut to be modality specific since it depends on the type of sensors

sed (here, EEG electrodes vs. MEG gradiometers). We focused in this

aper on MEG microstates derived from gradiometers, but it is note-

orthy that microstates based on magnetometers also poorly correlate

ith gradiometric microstates (data not shown). We conclude that mi-

rostates obtained with different electrophysiological modalities probe

eural events occurring at different times and are thus not directly com-

arable. As emphasized above, HMM state inference does not depend on

 modality-specific selection of time periods, which explains their better

ross-modal concordance. 

Other potential sources of differences are the distinct sensitivity

rofiles of EEG and MEG, especially to purely radial dipolar sources

 Hari and Puce, 2017 ), and the higher regional variability of sensor-

rain distance with MEG arrays than with scalp EEG ( Coquelet et al.,

020a ). The latter impacts substantially MEG functional connectiv-

ty estimation in frontal regions from which MEG sensors are farthest

 Coquelet et al., 2020a ), but interestingly no such issue was clearly ob-

ervable in brain power maps of sub-second HMM states. Still, these

ifferences might partially account for their poor temporal correspon-

ence. 

.4. Power envelope HMM states can be inferred directly from sensor-level 

ignals 

One side result noteworthy of mention is that the HMM of sensor

ower signals leads to network-level states similar to the HMM of recon-

tructed source power considered in the seminal paper of ( Baker et al.,

014 ) and subsequent MEG studies ( Brookes et al., 2018 ; Coquelet et al.,

020b ; Puttaert et al., 2020 ; Quinn et al., 2018 ; Sitnikova et al., 2018 ;

an Schependom et al., 2019 ; Vidaurre et al., 2018 ). The HMM of

lectrophysiological signals can thus be performed in a computation-

lly less cumbersome way than previously done, for similar results.

his might widen the perspectives of applications of the HMM-based

nalyses of MEG/EEG data, particularly when studying infants or pa-

ients where MRI acquisition might not be possible. Methodologically,

his also frees the HMM state inference per se from ambiguities related

o the choice of forward model (for further discussion of this aspect,

ee, e.g., ( Coquelet et al., 2020a )) and source reconstruction algorithm.

nly the imaging of state brain power maps would depend on these

hoices. This is particularly interesting with regard to the contribu-

ion of precuneus activity to HMM state dynamics, as it was identified

rom MEG source power HMM when using minimum norm estimation

 Coquelet et al., 2020b ; Puttaert et al., 2020 ) but not when using a

eamformer ( Baker et al., 2014 ; Brookes et al., 2018 ; Vidaurre et al.,

018 ) due to a suppression effect ( Sjøgård et al., 2019 ). The states 1 MEG ,

 MEG /3 EEG and 4 MEG /4 EEG obtained in this study show that sensor-level

MM is sensitive to precuneus activity, independently of source recon-

truction biases. This being said, it would be interesting in the future

o extend our comparative study to other implementations of the power

nvelope HMM, e.g., restricted to parcellated source reconstruction and

ith multivariate signal leakage correction ( Brookes et al., 2018 ; Col-

lough et al., 2015; Sitnikova et al., 2018 ), and examine whether such

rocessing steps improve the robustness of HMM state inference. 
12 
One last aspect to emphasize in the case of EEG is that, strictly speak-

ng, the power envelope HMM is ill-defined because it relies on the con-

ept of scalp EEG signal power, which depends on the choice of ref-

rence. As discussed above, we focused here on the average reference,

hich approximates the physically ideal reference at infinity and thus

resumably mitigates this issue in practice. This is in line with the fact

hat source-projected brain power maps of sensor-level HMM states cor-

espond to maps of source-level HMM states (data not shown), the latter

eing based on current dipole estimates that are independent of the ref-

rence (of course, the choice of recording reference does matter, as it

mpacts measurement quality ( Hari and Puce, 2017 )). Still, sensor-level

MM state inference may be improved by using, e.g., the reference elec-

rode standardization technique that aims at simulating a virtual refer-

nce at infinity (Yao, 2001). 

onclusion 

This study revealed that microstates and HMM states reflect neu-

al dynamical events probing power bursts at different timescales. The

uasi-instantaneity of microstates explains their specificity to the elec-

rophysiological recording modality at hand. For EEG, microstate anal-

sis and the power envelope HMM appear to bring complementary in-

ormation about transient neural dynamics, so we suggest that the two

pproaches should be considered together. On the other hand, the added

alue of MEG microstates may be more limited as they merely identify a

hort-time splitting of network-level HMM states. Both approaches allow

o model fast, spontaneous bursts of electrophysiological activity occur-

ing at sub-second timescales. As such, they represent important tools

o further explore the dynamical functional architecture of the human

rain. 
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