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Gene Expression Predicts 
Histological Severity and Reveals 
Distinct Molecular Profiles of 
Nonalcoholic Fatty Liver Disease
Stephen A. Hoang1, Abdul Oseini2, Ryan E. Feaver1, Banumathi K. Cole1, Amon Asgharpour3, 
Robert Vincent2, Mohammad Siddiqui   2, Mark J. Lawson1, Nathan C. Day   1, 
Justin M. Taylor   1, Brian R. Wamhoff1, Faridoddin Mirshahi2, Melissa J. Contos2, 
Michael Idowu2 & Arun J. Sanyal2

The heterogeneity of biological processes driving the severity of nonalcoholic fatty liver disease 
(NAFLD) as reflected in the transcriptome and the relationship between the pathways involved are not 
well established. Well-defined associations between gene expression profiles and disease progression 
would benefit efforts to develop novel therapies and to understand disease heterogeneity. We analyzed 
hepatic gene expression in controls and a cohort with the full histological spectrum of NAFLD. Protein-
protein interaction and gene set variation analysis revealed distinct sets of coordinately regulated genes 
and pathways whose expression progressively change over the course of the disease. The progressive 
nature of these changes enabled us to develop a framework for calculating a disease progression score 
for individual genes. We show that, in aggregate, these scores correlate strongly with histological 
measures of disease progression and can thus themselves serve as a proxy for severity. Furthermore, 
we demonstrate that the expression levels of a small number of genes (~20) can be used to infer disease 
severity. Finally, we show that patient subgroups can be distinguished by the relative distribution of 
gene-level scores in specific gene sets. While future work is required to identify the specific disease 
characteristics that correspond to patient clusters identified on this basis, this work provides a general 
framework for the use of high-content molecular profiling to identify NAFLD patient subgroups.

Nonalcoholic fatty liver disease (NAFLD) affects a quarter of the adult population and is a leading cause of 
liver-related morbidity and mortality1. This condition is defined mainly by its histology and consists of two prin-
cipal phenotypes which include a fatty liver and steatohepatitis2. Nonalcoholic steatohepatitis (NASH) is char-
acterized by steatosis, inflammation and hepatocellular ballooning which are predominantly seen in zone III of 
hepatic lobules3. NASH has a greater likelihood of progression to cirrhosis than nonalcoholic fatty liver (NAFL)4. 
Current disease models predict a two- to three-fold increase in the population burden of cirrhosis and end stage 
liver disease due to NASH by 20305,6.

The development of knowledge in NAFLD has been anchored to the histological assessment of the disease. 
Two principal concepts in this assessment are disease activity and fibrosis stage. Disease activity represents the 
factors driving the fibrogenic remodeling of the liver towards cirrhosis and is captured by the NAFLD activity 
score (NAS), which is the sum of the histological severity scores for steatosis, lobular inflammation, and hepa-
tocellular ballooning3. On the other hand, fibrosis stage reflects the actual progression towards cirrhosis and is 
related to clinical outcomes7. A substantial body of literature has identified a multitude of metabolic, cell stress, 
death, inflammatory and fibrogenic pathways that underlie these histological manifestations of disease activity 
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and stage8. These have provided numerous targets for therapeutics which have been translated into over 200 active 
clinical trials for NASH (www.clinicaltrials.gov).

There are unfortunately no drugs yet approved for NASH. Several agents have failed altogether and even the 
drugs that are now in pivotal trials led to resolution of NASH or regression of fibrosis in less than half the indi-
viduals who received these agents in phase 2B trials9–12. The reasons for this suboptimal performance are not fully 
understood. This gap in knowledge is a barrier towards development of more successful therapeutic approaches 
including the ability to identify which patient may respond best to which therapy, which we begin to address 
herein.

A potential explanation for the limited clinical success of therapeutics is that the biological processes driving 
the disease phenotype vary with disease severity, even within the relatively limited range of histological severity 
included in clinical trials. It is also possible that within diseased populations with similar histological patterns 
and severity of disease, there may be distinct subpopulations with different disease drivers, as seen with several 
cancers13. Studies of the human transcriptome in NASH have not investigated these possibilities although specific 
pathways and genes have been linked to disease severity14–18. To address this gap, we assessed gene expression 
profiles along the histological spectrum of NAFLD and used them to develop and validate a gene-level score that 
reflects histological severity. This scoring methodology enabled us to identify patient subpopulations on the basis 
of their molecular phenotypes. This demonstration is a necessary first step in establishing a foundation for future 
development of precision medicine approaches for the treatment of NASH.

