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Abstract
The outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 2019 and caused 
coronavirus disease 2019 (COVID-19), which causes pneumonia and severe acute respiratory distress syndrome. It is a highly 
infectious pathogen that promptly spread. Like other beta coronaviruses, SARS‐CoV‐2 encodes some non-structural proteins 
(NSPs), playing crucial roles in viral transcription and replication. NSPs likely have essential roles in viral pathogenesis by 
manipulating many cellular processes. We performed a sequence-based analysis of NSPs to get insights into their intrinsic 
disorders, and their functions in viral replication were annotated and discussed in detail. Here, we provide newer insights 
into the structurally disordered regions of SARS-CoV-2 NSPs. Our analysis reveals that the SARS-CoV-2 proteome has a 
chunk of the disordered region that might be responsible for increasing its virulence. In addition, mutations in these regions 
are presumably responsible for drug and vaccine resistance. These findings suggested that the structurally disordered regions 
of SARS-CoV-2 NSPs might be invulnerable in COVID-19.

Keywords  SARS-CoV-2 · COVID-19 · Intrinsically disordered proteins · Vaccine development · Molecular pathogenesis · 
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Introduction

Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-
CoV-2) causing coronavirus disease 2019 (COVID-2019) 
has been the leading cause of deaths [1]. Various ups and 
downs in the SARS-CoV-2 infection pattern have been 
accredited to the mutations in the structural proteins of the 
virus, especially spike (S) protein [2]. Presently, the total 
number of confirmed cases across the globe stands at > 350 
million, whereas 5.6 million people have died (assessed on 
25th January 2022) [3]. Many nations have countersigned 
the rapid spread of SARS-CoV-2 infection in different waves 
after certain time intervals [4–6]. Scientists have cautioned 
in contradiction of the forthcoming peaks of the present 
waves and the coming of new waves, which are yet to come 
in many countries [7, 8]. The severity of SARS-CoV-2 infec-
tion has led to the thorough lockdown in most parts of the 
world, leading to the physical and psychological impact on 
people [9–13].

SARS-CoV-2 has four capsid-forming structural pro-
teins: spike protein (S) that assists in attaching the virus to 
the ACE receptor of host cells [14]; membrane protein (M) 
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that forms viral membrane for encircling the mature viral 
particles [15]; nucleocapsid protein (N) that creates a viral 
protein coat, i.e., nucleocapsid for surroundings the genetic 
material [16]; and envelope protein (E) that forms the enve-
lope for assembling the virions [17]. The SARS-CoV-2 
genome is more than 80% similar to a previous SARS-CoV 
strain that triggered an outbreak in 2003 [18, 19]. Conse-
quently, it exhibits a similar replication process as witnessed 
in the earlier cases.

Apart from the capsid-forming structural proteins, the 
SARS-CoV-2 genome encodes many non-structural proteins 
(NSPs), playing significant  roles in the replication and virus 
assembly [20, 21]. NSPs participate in SARS-CoV-2 patho-
genesis by controlling early transcription regulation, transac-
tivation, helicase activity, immunomodulation, and disputing 
the antiviral response [22–24]. A few essential functions 
of the SARS-CoV-2 NSPs are RNA-binding, transferase 
activity, ATP-binding, zinc-binding, endopeptidase activity, 
RNA-dependent RNA polymerase activity, exoribonuclease 
activity, and methyltransferase activity. They also participate 
in numerous biological processes such as transcription, rep-
lication, protein processing, and proteolysis [25].

 Similar to other viral proteomes, the SARS-CoV-2 
proteome has chunks of intrinsically disordered regions. 
It is important to explore the disorder status in NSPs to 
better understand  the roles of these proteins in the viru-
lence.   We performed a sequence-based analysis on all 
NSPs specific to SARS-CoV-2 to get insights into their 
intrinsic disorder status to look for functions of the dis-
ordered regions and their roles in viral replication. Here, 
we provide a computational structural disorder landscape 

of the SARS-CoV-2 NSPs. The available sequence data 
for SARS-CoV-2 NSPs were analyzed  to evaluate their 
intrinsic disorder in light of their biological activity 
relationships.

