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ABSTRACT: Cartilage is a relatively simple connective tissue that plays a variety of roles in the human body, 

including joint support and protection, load bearing of the intervertebral discs, joint lubrication, formation of the 

external structure of the ears and nose and support of the trachea. The maintenance of cartilage homeostasis is 

therefore crucial. Cartilage-related diseases are difficult to diagnose and treat because their molecular and 

pathological mechanisms are not fully understood. Melatonin, which has a wide range of physiological effects, is an 

endocrine hormone mainly secreted by the pineal gland. Its biological effects include its antioxidant, antiaging, 

analgesic, and hypnotic effects and its ability to stabilize the circadian rhythm. In recent years, research on cartilage 

homeostasis and melatonin has been increasing, and melatonin has gradually been used in the treatment of 

cartilage-related diseases. Therefore, this article will briefly review the role of melatonin in cartilage homeostasis, 

including its anti-inflammatory effects and effects in protecting cartilage from damage by other factors and 

promoting chondrocyte growth and the expression of cartilage-related genes. Based on the above, the current status 

and future developmental direction of melatonin in the treatment of cartilage-related diseases are also discussed, 

demonstrating the broad prospects of melatonin in maintaining cartilage homeostasis and treating cartilage injury-

related diseases. 
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Cartilage, which is composed of chondrocytes, cell 

stroma and a gel-like matrix, is a type of connective tissue 

with support functions. Cartilage does not contain blood 

vessels, lymphatic vessels or nerves and is generally 

classified according to its cell stroma as articular cartilage, 

hyaline cartilage or elastic cartilage [1, 2]. Hyaline 

cartilage is clinically regenerated from the surrounding 

perichondrium, suggesting the presence of 

stem/progenitor cells in the perichondrium [3, 4]. 

Articular cartilage is mainly present in joints and 

ligaments. It has a robust physiological structure and 

mechanical properties, which allow flexibility in its 
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movement. Articular cartilage supports and protects joints 

but has a very poor self-repair ability after injury or 

disease [5, 6]. Hyaline cartilage is covered by a layer of 

dense connective tissue and serves mainly as a temporary 

scaffold in the embryonic period, after which it is replaced 

by bone [7]. It is semitransparent in the human body, 

easily damaged and brittle. Hyaline cartilage is widely 

distributed in joints, costal cartilage and the adult 

respiratory tract. Elastic cartilage is found in the auricle 

and epiglottis, and a large number of elastic fibers are 

interwoven into its stroma. 

Cartilage damage can be induced and repaired by 

human mesenchymal stromal cells (MSCs), but cartilage 

exhibits limited proliferation throughout the aging process 

[8, 9]. The discovery of induced pluripotent stem cells 

(iPSCs) in 2006, however, has provided many new 

approaches for cartilage tissue engineering therapy. The 

use of iPSCs has helped overcome previous limitations 

and shows potential for clinical application [10]. The 

replacement of cartilage with other types of cartilage—

such as the reconstruction of elastic cartilage by 

transplantation of chondrocytes derived from cultured 

hyaline cartilage—can also be completed under the 

appropriate conditions [11]. The degradation of cartilage 

in the human body is affected by aging, genetic 

susceptibility, daily activities and so on. Various health 

problems caused by cartilage-related diseases and their 

large burden in terms of social and medical costs have 

elicited widespread concern [12]. 

Melatonin is a ubiquitous molecule in nature found in 

almost all living organisms. It is an indolamine present in 

all systems of an organism due to its amphiphilic 

characteristics and diffusion. It can also be produced by 

chondrocytes and many other tissues and organs. 

Cartilage cells produce melatonin in response to 

circulating exogenous melatonin and can upregulate 

melatonin receptor expression. Melatonin regulates 

cartilage growth and maturation through melatonin 

receptor 1 (MTNR1A) and melatonin receptor 2 

(MTNR1B) [13]. MTNR1A plays an important role in 

controlling the circadian rhythm, and MTNR1B is closely 

related to the cyclic activity of melatonin in the body [14]. 