Results
Identification of gene networks that are regulated across disease activity and stage.  We first 
interrogated the gene expression profile in liver tissue from patients with NAFLD and age- and weight-matched 
controls. It is important to note that these biopsies were obtained from individuals who were not in a drug treat-
ment trial and were not on any specific NASH drug therapy. The severity of histological features were scored 
independently by a hepato-pathologist using the NASH CRN scoring system3. Supplemental Table 1 summarizes 
histological activity and stage of the samples in this study with their associated clinical profiles and demonstrate 
that the cohort had the full histological spectrum of the disease. We applied ordinal regression to identify genes 
whose expression profiles vary with the severity of the NAFLD activity score (NAS) or fibrosis stage. With a false 
discovery rate (FDR) threshold of 1%, we observed 2970 differentially expressed genes with respect to disease 
activity and 1656 genes related to fibrosis stage (Supplementary File 1). The NAS is a composite score that aggre-
gates independent assessments of lobular inflammation, steatosis, and cytological ballooning. Supplementary 
Fig. 1 shows the distribution of NAS components across the samples. However, very few differentially expressed 
genes could be associated uniquely with any one of the components, particularly at more stringent FDR thresh-
olds (Supplementary Fig. 2). We also found no evidence of differential expression with respect to assessments of 
portal inflammation (all FDR-adjusted p-values > 0.9). For these reasons, subsequent analyses focus on the full 
composite NAS score.

The gene expression data were integrated with the STRING protein-protein interaction (PPI) network to 
identify the portion of the network regulated over the spectrum of the disease19. This procedure generated a PPI 
network where the edges connecting coordinately expressed genes were preserved. The resulting subnetwork, 
representing the differentially expressed portion of the transcriptome, was further analyzed to identify “com-
munities” and “hubs”. The former are densely connected sets of protein-encoding genes and tend to correspond 
to biological pathways, while hubs are central to the structure of the network and often represent key regulatory 
proteins. The resultant networks were differentially regulated with respect to the NAS and fibrosis stage, and are 
shown in Fig. 1A,B.

Analysis of the NAS PPI network revealed multiple communities, each containing genes that were either 
up- or down-regulated with respect to increasing NAS (Fig. 1A). The largest community was related to receptor 
tyrosine kinase (RTK) activity, Rho GTPase signaling, and immune system activation, followed by communities 
linked to cell cycle and extracellular matrix (ECM) reorganization (pathway enrichment in each community is 
provided in Supplementary Files 2 and 3). Of note, a relatively small community of genes enriched for metabolic 
functions was linked to severity of the NAS. The increase in expression of genes involved in cell proliferation 
(community 3) indicates that tissue repair pathways were also progressively activated with increasing disease 
activity. As a whole, this network captured many processes that are hallmarks of NAFLD. These processes are 
coordinately regulated over the spectrum of disease activity, which raises the question of what processes, and 
more specifically, what genes are the key mediators of this coordination–i.e. what are the hubs in this network and 
what communities are they in?

In this study, hubs were defined as nodes in the network with high eigenvector centrality. Communities 1, 3, 
8, and 12 were significantly enriched for these hub nodes (Bonferroni adjusted p values: 2e-12, 3e-47, 3e-4, and 
3e-6 respectively) (Fig. 1C), indicating that specific proteins within these communities likely coordinate patterns 
of regulation across the entire network. For example, community 3 was strongly enriched for hubs related to 
proliferation (e.g. CDK1), which are regulators of multiple structural proteins involved in regeneration and tissue 
repair. The epidermal growth factor receptor (EGFR) also formed a hub within this network suggesting a key role 
for this gene and related downstream signaling in the repair response to increasing disease activity. A detailed list 
of genes and their centrality values is provided in Supplementary File 4.

The fibrosis stage network, while smaller than the NAS network, had communities enriched for many of the 
same processes (Fig. 1B), reflecting the correlation between NAS and fibrosis stage within this predominantly 
non-cirrhotic population (Supplementary Table 1). Rho GTPase and cell cycle related signaling were the largest 
communities that were associated with increasing fibrosis stage. Their linkage with both the NAS and fibrosis 
stage suggest these to be critical pathways linking disease activity to fibrosis progression. Communities 1–4 and 
7 were enriched for hubs (Bonferroni-adjusted p-values: 6e-11, 4e-4, 1e-4, 1e-3, and 2e-12), with the G-protein 
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coupled receptor (GPCR) signaling community (community 7) being the most strongly enriched community. 
Several chemokine genes, such as CXCR4 and CCR5, are among the most central nodes in this community, 
reflecting an important role for these genes in fibrosis (Fig. 1D). However, the corresponding GPCR-associated 
community in the NAS network (community 11) was not enriched for hubs, suggesting that GPCR pathways are 
more relevant for fibrosis severity rather than disease activity.

Identification of pathways that are differentially expressed with increasing disease activity and 
fibrosis stage.  We next used the Gene Set Variation Analysis (GSVA) which allows the ordinal histologi-
cal severity score to be regressed against pathway-level abundance values20. Whereas the PPI network analysis 
enabled the discovery of communities of genes that are coordinately regulated, the GSVA analysis allowed us to 
identify specific, established pathways that are differentially regulated with increasing histological severity. Using 
both approaches allowed us to identify both the biological pathways perturbed across increasing disease severity 
as well as the relationship between the processes that are perturbed.