Material and methods

The sequence data of the SARS-CoV-2 NSPs were taken 
from the UniProt [26] (UniProtKB: P0DTD1) and Gen-
Bank® [27]. To explore the intrinsically disordered 
regions in SARS-CoV-2 NSPs, multiple bioinformatics 
tools such as PONDR-FIT® (Predictor of Natural Disor-
dered Regions), VLXT, VL3, VSL2B [28] and IUPred2A 
web servers (IUP2(S) and IUP2 (L)) [29] along with 
σ(MDP). These predictors classify intrinsically disordered 
regions in a protein by predicting the residues which do 
not show the tendency to form a tertiary structure in the 
native conditions. The predictors consider a residue intrin-
sically disordered when it scores > 0.5 and flexible to the 
residue with a score of 0.2–0.5. During the analyses, the 
residues in each NSP were renumbered from 1. However, 
their original positions are shown in the titles of the figures 
(Figs. 1, 2, 3, 4). The analysis provides an insight into 
the intrinsically disordered regions in SARS-CoV-2 NSPs 
that may be valuable for understanding the SARS-CoV-2 
virulence [25, 30].

Fig. 1   Graph showing the disordering tendency of each residue in 
SARS-CoV-2 a NSP1, b NSP2, c NSP3, and d NSP4. The middle 
line is the threshold value of the PONDR score, i.e., 0.5. The residues 

in each NSP were renumbered from 1; however, their original posi-
tions are shown in the titles of each panel
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Results and discussion

Two-thirds of the SARS-CoV-2 genome comprises ORF 
1a/b genes, leading to the production of two different rep-
licase polyproteins, pp1a and pp1b, respectively. These 
polyproteins undergo further processing by proteases to 
produce 16 NSPs that assist in replication, transcription, 
assembly, and packaging of the virion particles [31]. These 
proteins regulate virus functions, and targeting these pro-
teins is therefore ideal for devising treatment against the 
coronavirus.

Non‑structural protein 1 (NSP1)

A papain-like proteinase (PLpro) cleaves replicase poly-
protein of coronaviruses to yield an N-terminal product 
called NSP1 [32]. The main functions associated with the 
NSP1 include degradation of viral mRNA, blocking of host 
cell translation process, and inhibition of the host's innate 
immune response to initiate a successful viral replication 
[33–35]. The viral evasion successfully suppresses the host 
genes, allowing the virus to control its immune system [36, 
37]. NSP1 blocks translation by binding to the 40S subu-
nit of rRNA, thus preventing the entry of host mRNA for 
subsequent translation [38]. This binding is initiated by the 
NSP1 carboxyl-terminal domain of SARS-CoV-2 [39]. Ear-
lier studies have demonstrated that the deletion of the NSP1 
gene in infectious virus particles resulted in the inability 
of the virus to infect the culture cells [40]. Mutations in 
the ORF1a polyprotein that prevented the release of NSP1 
resulted in the limited viability of the virus [41].

In general, NSP1 consists of an α-helix located at either 
side of seven stranded β-barrel with two 310 helices posi-
tioned across one side of β-barrel. Clark et al. reported the 
sequence and structural similarities of NSP1 from SARS-
CoV-1 and SARS-CoV-2. However, minor differences 
were observed, which may be responsible for the difference 
in their viral pathogenic life cycles [42]. Firstly, an extra 
β-strand and 310 helices were found in SARS-CoV-2. Sec-
ondly, an increased polarity between the amino acids and 
the globular domain resulted in alternative conformations of 
major loops in SARS-CoV-2. Thirdly, the differences in the 
amino acids showed different electrostatic surface potentials. 
These differences might have defined altered SARS-CoV-2 
behaviour in terms of pathogenicity and infectivity. Very few 
structural studies have been done on NSP1, but it seems like 
a potential area to be explored in the coming time to identify 
its ability to be used as an antiviral drug treatment [42–47].

In the analysis of the intrinsic disorder’s predisposition, 
the generated graph showed the disordering tendency of each 
residue in NSP1, where higher values correspond to a higher 
probability of being disordered (Fig. 1a). The graph indi-
cated that NSP1 has many intrinsically disordered regions 
lacking well-defined structures in native circumstances. The 
region amino acid residues 25–50, 80–110 and 120–140 of 
NSP1 showed a higher tendency of disorder as predicted by 
one or more predictors.