As melatonin secretion shows diurnal changes, the 

proliferation and growth of chondrocytes also follow day 

and night patterns. Calcium and phosphate mineralization 

rates are also increased in the dark phase of the light and 

dark cycle [15]. The circadian expression of melatonin 

can regulate various key biological processes, including 

inflammation, and circadian rhythm disorders are closely 

related to the etiology of inflammatory arthritis [16]. The 

hormone melatonin is secreted by the pineal gland under 

control of the circadian rhythm; melatonin is released at 

night and suppressed during the day. Evidence indicates 

that melatonin levels gradually decrease with age [17]. 

Furthermore, the effects of melatonin differ between 

cartilage types [13]. 

This article reviews the basic structure and function 

of melatonin and its role in cartilage homeostasis. 

 

Basic structure and function of melatonin 

 

Melatonin, first discovered in the 1950s, is a ubiquitous 

molecule in nature [18]. The chemical name and 

molecular formula of melatonin are N-acetyl-5-

methoxytryptamine and C13H16N2O2, respectively. Its 

properties include a relative molecular mass of 232.27 

grams per mole and a melting point of 116-118℃, and 

pure melatonin consists of pale yellow leaf-like crystals 

[19]. 

Melatonin is concentrated in the pineal gland of 

vertebrates (especially mammals) but is also locally 

synthesized in other cells and tissues [20]. It is mainly 

converted from tryptophan in pineal gland cells through 

complex biochemical reactions. In some cases, melatonin 

can also be synthesized in the guts and lungs [21], and the 

latest research shows that reprogramming of the gut 

microbiota also affects the level of melatonin in the gut 

[22]. Melatonin synthesis by the pineal gland is controlled 

by the suprachiasmatic nucleus and occurs at night 

through synchronization of the optic nerve and 

hypothalamus bundle and the light and dark cycle. This 

unique characteristic allows adaptation of the 

physiological functions of melatonin depending on daily 

and seasonal needs [23, 24]. The acute inflammatory 

response drives the transcription factor nuclear factor κ-

light-chain-enhancer of activated B cells (NF-κB), which 

switches melatonin synthesis from pinealocytes to 

macrophages/microglia and, upon acute inflammatory 

resolution, back to pinealocytes [25]. This bidirectional 

communication between the pineal gland and the immune 

system is termed the immune-pineal axis. Studies have 

shown that bone marrow is another component of the 

immune-pineal axis, in which pineal melatonin may have 

a role in surveillance [26, 27]. However, further 

investigation regarding the role of melatonin in 

hematopoiesis is required. Furthermore, over the course 

of the inflammatory response, TNF inhibits nocturnal 

pineal synthesis and induces the synthesis of melatonin by 

macrophages and other immunocompetent cells [25, 28]. 

In mammals, nuclear translocation of NF-κB blocks 

noradrenaline-induced melatonin synthesis in 

pinealocytes, which induces melatonin synthesis in 

macrophages [29]. In addition, melatonin reduces NF-κB 

activation in pinealocytes and immune competent cells. In 

mammals, the major site of melatonin metabolism is the 

liver. Melatonin metabolism is carried out through 

complex pathways in the cell cytoplasm, endoplasmic 
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reticulum and mitochondria but can also take place at the 

production site or in the skin [30]. 

In recent years, research on melatonin has been 

increasing. Melatonin has been shown to have a wide 

range of effects on biological rhythm, reproduction, 

immunity, digestion, central nervous system function and 

antioxidant and antitumor activities [31]. In addition, 

melatonin has been reported to be involved in the 

regeneration of various tissues in the nervous system, 

liver, bone, kidney, bladder, skin and muscle [32]. 

 

Mechanism of action of melatonin 

 

Melatonin exerts its physiological effects in a variety of 

ways. It acts at melatonin membrane receptors (MTNR1A 

and MTNR1B), melatonin nuclear binding sites (e.g., 

retinoid Z receptor [RZR] and retinoid acid receptor-

related orphan receptor [ROR]) and in non-receptor-

dependent pathways. The best characterized pathway is 

the activation of two types of membrane-specific 

receptors: the high-affinity MTNR1A receptor and low-

affinity MTNR1B receptor [33, 34]. 

MTNR1A, which is encoded in human chromosome 

4 (4q35.1) and consists of 351 amino acids, is widely 

distributed and found in the tubercle of the anterior 

pituitary, suprachiasmatic nucleus of the hypothalamus 

(the anatomical site of the circadian rhythm), cortex, 

thalamus, substantia nigra, amygdala, hippocampus, 

cerebellum, cornea and retina [35]. Activation of 

MTNR1A can inhibit the discharge of suprachiasmatic 

nucleus neurons, thus inhibiting hormone secretion and 

promoting cardiovascular stimulation [36, 37]. 