A total of 586 and 392 Reactome pathways were progressively altered (FDR < 1%) with increasing severity of 
NAS and fibrosis stage, respectively. The full set of pathways identified is provided in Supplementary File 5. The 
top upregulated pathways, ranked by the strength of their relationship to increasing NAS scores, included mainly 
those for cell death (intrinsic pathway for apoptosis, programmed cell death), inflammation (Fc epsilon receptor 

Figure 1.  Integration of differentially expressed genes with a protein-protein interaction network highlights 
hubs involved in the progression of fatty liver disease. (A,B) A protein-protein interaction network induced by 
the differentially expressed genes for both NAS and fibrosis stage, respectively. Each node represents a densely 
connected community of proteins, whose size represents the number of proteins in the community. The node 
labels provide a summary of the biological processes enriched in each community, as well as a number which 
is a community identifier. Edge thickness is proportional to the number of connections between communities. 
(C,D) Box plots showing the distribution of eigenvalue centrality in the communities of each network. 
Communities significantly enriched with hubs (nodes with relatively large centrality) are labeled with their top 
5 genes by centrality.
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signaling, TNF-receptor 2 noncanonical activation of NFκB, T cell receptor signaling, MHC class II antigen) and 
cell proliferation (regulation of PTEN, transcriptional regulation of TP53) (Fig. 2A, Supplementary File 5). These 
indicate a role for both innate and adaptive immune systems as drivers of tissue injury while increasing activation 
of death pathways reflect the primary mechanisms of hepatocyte loss and cell proliferation pathway activation 
reflects the liver’s wound healing response to injury. We next performed a similar analysis to identify pathways 
progressively repressed with increasing disease activity. Not surprisingly, impaired insulin receptor signaling 
(IRS) was the top pathway downregulated with increasing NAS. Several neuro-signaling-associated pathways, 
including acetylcholine nicotinic receptor related pathways, were also amongst the top ten down-regulated path-
ways. Pathway analysis for fibrosis progression revealed ephrin-signaling to be most tightly related to the severity 
of fibrosis (Fig. 2B). Ephrin receptors are the largest subfamily of receptor protein-tyrosine kinases (RTK) and are 
known to modulate neural migration, angiogenesis, and oncogenesis21. Ephrins signal via the Ephrin receptors 
(forward signaling) or by alternate pathways (reverse signaling)22; specifically, the EphB-mediated forward signa-
ling pathway was activated concordantly with the severity of fibrosis. Rho GTPase signaling pathways, known to 

Figure 2.  The top Reactome gene sets that are up- and down-regulated with respect to NAS (A) or fibrosis stage 
(B). The y-axes represent the GSVA score, which is a pathway-level quantification of gene abundance, and the 
x-axes represent the clinical assessment. For disease activity (NAS), pathways related to apoptosis, inflammation 
(Fc epsilon receptor signaling, TNFR2 signaling, T cell receptor (TCR)), cell proliferation (PTEN, TP53) were 
top pathways whereas for insulin receptor substrate (IRS) signaling pathway was downregulated. For fibrosis, 
Ephrin signaling related genes were the top pathway while amine derived hormones and nicotinic acetylcholine 
receptor pathways were down-regulated.
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modulate oxidative stress, cell migration, phagocytosis, and other cellular processes involving actin reorganiza-
tion were also closely linked to fibrosis progression23. Not surprisingly, the expression of cell cycle, extracellular 
matrix, and inflammatory signaling pathways were also directly related to the severity of fibrosis (Fig. 2B and 
Supplementary File 5). Several inflammation and apoptosis related pathways whose activation level was closely 
related to the NAFLD activity score, e.g. intrinsic apoptosis pathway and Fc epsilon receptor mediated signaling, 
were also directly associated with fibrosis stage (Supplementary File 5). Interestingly, amine-derived hormone 
pathway expression was progressively and significantly downregulated with increasing fibrosis stage. Further 
analysis of this pathway indicated suppression of tryptophan hydroxylase-1 and -2 (FDR-adjusted p-value < 0.01 
for both) which are required for serotonin synthesis and dual oxidase-1 (DUOX1) which is a regulator of reactive 
oxygen species generation24. Both serotonin and reactive oxygen species can promote fibrosis and the downregu-
lation of their associated pathways likely reflect adaptations to increased fibrogenic drive.

Identifying gene expression changes specific to disease activity or fibrosis.  The results from the 
differential expression analysis indicated that while the expression level of some genes was related to the severity 
of both activity and fibrosis, others were related to either activity or fibrosis exclusively. To further dissect this, 
we calculated the posterior probability of each gene being uniquely associated with either the NAS or fibrosis 
stage (Supplementary Fig. 3). Genes and pathways most uniquely related to NAS were related to metabolism, 
respiratory chain electron transport, tricarboxylic acid cycle, and lipid metabolism (Supplementary Fig. 3A,C). 
This may reflect the upstream metabolic perturbation and fatty acid delivery to mitochondria with increasing 
disease activity and resultant mitochondrial and electron transport chain activity to generate ATP. On the other 
hand, it may also reflect the uncoupling of oxidation and phosphorylation and mitochondrial dysfunction that 
is well known to occur in NASH25. Genes uniquely related to fibrosis were enriched for protein translation and 
ribosomal biogenesis (Supplementary Fig. 3B,D). This likely reflects increased demand for extracellular matrix 
protein synthesis with increasing fibrosis. Together, these data indicate that while correlated, NAFLD activity and 
fibrosis stage capture distinct, but overlapping molecular aspects of disease progression.