Non‑structural protein 2 (NSP2)

NSP2 plays a significant role in modifying the host’s envi-
ronment, making it more suitable for viral needs. This pro-
tein is also involved in misbalancing the host’s intracellular 

Fig. 2   Graph showing the disordering tendency of each residue in SARS-CoV-2 a NSP5, b NSP6, c NSP7, and d NSP8. The middle line is the 
threshold value of the PONDR score, i.e., 0.5



1610	 Molecular and Cellular Biochemistry (2022) 477:1607–1619

1 3

signaling pathways, though the precise mechanism of this 
function is not yet known. NSP2 possesses variability among 
different strains of coronaviruses [48]. Compared to bat-
SARS like coronavirus, a polar amino acid was found at 
position 321 of the NSP2 protein compared to SARS-CoV-2, 
which contained a polar glutamine residue. The stability of 

this protein may be due to this change in polarity, allowing it 
to make hydrogen bonds, and due to the changes in the side 
chain length and interactions. A stabilizing mutation within 
the endosome-associated protein-like domain of NSP-2 was 
found in SARS-CoV-2, suggesting their highly contagious 
nature [49].

Fig. 3   Graph showing the disordering tendency of each residue in SARS-CoV-2 a NSP9, b NSP10, and c NSP12. The middle line is the thresh-
old value of the PONDR score, i.e., 0.5
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The interactors of coronavirus NSP2 proteins were identi-
fied, such as prohibitin 1 and prohibitin 2 having a profound 
role in mitochondrial biogenesis [50]. Evaluation of various 
other interactors by Davies et al. revealed their presence in 
the endoplasmic reticulum (ER) and mitochondrial mem-
brane, suggesting the involvement of NSP2 in the regulation 
of ER Ca2+ ion signaling [48]. NSP2 interacts with NSP3 
and NSP4 to mediate different functions in promoting the 
viral infectious life cycle [51]. The complex ERLIN1/2 
was found to interact with NSP2 and NSP4 present in both 
SARS-CoV and SARS-CoV-2 but absent in bat-like coro-
navirus. The interaction of these two NSP proteins with this 
complex might regulate ER Ca2+ signaling and the asso-
ciated host responses related to these signaling cascades. 
NSP2 interaction with NSP3 is involved in the formation 
of proteases which cleaves ORF1ab [52]. More significant 
studies are required in this direction to identify their role in 
imparting viral pathogenesis fully.

The intrinsic disorder profile indicated that the NSP2 has 
several intrinsically disordered regions that lack a stable 
structure under physiologic conditions. The regions span-
ning residues 260–300, 370–410, 430–470, and 730–780 of 
NSP2 showed a higher tendency of disorder as predicted by 
all four predictors (Fig. 1b).

Non‑structural protein 3 (NSP3)

NSP3 is a multi-pass transmembrane protein consisting of 
~ 1945 amino acid residues. It is primarily associated with 
translating viral mRNA transcripts and inhibiting protein 
synthesis in the host [53, 54]. Apart from this, it is also 
involved in delegating and deubiquitinating activities [55]. 

An interaction of NSP2 and NSP3 mediates cleavage of 
ORF1ab by coding for viral proteases. Such processing of 
polyprotein releases NSP1, NSP2, and NSP3. NSP3 also 
interacts with NSP4 where they, together in complex with 
other proteins, are involved in structural membrane rear-
rangement, facilitating viral replication [56].

The NSP3 structure consists of different functional 
domains. These domains include a SARS unique domain 
(SUD) having N-terminal, middle, and C-terminal sub-
domain [57, 58]. In addition to this, an RNA binding domain 
facilitates the viral protein interaction with hosts rRNA [59], 
and the papain-like protease (PL-PRO) domain allows to 
code for proteases that regulate the full viral activity [60]. 
The intrinsic disorder graph showed that NSP3 has multiple 
intrinsically disordered regions distributed throughout the 
protein (Fig. 1c).