MTNR1B is encoded in human chromosome 11 

(11q21-q22) and consists of 363 amino acids. The Mel1b 

receptor is mainly distributed in the retina, followed by 

the hippocampus, cortex, paraventricular nucleus and 

cerebellum [38]. Activation of MTNR1B can regulate the 

circadian rhythm, relax coronary artery vessels, induce 

proliferation of spleen cells and inhibit the release of 

retinal dopamine [39]. Although an MTNR1C-binding 

partner has been discovered and identified as quinone 

reductase 2 in several species, but not humans, its function 

and mechanism of action remain unclear [40]. 

Melatonin exerts its main effects, some of which are 

dependent on the retinoid-related orphan nuclear hormone 

receptor family, by binding MTNR1A and MTNR1B [41, 

42]. However, recent studies have proven that RORα is 

not a melatonin receptor [43]. Melatonin exerts its free-

radical scavenging and antioxidant effects through 

receptor-independent pathways. Melatonin and its 

metabolites are powerful free radical scavengers and 

indirect antioxidants [44]. Melatonin very effectively 

reduced oxidative stress in all experimental and clinical 

settings in which it has been tested and has an advantage 

over other antioxidants, since not only melatonin but also 

some of its metabolites are scavengers of toxic species 

[45]. In a rat model exposed to polluted air, the 

enrichment score for antioxidant genes obtained from 

lung gene expression data (GTEx) was significantly 

correlated with the levels of MTNR1A but not MTNR1B 

[46]. 

 

Cartilage homeostasis 

 

As noted previously, cartilage is composed of 

chondrocytes and a gel-like matrix. The main components 

of the cartilage matrix are collagen and proteoglycan. 

Collagen type II (COL2A1) is the most abundant 

component of the cartilage matrix, in which it forms a 

fibrous network structure. Proteoglycans attract a large 

number of water molecules to form a gel, maintaining the 

swelling ability and elasticity of cartilage [47, 48]. The 

cartilage matrix provides a home for chondrocytes, and its 

stability is directly related to the metabolic balance of 

chondrocytes [49]. Chondrocyte survival and metabolic 

equilibrium in the cartilage matrix directly affect the 

occurrence and development of cartilage-related diseases. 

The main factors currently known to affect cartilage 

homeostasis are degenerative disease and inflammation. 

Cartilage degeneration is characterized by superficial 

cartilage defects or fibrosis at the initial stage. This is 

followed by the extension of fissures to subchondral bone 

and ulceration. The cartilage gradually becomes thinner, 

eventually leading to full-thickness cartilage defects and 

denudation as disease progresses [50, 51]. Cartilage 

degeneration is an important early change in many 

osteoarticular diseases, such as osteoarthritis (OA). In the 

early stage of OA, cartilage covered by a meniscus easily 

degenerates. Collagen fibers degenerate and gradually 

ulcerate [52]. As the disease progresses, the following 

processes occur: 1) the collagen fiber structure is 

damaged, 2) proteoglycan is excessively degraded, 3) the 

mechanical properties of cartilage are compromised, 4) 

the subchondral bone erodes upward and forms a 

medullary cavity-like structure, 5) articular cartilage is 

gradually vascularized, 6) cartilage is damaged and 

thinned, 7) the subchondral bone is gradually exposed, 8) 

the joint space is narrowed, and 9) osteophytes are formed 

[53]. The degradation and destruction of cartilage 

contribute to an inflammatory environment in joints, 

leading to hyperplasia and angiogenesis of the joint 

synovium. Inflammatory factors produced in pathological 

processes can directly act on chondrocytes, causing 

imbalance between anabolism and catabolism, further 

aggravating degradation and destruction of the cartilage 

extracellular matrix (ECM) [54]. 