Development of gene-level disease scores.  Given that the biological processes that determine disease 
phenotype and progression are dependent on gene expression, we investigated if individual gene expression levels 
could predict the histological severity of NAFLD. Specifically, we asked two questions: (1) can the histological 
severity of the disease be inferred from gene expression, and (2) do individual samples show patterns of pathway 
regulation that signify distinct regulatory profiles? To address these questions we derived gene-level scores that 
estimate disease severity as a function of gene expression. The scores correspond to severity with respect to NAS 
or fibrosis stage, and so we refer to them as gNAS (gene-level NAFLD activity score) and gFib (gene-level fibrosis 
stage) scores.

Ordinal regression models were used to assign a disease progression score for each gene based on its expres-
sion for a given patient. The scores were calculated using a 10-fold fitting procedure, where in each fold a set of 
samples was scored according to models fit to a disjoint set of samples. This procedure simulates a scenario where 
newly observed samples are scored against a benchmark set of samples. Genes with the highest coefficient of 
variation of gene-level scores across the dataset convey the greatest information about the relationship between 
expression and disease severity (see Methods). Thus, we focused on the top 1000 genes based on the coefficient 
of variation in gNAS and gFib scores. Both gene sets had a 98–99% overlap with differentially expressed genes 
(FDR 1%).

We next ordered the patient samples by mean gNAS and gFib scores from the top 1000 genes and related them 
to NAS and fibrosis stage respectively (Fig. 3A,C). These gene-level scores demonstrated a strong correlation with 
histological grade (Fig. 3B,D). This implies that given a benchmark transcriptomic dataset (such as the one pre-
sented in this study), the histological severity of a newly observed biopsy sample can be approximated from the 
expression profile of roughly 1000 genes. In this dataset, the discriminating power of this assessment is greatest at 
the extremes of the disease spectrum.

To determine if severity can be inferred from the expression of a smaller gene set, we used lasso regression 
to regress mean gNAS or gFib scores against transcript abundance. Lasso regression was chosen for its ability to 
perform feature selection and to tune the number of features in the model fit. The regularization parameter was 
tuned such that roughly 20 predictive genes were selected. While cross-validation RMSE values were better with 
larger gene sets, the differences were modest (Supplementary Fig. 4). The gNAS and gFib lasso models achieved 
cross-validated R2 values of 0.96 and 0.94, respectively (Fig. 4A,B). These results indicate that the expression levels 
of a small subset of genes can be used to accurately infer disease severity. The predictor genes span a wide range of 
biological processes, which includes metabolism, cell-cell interactions, transcription, chromatin dynamics, and 
transport as well as other processes. The contributions of these specific genes to the model are shown by plotting 
their variable importance (Fig. 4C,D) and standardized regression coefficients (Fig. 4E,F).

Identification of distinct gene regulation profiles.  The gene-level resolution and continuous nature of 
these scores enables many possibilities for making fine distinctions in disease progression and for distinguishing 
between patients with unique transcriptional profiles. If there are distinct molecular subtypes of NAFLD, driven 
by distinct biological processes, then this would be reflected as distinct patterns in the distribution gene-level 
scores within samples. For example, a form of NAFLD driven by lipid metabolism would have relatively high 
scores for genes associated with lipid metabolism. In such a scenario, lipid metabolism would be referred to as a 
“leading-edge” disease process.

We identified patterns in relative gene-level scores by applying the so-called gene shaving method to the cen-
tered and scaled gNAS or gFib scores of the DEGs (1% FDR)26. This procedure identified distinct clusters of corre-
lated genes with high variance across samples (Fig. 5A,B). The patterns of gNAS and gFib scores across these genes 
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revealed pronounced sample clusters, which represent groups of patients with distinct, coherent patterns of regula-
tion across the gene clusters (Fig. 5C,D). Examining the overlap between gNAS- and gFib-based clusters provided 
further granularity in profile distinction (Fig. 5E); i.e. patients in any given gNAS cluster were generally distributed 
over more than one gFib cluster, and vice versa. The overall functional profiles of both the gNAS- and gFib-based 
gene clusters highlights pathways that are closely linked to the NAFLD disease process, including ECM remodeling, 
inflammation, metabolism, integrin signaling, compliment, and DNA damage response (Fig. 5F,G).