Non‑structural protein 4 (NSP4)

NSP4 plays a key role in replicative structural assembly for 
coronavirus replication associated with the NSP3 protein 
[61]. The loss of the NSP3-NSP4 complex was associated 
with abolished viral replication [56]. NSP4 maintains inter-
actions with many other proteins and cofactors to bring 
about other functions. These interactions are unique to dif-
ferent members of coronaviruses, such as interaction with 
members of the E3 ubiquitin ligase family in SARS-CoV and 
interactions with factors associated with ER homeostasis in 
SARS-CoV-2 [48]. Other commonly observed interactions 
of NSP4 were observed with proteins related to unfolded 
protein response (UPR) (TMEM33), ER-phagy (CCPG1), 
and machinery associated with N-liked glycosylation 

Fig. 4   Graph showing the disordering tendency of each residue in SARS-CoV-2 a NSP13, b NSP14, c NSP15 and d NSP16. The middle line is 
the threshold value of the PONDR score, i.e., 0.5
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(STT3B, MAGT1, CANX, DDOST). These signaling fac-
tors mediate an antiviral innate immune response (RNF5, an 
E3 ubiquitin ligase present in ER) [62, 63] and Vitamin K 
reducing complex (VKORC1), which is required by coagula-
tion, causing proteins as a cofactor [64]. Like NSP2, these 
interactors are localized in the membranes of mitochondria 
and ER, regulating their role in mediating major functions 
related to the contact site like calcium homeostasis, bio-
genesis and cell organization, transport, and various other 
metabolic processes. Some of the NSP4 interactors were also 
found to have a role in cell communication, cell differentia-
tion, and cell death [48]. The intrinsic disorder analysis sug-
gested that the NSP4 doesn’t have many disordered regions 
(Fig. 1d).

Non‑structural protein 5 (NSP5)/3C‑like proteinase 
(3CLpro)

NSP5, a ~ 305 amino acid long protein, is responsible for the 
maturation of other NSPs in the coronaviruses [65]. NSP5 
is a cysteine protease that is automatically cleaved from the 
polyprotein to produce a mature enzyme, cleaving the poly-
protein at 11 different locations to yield NSP4-NSP16 [66]. 
NSP5 is also referred to as 3CLpro, which has three distinct 
domains I-III, where domain II and domain III are connected 
via a loop consisting of a long amino acid stretch from 185 
to 200 residues. The active site of this protein is in the form 
of a catalytic dyad (CysHis) located within domain I and 
domain II [67]. The catalytic residues (Cys145 and His41) 
and 3-domain structure are conserved among the NSP5, 
providing them the ability to mediate the viral activity by 
acting as a protease in viral maturation [68]. The intrinsic 
disorders graph indicated that the NSP5 does not have many 
disordered regions except at around residues 3360–3370 and 
3530–3550 (Fig. 2a).

Non‑structural protein 6 (NSP6)

NSP6 is a ~ 290 amino acid long, a multi-pass membrane 
protein that induces the formation of double-membrane 
vesicles (DMV) in the host [69]. NSP6, along with NSP3 
and NSP4, plays an important role in the coronavirus rep-
lication by forming a part of the replication/transcription 
complex (RTC) [70]. Several other NSPs are also involved 
in this complex, each assigned specific roles. Once NSP6 is 
inserted into the ER [71], it complexes with NSP3 and NSP4 
for the formation of DMV during assembly of RTC [69].

NSP6 is 34 kDa in size and consists of a C–terminal 
domain and six transmembrane helices [72]. The outer sur-
face of NSP6 marks the presence of phenylalanine residues, 
providing higher binding affinity and stability between NSP6 
and ER membrane [73]. This protein is commonly present 
in both α and β coronaviruses, and its location is central to 

ER, where it assists in forming autophagosomes [74]. This 
binding reduces the transfer of viral factors to lysosomes 
and thus promotes coronavirus replication [75]. Therefore, 
the expansion of the autophagosome is also compromised 
either by starvation or through chemical inhibition of mTOR 
signaling [76, 77]. NSP6 sends immunomodulatory proteins 
synthesized by the ER to autophagosomes for their destruc-
tion, a process that modifies the adaptive immune response 
of the host. In addition, NSP6 interaction with the sigma 
factor helps their participation in ER stress response [78]. 
The intrinsic disorder graph indicated that the NSP6 does 
not have many disordered regions, except at the end of its 
C-terminal region (Fig. 2b).