Inflammatory factors have a highly disruptive effect 

on the steady-state environment of cartilage. Under 
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conditions of trauma, cartilage degeneration, and 

hyperosteogeny, the synovial membrane produces an 

inflammatory reaction after its stimulation. Synovial cells 

secrete a large amount of cytokines, chemokines, reactive 

oxygen species and matrix metalloproteinases (MMPs) 

into the synovial fluid [55, 56]. Levels of inflammatory 

factors such as interleukin (IL)-1, IL-6 and tumor necrosis 

factor-α (TNF-α) increase, promoting the expression of 

collagenase and proteoglycan enzymes (e.g., 

depolymerizing protein-like metalloprotease 

[ADAMTS], MMP-13, MMP-9, and MMP-3) in 

chondrocytes. This results in the degradation of COL2A1 

and proteoglycans, cartilage matrix imbalance and 

changes in the cartilage structure [57-59]. With the 

aggravation of ongoing disease, cartilage is further 

eroded, the collagen fiber network structure is destroyed, 

inflammatory factor secretion continues to increase, and 

cartilage homeostasis is further disrupted [60]. TNF-α and 

IL-1β can promote chondrocytes to release more 

inflammatory factors, such as nitric oxide (NO), MMPs 

and ADAMTS. IL-1β can also promote the secretion of 

TNF-α, which itself exerts effects on IL-1β, promotes the 

synthesis of MMPs, inhibits the synthesis of 

proteoglycans and causes cartilage loss [61, 62]. 

 

Effect of melatonin on cartilage homeostasis 

Anti-inflammatory effect of melatonin 

Melatonin has pro- and anti-inflammatory effects 

depending on its dosage and the cell status. Melatonin can 

promote the early stage of inflammation. It is quite 

beneficial in reducing inflammation and preventing the 

complications of chronic inflammation [63]. In terms of 

cartilage-related inflammation, the role of melatonin in 

rheumatoid arthritis (RA) is still controversial. Some 

studies have shown that melatonin plays an inflammatory 

role in RA, promoting disease progression [63, 64], while 

other studies have demonstrated that melatonin plays an 

anti-inflammatory role in RA [65, 66]. A number of 

studies have also confirmed that melatonin plays an anti-

inflammatory role in OA and other arthritides [67-69]. 

OA, one of the most common joint diseases, is very 

common in elderly individuals and one of the most 

ordinary causes of disability in this population. The main 

pathological changes in OA are a reduction in articular 

chondrocytes and cartilage matrix degradation [70]. 

Inflammatory mediators produced by chondrocytes play a 

key role in the development of OA. IL-1β and TNF-α are 

the two most effective catabolic factors, but IL-1β has a 

stronger inhibitory effect on cartilage formation than 

TNF-α [71]. Studies have shown that melatonin may play 

a protective role against OA through its regulatory effect 

on oxidative stress, the reduced secretion of 

proinflammatory cytokines and alleviation of 

mitochondrial dysfunction [58]. Melatonin may inhibit 

the activation of MMPs by reducing the accumulation of 

ROS and increasing the expression of superoxide 

dismutase, thus avoiding the excessive degradation of 

ECM [72]. 

Sirtuin 1 (SIRT1) is a nicotinamide adenine 

dinucleotide (NAD+)-dependent histone deacetylase in 

the peripheral tissues that controls many physiological 

pathways, including circadian rhythms [73]. Melatonin 

can also be expressed by SIRT1-dependent nicotinamide 

phosphoribosyltransferase (NAMPT) and nuclear factor 

of activated T cells 5 (NFAT5). Signal transduction 

reduces the production of MMPs (MMP-1, MMP-2, 

MMP-3, MMP-9, MMP-13) induced by IL-1β, thus 

preventing the occurrence and development of OA [74]. 

Guo et al.[75] proved that melatonin regulates the 

expression and activity of SIRT1 by inhibiting the 

NAMPT and NFAT5 signaling pathways in 

chondrocytes, effectively reducing the IL-1β-induced 

production of MMP-3 and MMP-13 in cartilage. This 

suggests that melatonin has a protective effect in the 

cartilage of OA patients. MMPs promote cartilage matrix 

degradation and articular cartilage degeneration in OA 

patients [76]. Excessive secretion of MMPs leads to the 

degradation of ECM, and the fragments produced by this 

degradation have an important impact on the normal 

metabolism of chondrocytes. Loss of the normal 

environment in which chondrocytes depend for survival 

leads to a decrease in their number, resulting in 

pathological and biomechanical changes, such as thinning 

of the cartilage layer, the generation of fissures and 

changes in the distribution and arrangement of 

chondrocytes (e.g., clustering, reduction in number). 