While the previous analysis provides a rational basis for the classification of patient molecular profiles, it is of 
limited use in identifying leading-edge processes due to relatively small size of the gene clusters. Furthermore, 
distinct patterns of regulation across the gene clusters may converge on the same pathways. Therefore, we sought 
to identify pathway-level summaries of variation in gNAS and gFib scores. For this analysis, we selected the 
so-called hallmark collection of gene sets from the Molecular Signatures Database (MSigDB), since it concisely 
summarizes a diverse set of biological processes27. We computed the mean gNAS and gFib scores of DEGs (1% 
FDR) in each significantly regulated hallmark gene set (1% FDR). Samples and pathways were then clustered 
by these values. In the gNAS analysis (Fig. 6A,C), the result shows at least two distinct sample clusters, and 
two distinct hallmark clusters. Figure 6C summarizes the distinct patterns of pathway-level regulation for each 
gNAS-based sample cluster. Inflammation and apoptosis (hallmark cluster 1) were leading-edge processes for 
sample cluster 1. This was not the case for sample cluster 2, which instead implicated cell stress, metabolism, and 
other pathways as leading-edge processes (hallmark cluster 2). Clusters based on gFib scores show similar pat-
terns (Fig. 6B,D); however, processes associated with morphology and angiogenesis appear as a distinct cluster 
(hallmark cluster 2).

Figure 3.  Based on the dynamic range of expression and rank order upon ordinal regression of gene expression 
levels to the NAFLD activity score (NAS) or fibrosis stage, a gene-level score was derived for all genes tested. 
The distribution of gNAS scores (A,B) and gFib scores (C,D). Plots (A,C) show the distribution of gNAS or gFib 
scores for the top 1000 genes in each sample. Plots (B,D) show the relationship between mean gNAS and gFib 
scores and histological assessments.
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Discussion
This study provides a snapshot of the pathways that are transcriptionally regulated in NAFLD and the 
leading-edge pathways associated with increasing disease activity and fibrosis stage. It also provides insights into 
how these pathways interact and coordinate activation or suppression with increasingly advanced disease. The 
development of gene-level scores broadly corresponding to histological severity enables inference of disease phe-
notypes based on transcriptomic profiles and facilitates a procedure for identifying patients with distinct patterns 
of gene regulation. The methods presented here are general and can be used to distinguish patients based on 
any high-content molecular profiling technology. Accordingly, these methods have great potential for furthering 
research into personalized treatment approaches.

Figure 4.  Lasso regression of gene expression values against mean gNAS (A,C,E) or gFib scores (B,D,F). Figures 
(A,B) show the results of 5-fold cross-validation for each model, which have 19 and 18 predictors, respectively. The 
strong performance of the models in cross-validation demonstrates that disease severity can be assessed from the 
expression levels of a relatively small number of genes. Figures (C,D) provide the scaled variable importance for 
model predictors. Figures (E,F) show the standardized regression coefficients for each model.
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These data not only provide novel insights in to the specific genes and cellular processes driving the disease 
phenotype in humans (e.g. Ephrin related signaling), but also enable identification of novel drug targets and 
hypotheses related to disease drivers. A key finding is that inflammatory pathways, including both the innate and 
adaptive immune systems, are linked to both histological activity as well as fibrosis; a fact which can be potentially 
leveraged for therapeutics. If further validated, the methods presented in this study for characterizing molecular 
heterogeneity may serve as a foundation for precision medicine approaches that identify specific disease drivers 
in a given patient and therapeutically target the pathways relevant to that individual.

Figure 5.  Patterns of gNAS and gFib scores across patient samples reveal distinct molecular profiles. Panels 
(A,B), respectively, show standardized gNAS and gFib scores across sets of genes that were identified through 
gene shaving. Sample clusters in these panels show distinct patterns regulation across these genes, and thus 
represent patients with distinct molecular profiles. Panels (C,D) show the distributions of mean standardized 
scores for each sample cluster. Within these plots, patterns across gene clusters (x-axis) represent the average 
molecular profiles of the sample clusters. Panel (E) shows the intersection of the gNAS- and gFib-based 
sample clusters and provides the number of samples in each cluster pair. Simultaneous consideration of the 
two partitions provides additional granularity in sample classification. Panels (F,G) show the most strongly 
represented Reactome pathways in each gene cluster (by Fisher’s exact test). The pathways represented are 
closely linked to NAFLD progression.
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The patient clusters identified in this study hint at the presence of distinct molecular subtypes among the 
patients. This can be inferred from the differences in the leading-edge processes among the patient clusters. A 
possible biological driver of the clusters is differences in the natural course of the disease. If this is case, the clus-
ters could be interpreted as different patient subtypes with distinct molecular drivers of the disease. A second 
possibility is that the clusters correspond to snapshots of a dynamic process, in which case the clusters might 
correspond to various phases of disease progression. Some combination of these two proposals is also possible. 
However, the lack of association between histological grade and cluster membership suggests that the clusters 
are driven, at least in part, by something other than disease progression. Future studies will be required to fully 
elucidate the functional implications of this patient classification strategy. Such studies are important insofar as 
the establishment of the molecular heterogeneity of NAFLD progression is a priority in the field.