Non‑structural protein 7 (NSP7)

NSP7 is a small protein of 83 amino acid residues in length. 
In association with NSP8, this protein acts as a cofactor for 
the activity of NSP12, which is RNA-dependent RNA poly-
merase (RdRp) required for viral transcription [79]. These 
three NSP forms a trimeric RdRp-NSP7-NSP8 super-com-
plex [80], the basic minimal machinery required for nucleo-
tide polymerization [79]. Mutations in NSP7 or NSP8 are 
associated with mutations of NSP12, and they might there-
fore show altered super-complex formation affecting the 
viral replication, infectivity, and pathogenicity [81]. Since 
NSP7 has less significance when unbound, few studies have 
been conducted on its structure. More studies on the super-
complex formation and its structure have been performed, 
where targeting one NSP could inhibit the process of viral 
replication, and transcription is majorly studied. The intrin-
sic disorder graph suggested that NSP7 does not have any 
disordered regions (Fig. 2c).

Non‑structural protein 8 (NSP8)

NSP7, NSP8 forms a hexadecamer and acts as a cofactor 
for NSP12 activity required for viral replication. NSP8 is 
made of ~ 198 amino acid residues. Mutations of NSP8 were 
linked to the altered RNA synthesis in SARS-CoV-2 [82]. 
This protein may possess RNA processivity or RNA primase 
function [83]. NSP8 also interacts with NSP9 and is involved 
in replicating RNA virulence and promoting the virulence 
properties of SARS-CoV-2 [84]. More studies are warranted 
in assessing the impact of mutations on NSP8 linked to the 
RdRp-NSP7-NSP8 super-complex. Detailed understanding 
of the NSP8 structure is also necessary, as fewer studies have 
been performed to date. The intrinsic disorder graph showed 
that NSP8 has a chunk of intrinsically disordered regions 
distributed between residues 3960–4030 and 4110–4120 
(Fig. 2d).



1613Molecular and Cellular Biochemistry (2022) 477:1607–1619	

1 3

Non‑structural protein 9 (NSP9)

NSP9 consists of ~ 113 amino acid residues in length and 
primarily functions as a dimeric ssRNA-binding protein 
involved in viral replication [82]. The sequence of NSP9 
is conserved among β-coronaviruses, especially among 
SARS-CoV and SARS-CoV-2, sharing almost ~ 97% homol-
ogy [85]. NSP9 colocalizes with various NSPs and forms 
an important part of the replication machinery of coronavi-
ruses and is therefore directly involved in their growth [86]. 
Studies have revealed that deletions in the NSP9 gene are 
marked by impaired synthesis of RNA and viral infectiv-
ity [84]. Protein-nucleic acid interactions are facilitated by 
multimerization of NSP9 [87]. During NSP9 dimerization, 
the two α-helices bind to the GXXXG motif, an essential 
step for coronavirus replication [84].

In general, the protomer of NSP9 consists of seven 
β-strands surrounded by N-terminal and C-terminal 
α-helices. The protein core is made up of β-barrel compris-
ing two orthogonally packed antiparallel β-sheets. One sheet 
consists of β1–β3 strands along with half β7-strand, while the 
other sheet is made up of β4 and β5-strands. This β-barrel 
is extended with the help of β-hairpin consisting of β6 and 
β7-strands adjoining α-helix. The barrel sheets are linked to 
N-terminal β-strand and C-terminal α-helix via elongated 
loops [88]. Such NSP9 protomer folding is similar to the 
OB-fold, a structural motif that recognizes nucleic acids 
[89].

The structural analysis of NSP9 in SARS-CoV-2 revealed 
a horseshoe-like tetramer structure, which assists in its oli-
gomerization and binding to the virus’s nucleic acid dur-
ing the replication process. The stabilization of this protein 
occurs via the presence of two contact surfaces. The first 
interaction is a parallel association between α-helix at the 
C-terminal region with N-terminal loop (α-helix interface) 
[90]. It then involves the antiparallel interactions between 
two β-strands at both protomers of NSP9 (β-sheet interface) 
[86], bringing the two barrels together for function and sta-
bilization. In SARS-CoV-2, the sheet interface accounts 
for more stability in the tetrameric structure of NSP9 than 
in SARS-CoV. Breaking of the dimeric structure of NSP9 
affects their stability and, in turn, prevents RNA synthesis 
and viral growth [91]. The intrinsic disorders graph sug-
gested that the NSP9 has no disordered regions (Fig. 3a).