Lim et al. [77] proposed that melatonin plays a 

protective anti-inflammatory role through the SIRT1 

pathway, as evidenced in oxidative stress-stimulated 

chondrocytes and rabbit OA models. Melatonin 

significantly inhibits the cytotoxicity of hydrogen 

peroxide (H2O2) and proteins and messenger ribonucleic 

acid (mRNA) expression of inducible nitric oxide 

synthase (iNOS) and cyclooxygenase-2 (COX-2). It has 

also been found to inhibit the production of NO and 

prostaglandin E2 (PGE2), downstream products of iNOS 

and COX-2. Intraarticular injection of melatonin 

significantly reduced cartilage destruction in rabbit OA 

models, while sirtinol and SIRT1 small interfering RNA 

(siRNA) reversed the effect of melatonin. Inflammation 

and oxidative stress often interact and synergistically 

determine the occurrence and development of aging-

related chronic diseases. The use of potent anti-

inflammatory and antioxidant functional compound drugs 

with high bioavailability, such as melatonin, may become 

a promising, safe and effective intervention strategy to 

delay aging and the occurrence and development of OA. 

https://www.baidu.com/link?url=bmoC69NxSMGFa3dCZiWeeXXADYpXER0fbGD-Qw5lQZeb_8x0BBUfV11C8GoqFGkgzKV0zW1pnCzotjlT6DQvCy203sVRz9oawFkMqHO-MZZHwkt0Ig9wOVP8aTGfEVY1&wd=&eqid=eefcaf2a0009b9d9000000025e357b2a
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The specific signaling pathway of melatonin in the 

pathogenesis of OA is shown in Figure 1. 

 

 

Figure 1. The melatonin signaling pathway in the occurrence and development of OA. 

Role in protecting cartilage from other factors 

In addition to protecting cartilage from the anti-

inflammatory effects of OA and arthritides other than RA, 

melatonin protects cartilage from other sources of 

damage. Intraarticular injection of glucocorticoids (GCs) 

may relieve pain and inflammation in patients with OA, 

but the long-term use of GCs might inhibit the synthesis 

of major cartilage matrix components in a dose-dependent 

manner. Melatonin was found to exert a protective effect 

against GC-induced chondrocyte matrix degeneration [78, 

79]. An in vitro experiment discovered that melatonin 

pretreatment could effectively reduce hormone-induced 
cartilage matrix loss. The results showed that 

dexamethasone treatment reduced the proteoglycan and 

COL2A1 content in the cartilage matrix of mice, but 
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melatonin pretreatment reversed the inhibitory effect of 

dexamethasone [80]. Although some progress has been 

made, the antidegradation effect of melatonin on the 

extracellular matrix is worthy of further study. For 

instance, whether melatonin still has a protective effect on 

articular cartilage in the face of OA induced by aging and 

trauma is unclear. Additionally, determining whether 

melatonin can better protect against the loss of cartilage 

matrix when combined with other drugs also needs further 

study. 

Due to its antioxidant properties, melatonin can also 

protect chondrocytes from toxicity. Studies have shown 

that melatonin alleviates IL-1β- and H2O2-induced 

cytotoxicity in a dose-dependent manner [74, 77]. 

Melatonin pretreatment significantly reduced H2O2-

induced MSC apoptosis in a dose-dependent manner and 

effectively inhibited H2O2-induced ROS production, the 

Bax/Bcl-2 expression ratio, caspase-3 activation and 

phosphorylated P38MAPK expression in MSCs [81]. In 

cartilage endplate cells (EPCs) under oxidative stress, 

melatonin therapy was capable of reducing the incidence 

of apoptosis and inhibiting EPC calcification through 

SIRT1-mediated autophagy, indicating the protective 

effect of melatonin against EPC apoptosis and 

calcification [82]. Melatonin (1 nM) could also prevent 

cartilage degeneration and correct phenotypic 

abnormalities in chondrocytes, but long-term use of 

melatonin or the use of large doses (1 mM) of melatonin 

led to serious subchondral bone erosion [83]. Therefore, 

the dose and action time of melatonin must be strictly 

controlled depending on the disease, patient, 

administration method and so on. Only once these 

measures have been taken can further aggravation of the 

diseases attributed to melatonin be effectively avoided. 