Other studies have investigated gene expression changes that accompany disease progression in NAFLD, nota-
bly Wruck et al. and Moylan et al.15,28. The former study is a meta-analysis of several transcriptomic datasets from 
patient liver biopsies that identifies gene expression changes associated with the progression from NAFLD to 
NASH. The authors identify several functional pathways and gene sets that are significantly regulated over the 
course of this transition, which are primarily associated with lipid metabolism. The latter study uses a similar 
approach, comparing mild (fibrosis stage 0–1) to severe (fibrosis stage 3–4) patients. It identifies a somewhat 
greater diversity of functional process, which includes several core metabolic subsystems as well as proliferation 
pathways. Our study also identifies several pathways involved broadly in metabolism and proliferation (Fig. 1 and 
Supplementary Files 2, 3 and 5); however, our results also demonstrate widespread regulation of inflammatory 
processes and the extracellular matrix over the course of the disease. There are several possible reasons for the 
differences observed across these studies, the most obvious of which include differences in patient cohorts and 
differences in pathway analysis methods. Perhaps a more subtle difference is the fact that this study identifies 
disease-associated transcriptional regulation by leveraging all of the information contained in the ordinal his-
tological assessments of the disease, whereas the other studies achieve this by binning patients into “early” and 
“advanced” disease categories. Thus, our approach is likely more sensitive to gene expression changes that corre-
spond to the phenotypic changes that are summarized by histological scoring. Indeed, Pirhaji et al. demonstrated 
that in the case of Huntington’s disease, the use of ordinal regression across a spectrum of disease severity was 
superior to disease vs. control comparisons in identifying gene expression signatures associated with the disease 
phenotype29.

In addition to studies that further explore the implications of patient classification on the basis of gene 
expression, this work invites future longitudinal studies that can be used to validate the progressive changes to 

Figure 6.  Patterns of pathway-level regulation with respect to gNAS and gFib scores. The heatmaps (A,B) 
shows the clustering pattern of samples (columns) and MSigDB hallmark pathways (rows) with respect to mean 
gene-level scores (values represent column-wise Z-scores). Sample clusters show distinct patterns of pathway-
level regulation. Panels (C,D) show the mean sample-wise Z-score in each cluster for the gNAS and gFib 
analyses, respectively. Higher values in both figures are consistent with relatively advanced disease states. Panel 
E shows the intersection of the gNAS- and gFib-based sample clusters and provides the number of samples in 
each cluster pair.
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gene expression observed in these data. Specifically, tracing changes in gene expression in a set of patients over 
time would be the best validation of the gene-level scoring system and its ability to infer disease progression. 
Importantly, the development of gene-level activity and fibrosis scores provides a nuanced and content-rich per-
spective on disease progression, which enables new ways to evaluate central puzzles in the field, such as the pla-
cebo response and spontaneous improvement even in the absence of weight loss. Such investigations are expected 
to provide insights that can be leveraged to develop novel hypotheses and approaches to reverse the disease 
process.

It is important to note the limitations of this study. We observed relatively few transcriptomic changes 
uniquely associated with the individual components of the NAS as well as assessments of portal inflammation; 
however, we observed large effects associated with the composite NAS. There are several potential explanations 
for this observation. One possibility is that the concomitant progression across all three components of the score 
may confound analysis of any single component. Additionally, our statistical power for detecting genes associated 
with the individual NAS components may be limited by the distribution of the scores and/or the sample size. A 
related limitation of this study is that the patient samples do not uniformly represent the spectrum of the disease. 
In particular, the majority of the samples represent moderate disease activity (NAS 3–5), with relatively few mild 
(NAS < 3) and severe (NAS > 5) cases. One likely consequence of this sampling bias is a loss of statistical power; 
i.e., the number of differentially expressed genes we observed is likely an underestimate. We would also expect a 
moderating effect on the gene-level scores, since model estimates for the extreme ends of the disease spectrum 
would be associated with relatively high error. Even so, the relationship between expression levels and gene-level 
scores is monotonic, so the score rankings should be unaffected. In future studies, these issues can likely be 
addressed through some combination of alternative statistical approaches and a study design structured with the 
intent of deconvolving the components of the NAS and/or balancing patient samples over the spectrum of the 
disease.

There are also a number of potential confounding factors that were either unavailable for this study, or whose 
inclusion in this analysis was not possible or straightforward given the study design. For example, some patients 
were taking concomitant medications which may have altered their gene expression profiles. Also, some known 
NAFLD-associated genetic variants in genes such as PNPLA3 and TM6SF2 could also influence the patient pro-
files; however, these data were not available.

A broad limitation of this study is that gene expression levels alone may not predict translation into protein 
or the functionality of the proteins. Ultimately, integrative approaches using larger transcriptomic, proteomic, 
genomic, and metabolomic data will be needed to build more comprehensive models of disease development and 
progression. Indeed, some existing studies such as Wruck et al. provide high-content data in NAFLD patients that 
can be used toward this end30. These limitations notwithstanding, the current study provides a general framework 
for leveraging the power of high-throughput molecular profiling to develop precise characterizations of NAFLD 
development and progression. Similar unbiased frameworks will likely serve as a foundation of future precision 
approaches for the management of NAFLD.