Non‑structural protein 10 (NSP10)

NSP10 is a ~ 130 amino acid residues long scaffold pro-
tein involved in stimulating NSP14 and NSP16. NSP14 
possesses two distinct domains that mediate different func-
tions. N-terminal consists of 3′–5′ exoribonuclease activity 
(ExoN), and C-terminal possesses N7-methyltransferase 
(N7-MTase) activity [82]. NSP10 binding to ExoN of 

NSP14 causes its stimulation; however, N7-MTase remains 
unaffected with this binding [92]. NSP10 also stimulates the 
activity of 2′-O-methyltransferase (2′-O-MTase) in NSP16 
[93]. Therefore, NSP10 serves as an essential protein for 
activating the methylation and capping machinery for viral 
mRNA in association with NSP14 and NSP16 [94]. This 
protein is exclusively found in viruses and not in prokaryotes 
or eukaryotes.

The structural features of NSP10 consist of a long loop 
which connects two antiparallel α-helices (H1 and H2) with 
a β1-strand, followed by a sheet formation involving β2 and 
β3-strands [95]. Two zinc finger motifs are present in the 
NSP10 structure. In the first case, the β-sheet is folded into 
two helices named H3 and H4, containing the zinc finger 
comprised three cysteines and one histidine to coordinate 
the zinc ion. Then a small helical turn is present after β3 
adjoining α-helix H6. The two strands β4 and β5 interrupt the 
long C-terminal region, which harbors the second zinc finger 
motif composed of only four cysteine side chains as required 
to stabilize this non-classical zinc finger protein [95, 96]. 
NSP10 of SARS-CoV-2 exhibited high structural similar-
ity to NSP10 of SARS-CoV [95]. The intrinsic disorder 
graph indicated that NSP10 does not have many disordered 
regions, except at the residue range 4305–4325 (Fig. 3b).

Non‑structural protein 11 (NSP11)

The cleavage of pp1a polyprotein by 3CLpro results in the 
production of NSP11, a small product whose exact function 
has not been characterized yet. Depending on the coronavi-
rus species, its length may vary from 13 to 23 amino acid 
residues [82]. In the case of SARS-CoV-2, the sequence of 
NSP11 is: SADAQSFLNGFAV [97]. The independent func-
tion of NSP11 is not known yet; however, NSP11 becomes 
the N-terminal of NSP12 during ribosomal frameshift of 
ORF1b required for NSP11-NSP16 translation [98]. Gad-
have and colleagues suggested the helical propensity of 
NSP11, as studied through SDS micelle experiments [99]. 
The intrinsic disorder prediction was not performed for 
NSP11 due to the short sequence.

Non‑structural protein 12 (NSP12)/RdRp

NSP12 is one of the most important proteins required for 
viral growth.   It is associated with both replication and 
transcription of coronaviruses. This protein is ~ 932 amino 
acid residues in length and is generally referred to as RNA-
dependent RNA polymerase (RdRp) [82]. RdRp proteins 
contain multiple domains, which catalyzes the production 
of phosphodiester bonds between the ribonucleotides in the 
presence of a divalent metal ion [100]. NSP12 of SARS-
CoV-2 possesses more than 95% similarity to polymerases 
of SARS-CoV. It is inhibited by Remdesivir, a nucleoside 



1614	 Molecular and Cellular Biochemistry (2022) 477:1607–1619

1 3

analog that binds to NSP12 for bringing out this inhibition 
[101]. NSP12 of SARS-CoV-2 exhibited decreased ther-
mal stability and enzyme activity compared to SARS-CoV 
NSP12 [102].

NSP12 in the presence of cofactors such as NSP7 and 
NSP8 mediates the replication and transcription of the virus 
with high efficiency, instead of being independent for medi-
ating the replication function [103]. NSP12-NSP7-NSP8 
thus serves as a minimal unit for carrying out the viral rep-
lication [102]. NSP7 and NSP8 initiate the primase activity, 
followed by the facilitation of NSP12 polymerase activity for 
viral replication [104]. NSP12 interacts with various other 
proteins or transcription factors, including CREB regulated 
transcription coactivator 3, ribonucleoprotein 4B, PLKHA5, 
E3 ubiquitin ligase, and ubiquitin associated protein 2, for 
transcription of the virus [105]. The intrinsic disorder graph 
showed that NSP12 has multiple intrinsically disordered 
regions distributed throughout the protein (Fig. 3c).

Non‑structural protein‑13 (NSP13)/helicase

NSP13 is ~ 601 amino acid residue protein that acts as a 
helicase with specificity for dsDNA and dsRNA as a sub-
strate with 5′–3′ polarity [106]. NSP13 exhibits nucleoside 
triphosphate hydrolase (NTPase) activity for hydrolysis of 
different nucleosides. It is involved in unwinding the viral 
genome by binding to a single-stranded template extending 
from 5′ to 3′ direction using ATP hydrolysis [107]. Gen-
erally, NSP13 is more efficient in unwinding duplex DNA 
than duplex RNA; however, in higher concentrations of ATP, 
unwinding of duplex RNA is preferred to exhibit higher pro-
cessivity than duplex DNA [106, 108]. Since, ATP induces 
a conformational change in helicase directing its affinity 
towards RNA. Therefore, it is believed that changing the 
ATP concentration and availability may alter the unwinding 
and translocation of helicase from its substrate. NSP13 may 
lead to helicase dissociation from the substrate at the replica-
tion site, thus becoming a promising candidate for develop-
ing effective SARS-CoV-2 antiviral strategies [98]. Shu and 
colleagues have identified inhibition of both NTPase and 
helicase activity of NSP13 by addition of Bismuth salts in a 
dose-dependent manner [109].

NSP13 is a multifunctional enzyme involved in inhibit-
ing type1 interferon (IFN) response in addition to showing 
a helicase activity. It inhibits the activation of IFN-β and 
IFN-α associated signaling in HEK293T cells [110, 111]. 
Moreover, NSP13 assists in replication by interacting with 
NSP12 along with its participation in mRNA capping. The 
catalytic efficiency of NSP13 is increased by twofolds in 
association with NSP12 [112]. The intrinsic disorder graph 
showed that NSP13 has several intrinsically disordered 
regions distributed throughout the protein (Fig. 4a).

Non‑structural protein 14 (NSP14) / Proofreading 
exoribonuclease

NSP14, a ~ 527 amino acid protein, stimulates 3′–5′ exoribo-
nuclease (proofreading) activity in interaction with NSP10 
and N7-guanine methyltransferase activity for capping of 
viral mRNA and its prevention from degradation [82]. An 
exoribonuclease domain is required for maintaining the 
capping function [92]. The proofreading ability of NSP14 
helps in the excision of any misincorporated nucleotides, 
thus protecting the viral genomic from mutations. Various 
studies were performed to judge the potential of NSP14 in 
viral replication. Mutations in NSP14 of coronavirus murine 
hepatitis virus were associated with a 15-fold increase in 
mutations in the viral genome, suggesting their involvement 
in maintaining the replication fidelity.

Similarly, the mutations in NSP14 of SARS-CoV showed 
a 21-fold increase in genomic mutations [113]. NSP14 of 
SARS-CoV also inhibits the production and signaling of 
INF-β by blocking the IRF3 localization to the nucleus 
[111]. NSP14 is  known for attenuating the therapeutic 
potential of several antiviral drugs that act through prema-
ture termination of viral replication. Narayanan and Nair 
had shown binding of ritonavir drug to the active site, i.e., 
exoribonuclease domain of NSP14, as a probable therapeutic 
agent for SARS-CoV-2 and its ability to reverse the inhibi-
tory effects on various other drugs of therapeutic potential 
against coronaviruses [114].

NSP14 can interact with other NSPs, including NSP7, 
NSP8, NSP10, and NSP12 [115]. When associated with the 
NSP7-NSP8-NSP12 super-complex, exoribonuclease activ-
ity is not shown by NSP14 unless NSP10 associates with the 
replication complex [103]. This association of all NSPs like 
7, 8, 10, 12, and 14 leads to the formation of another super-
complex with proteins possessing primase, polymerase, 
and exoribonuclease activities. The intrinsic disorder graph 
showed that NSP14 has an intrinsically disordered region at 
the N-terminal tail spanning from 6040 to 6050 (Fig. 4b).