Methods
Study population.  Patients presenting with suspected or known NAFLD who were undergoing a standard 
of care liver biopsy to diagnose and/or to assess the severity of the disease were enrolled in this study. All subjects 
were enrolled between 2012 and 2016 at a single tertiary care medical center. The study was approved by the 
institutional review board of Virginia Commonwealth University, and all subjects provided informed consent. All 
research was performed in accordance with the guidelines and regulations of the review board and the publisher. 
The liver biopsy was performed using a percutaneous approach or a transjugular approach in all instances. At the 
time of the biopsy, 1.5–2 cm core of tissue of 16 gauge diameter was sent for histological assessment and 2–5 mm 
of tissue was snap-frozen in liquid nitrogen at the bedside within five minutes of obtaining the biopsy. Those 
with biopsy-proven NAFLD were included for this analysis. Control subjects included those who had normal 
liver histology and did not have evidence of other common etiologies for liver disease such as hepatitis B and C, 
hemochromatosis, alcohol-associated liver disease. These subjects were either donors for living donor transplant 
or had a prior history of ALT fluctuations that was evaluated with a liver biopsy.

Assessment of liver histology.  Liver histology was assessed using the NIDDK NASH CRN criteria by 
two hepato-pathologists3. NAFLD was diagnosed by the presence of more than five percent steatosis assessed by 
histological examination. The nonalcoholic nature of the disease was assessed by clinical history and assessment 
and by exclusion of an alcohol use disorder using the AUDIT questionnaire31. Steatohepatitis was diagnosed by 
the presence of steatosis along with hepatocellular ballooning and lobular inflammation with or without fibro-
sis. Those with borderline or definite steatohepatitis were considered together as steatohepatitis for purposes of 
this analysis. The severity of individual histological features were scored using NASH CRN criteria and disease 
activity was determined by computing the NAFLD activity score (NAS) which is a composite of the steatosis, 
inflammation, and ballooning scores. The fibrosis stage was also scored according to the NIDDK NASH CRN 
staging system from tissue sections stained with Masson’s trichrome stain. Those with stages 1a, 1b, and 1c were 
considered as stage 1.

RNA-seq.  RNA was extracted from cells using a Qiagen RNeasy RNA Isolation Kit (Qiagen, Gaithersburg, 
MD) as per manufacturer’s instructions. RNA quantity and quality were assessed using a NanoDrop ND-1000 
spectrophotometer (NanoDrop Technologies, Wilmington, DE) and Agilent 2100 bioanalyzer (Agilent 
Technologies; Santa Clara, CA). cDNA libraries were prepared using a TruSeq Stranded mRNA Sample 
Preparation kit (Illumina, San Diego, CA). RNA-Seq was performed on the Illumina HiSeq2500 next-generation 
sequencing platform (Illumina, San Diego, CA).
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Quantification of RNA-seq data.  Transcript expression was quantified using the RNA-seq quasi-mapping 
tool, Salmon, which was run in GC bias-aware mode32. Target transcripts were derived from genome assem-
bly GRCh37.75 from Ensembl33. Transcript-level quantifications from Salmon were transformed into gene-level 
count estimates using the tximport R package34 and an Ensembl transcript-to-Entrez gene cross-reference derived 
from Biomart35. Genes with low abundance were filtered out of the dataset by applying a minimum expression 
threshold of greater than 0.5 counts per million (CPM) in at least three samples. Library sizes were adjusted using 
the TMM normalization method from the edgeR bioconductor package36,37. The counts and normalized library 
sizes were used to transform gene-level counts into log2(CPM) values, which were used as the gene-level abun-
dance estimates in subsequent analyses.

Differential expression analysis.  Genes that were differentially expressed across the ordinal spectrum 
of fibrosis stage or NAS were identified using ordinal regression, which is an approach similar to the one used 
by Pirhaji et al. in Huntington’s disease29. Specifically, using the ‘ordinal’ R package, we fit a cumulative link logit 
model to each gene j:

α β≤ = −ˆ ˆ ˆ( )( )Y i x xlog it P j ij j
T

j

where i is an ordinal value (i.e. ∈i {0, 1, 2, 3, 4, 5, 6} for NAS and ∈i {0, 1, 2, 3, 4} for fibrosis stage), Y is the 
sample score (i.e. the clinical call), and x is a vector of predictors, which in this case is gene expression and the sex 
of the patient. The two-tailed z-test was used to test the null hypothesis that the gene abundance regression coef-
ficient is equal to zero. The resulting p-values were adjusted across all genes using the Benjamini-Hochberg 
method. For each gene, we calculated the Bayesian posterior probability of the null hypothesis being false using 
the method described by Allison et al.38. This value can be interpreted as the posterior probability that a gene is 
differentially expressed. Fold changes reported throughout this report correspond to the difference in the mean 
log2 CPM between the top two and bottom two levels of the ordinal range.