Non‑structural protein 15 (NSP15)/Uridylate‑specific 
endoribonuclease

NSP15 is made up of ~ 346 amino acid residues in length. 
This protein possesses multifunctional roles, including an 
inhibitor of IFN, a binding partner for retinoblastoma protein 
(pRb), endoribonuclease activity, and helps prevent the virus 
from dsRNA sensors in the host [116]. Firstly, this protein 
mediates the cleavage of RNA nucleotides in the 3ʹ direction 
of uridylates, hence behaving as an endoribonuclease [117]. 
Second, much like NSP13 and NSP14, NSP15 can also block 
the nuclear localization of IRF3 and could thus inhibit the 
IFN production during viral infection [118]. Third, NSP15 
possesses a domain that has a binding affinity towards pRb. 
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In the Huh-7 cells, NSP15 can increase the cytoplasmic to 
a nuclear ratio of pRb by changing its distribution pattern. 
Such changes in the form of reduced expression of Rb cause 
a change in the cell cycle progression in NSP15-transfected 
cells [119]. Moreover, it has been observed that magnesium 
ions can alter the conformation of NSP15 [120], and muta-
tion within the active site or outside the active site of NSP15 
can result in the inhibition of viral infection rates [121]. The 
intrinsic disorder analysis suggested that NSP15 has a few 
disordered regions spanning throughout the protein (Fig. 4c).

Non‑structural protein 16 
(NSP16)/2′‑O‑methyltransferase

NSP16 is composed of ~ 298 amino acid residues in length. 
NSP16, upon interaction with NSP10, gets activated and 
facilitates the viral mRNA capping as it possesses the 
2′-O-MTase domain [82]. NSP16 is an S-adenosylmethio-
nine dependent-methyltransferases required for the virus' 
life cycle, where NSP10 acts as an essential cofactor for 
regulating the enzyme activities of NSP16 [122]. Studies 
on different cell cultures show MTase activity is essential 
for the replication of coronaviruses. It may also help the 
virus escape the host’s antiviral sensors and thus success-
fully initiate the viral infection [123, 124]. Many significant 
studies have been performed on investigating the structure 
of NSP16 in complex with NSP10; however, more studies on 
the individual structure of NSP16 are warranted in the future 
[125]. The intrinsic disorders analysis suggested that NSP16 
has one major disordered region spanning at the C-terminal 
region of the protein (Fig. 4d).

Conclusions

The viral genome encodes several proteins that  are not suf-
ficient to support viral replication.Thus, viruses dependent 
on the host machinery to complete their life cycles. Usually, 
viruses have extremely efficient genomes. If a viral protein 
comprises intrinsic disorders regions, it can be implicated 
in various functions because it can interacts with different 
partner proteins. This mechanism is common in the SARS-
CoV-2 genome that encodes 16 NSPs, which play numerous 
roles in virus replication and assembly. They contribute to 
viral pathogenesis by regulating early transcription, gene 
transactivation, helicase activity, and immunomodulation. 
Like other viral proteomes, SARS-CoV-2  has a dark pro-
teome where all the proteins, especially NSPs, have a chunk 
of intrinsic disorders. Exploring the intrinsic disorders in the 
SARS-CoV-2 NSPs is vital to understanding the virulence 
of the virus and its subsequent infection.

In this study, we performed a sequence-based analysis 
of SARS-CoV-2 NSPs to get insights into their intrinsic 

disorders and their possible functions in the viral replication. 
The available sequence data for SARS-CoV-2 NSPs were 
analyzed to evaluate their intrinsic disorders by considering 
their biological activity relationships. The analysis showed 
that SARS-CoV-2 NSPs have many intrinsic disorder 
regions  which might lack a well-defined tertiary structure 
in native conditions. In conclusion, intrinsic disorders are 
of use to SARS-CoV-2 as they allow efficient usage of the 
replication machinery, enable it to tolerate the high mutation 
frequency and changing environments. As such, targeting the 
intrinsic disorders conferred to the SARS-CoV-2 NSPs to 
impair critical protein–protein interactions could establish a 
broad and tempting antiviral policy in COVID-19 research.
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