Protein-protein interaction network analysis.  The differential expression results were integrated with 
the human STRING v10 protein-protein interaction network19. The network was obtained using the ‘STRINGdb’ 
R package from Bioconductor39. It was pruned to include only high-confidence interactions–i.e. interactions 
with combined scores of 700 or greater. For each differential expression analysis, the posterior probabilities of 
differential expression were assigned to their corresponding nodes. Edge weights were calculated as the product 
of the posterior probabilities of their incident nodes. Thus, edge weights represent the joint posterior probability 
of differential expression of the interacting proteins. The networks were further pruned to include only edges with 
weight 0.98 or greater. The giant component of the resulting network is the differentially regulated portion of the 
protein-protein interaction network. Communities in these networks were identified using the Louvain algorithm 
implemented in the ‘igraph’ R package40. Gene set enrichment of the network communities was calculated using 
Fisher’s exact test and human Reactome gene sets41.

Analysis of regulation with respect to NAS vs fibrosis.  Identification of differential expression that is 
exclusive to NAS or fibrosis stage was based on the posterior probability of differential expression with respect to 
each measure. We calculated the posterior probability that a gene i is exclusively regulated with respect to NAS as

= × −P P P(1 )i
exNAS

i
NAS

i
Fib

and exclusively regulated with respect to fibrosis stage as

= × −P P P(1 )i
exFib

i
Fib

i
NAS

where Pi
NAS is the posterior probability of differential expression with respect to NAS and Pi

Fib the posterior prob-
ability of differential expression with respect to fibrosis stage. Gene sets enriched for exclusively regulated genes 
were identified using the ‘geneSetTest’ function from the ‘limma’ Bioconductor package, which performs a 
rank-based competitive test42.

Pathway analysis.  Additional pathway analyses were performed using the gene set variation method 
(GSVA) followed by ordinal regression20. GSVA generates pathway-level quantifications from gene-level quanti-
fications. To identify differentially expressed pathways, we used the pathway-level quantifications from GSVA in 
conjunction with the same ordinal regression strategy that was used for the gene-level analysis.

Calculation of gene-level NAS and fibrosis scores.  The ordinal regression models, once fit, can be 
used to predict the probability of assignment to an ordinal level given the expression value of a gene. We used this 
feature of the model to assign a score for each gene in every sample–i.e. the gNAS and gFib scores. Specifically, 
the gene-level scores are the weighted mean of the possible ordinal scores, where the predicted probabilities serve 
as weights:

∑= × =
σ∈
( )( )v x m s S s x m( , ) P ,ij ij i

s
j ij i
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Here, vij is the gene-level score for a gene (i) in a sample (j); σ is the set of all possible ordinal scores; x is the 
gene expression value; and m is a model fit. To reduce bias in the scores we used a 10-fold fitting procedure, where 
samples in each holdout set were scored using models fit to the samples in the complementary set. Sample-level 
scores were derived from gene-level scores by computing the mean of the gene-level scores of the 1000 genes with 
the greatest coefficient of variation (CV). Genes with the highest CV have the greatest information content since 

= = =( )S s x S sP P( )ij  when gene expression and sample score are independent (i.e. when expression is unin-
formative), in which case v̂var( )i  is minimized.

Prediction of sample-level scores from clinical measurements and gene expression.  Regularized 
regression models were fit using the ‘glmnet’ and ‘caret’ packages in R43,44. Regularization and, when applicable, 
mixing parameters were selected using a 10-fold 50-repeat cross-validation on a parameter tuning grid. In the 
case of lasso regression of sample-level scores against gene abundance, we selected somewhat suboptimal (in 
terms of resampling statistics) regularization parameters in order to achieve a small predictor set of approximately 
20 genes. To assess model performance and generalizability, we performed a 5-fold cross-validation using the 
regularization parameters found in the previous step. Final estimates of coefficients (and variable importance) 
were derived from models that were fit to the entire dataset.

Identification of gene and pathway clusters based on gNAS and gFib scores.  To identify gene 
clusters, the gNAS and gFib scores were standardized for each sample across DEGs (1% FDR). The resulting 
Z-scores were used as input to the gene shaving algorithm using a 10% shaving rate and an a priori selection of 
four clusters26. This yielded two sets of gene clusters: one based on gNAS scores, and the other based on gFib 
scores. Sample clusters were identified by performing hierarchical clustering on the samples using Euclidean dis-
tance and Ward’s linkage method. The resulting dendrogram was cut such that the resulting partition maximized 
the median silhouette width, and the number of clusters that was produced was greater than 2, but less than 20.

Pathway clusters were identified by first determining which hallmark gene sets27 were differentially regulated 
at a 1% FDR. This was achieved using the previously described GSVA method. Each differentially regulated path-
way received a score for each sample that was equal to the mean gNAS or gFib score of the corresponding DEGs 
(1% FDR). These values were standardized for each sample, and the resulting values were clustered using the same 
hierarchical clustering method described above.

Data Availability
All raw data and relevant metadata are available through the Gene Expression Omnibus, Accession Number 
GSE130970.
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