 

Role in promoting chondrocyte growth and the 

expression of cartilage-related genes 

 

Melatonin plays an important role in promoting the 

growth and development of cartilage. A chick embryo 

animal model revealed that the melatonin concentration 

and chick embryo cartilage development were increased 

in dark environments compared to light environments 

[84]. During the differentiation of MSCs, melatonin 

promoted cartilage differentiation and is thus suitable for 

therapeutic applications in cartilage regeneration. Under 

conditions of normal cartilage differentiation, quantitative 

analysis of glycosaminoglycans (GAGs) and real-time 

polymerase chain reaction analysis proved that melatonin 

treatment significantly increased the expression of genes 

involved in cartilage formation and differentiation. These 

genes included aggrecan (ACAN), COL2A1, collagen 

type X (COL10A1), sex-determining region Y (SRY)-box 

9 (SOX9), runt-related transcription factor and bone 

morphogenetic protein 2, a potent inducer of 

chondrogenic differentiation. Moreover, the melatonin 

group exhibited more induced cartilage tissue that was 

enriched in GAG, COL2A1 and COL10A1 expression 

[85]. Pei et al.[86] discovered that melatonin could not 

only upregulate cartilage differentiation but also inhibit 

osteogenic differentiation. In addition, they observed 

upregulation of transforming growth factor β1 expression 

in melatonin-treated cells. Therefore, they suggested that 

melatonin promotes matrix synthesis by articular 

chondrocytes through the transforming growth factor β 

signaling pathway. Thus, we believe that melatonin is an 

important regulator of MSC differentiation with potential 

application value in promoting bone formation and 

fracture healing. 

Studies have demonstrated that melatonin can 

successfully restore the inhibitory effects of IL-1β and 

TNF-α on MSC activity, promote the mRNA expression 

of chondrocyte-specific marker genes in MSCs, facilitate 

the differentiation of MSCs into chondrocytes, inhibit the 

expression of MMPs, and maintain the activity of 

superoxide dismutase [87]. Liu et al.[88] proved that 

melatonin can 1) promote the expression of cartilage 

matrix and cartilage formation-related genes in MSCs, 2) 

downregulate the mRNA expression of MMP-1, MMP-2, 

MMP-9 and MMP-13, 3) reduce the accumulation of 

reactive oxygen species, 4) promote the expression of 

superoxide dismutase, and 5) protect chondrocytes in 

medium, promoting the differentiation of MSCs into 

chondrocytes. In the inflammatory environment induced 

by IL-1β, melatonin can not only promote the synthesis 

and accumulation of cartilage matrix but also 1) 

upregulate expression of the marker of cartilage formation 

COL2A1 at the mRNA and protein levels in the presence 

of IL-1β; 2) regulate the expression levels of the other 

markers of cartilage formation markers ACAN, SOX9 

and COL10A1; and 3) inhibit the apoptosis of MSCs 

induced by IL-1β during the process of whole-cartilage 

formation [67]. In conclusion, with its strong inhibitory 

effect on MMPs, melatonin may be a promising 

therapeutic strategy to protect proteins from enzyme 

proteolysis. At the gene level, melatonin promotes 

cartilage formation and the differentiation of human 

MSCs by upregulating miR-526b-3p and miR-590-5p. 

Consistent with this is the finding that miR-526b-3p or 

miR-590-5p inhibitor could almost eliminate the positive 

effect of melatonin in promoting cartilage formation and 

the differentiation of human MSCs [89]. Future research 

could focus on exploring the translational value of these 

miRNAs, which are expected to be used as diagnostic 

markers and therapeutic targets for cartilage regeneration 

in various cartilage defect diseases. High concentrations 

of melatonin (4×10-4 M), however, can inhibit 

chondrocyte proliferation and the mRNA expression of 

http://www.baidu.com/link?url=mnnjWZBbnMKQ4YgiabC7laZzV8mqgIFqfQnMafmsGlu2QfNwiqQ164-6-y_XUBE01iBBFSpk8oaDlQF8XL-6ODZyE0J_mZJA4Gb-beSFKLWnEcb9J5e9sgkmzVzi5Fjr
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COL2A1, ACAN, and SOX9 [90]. Excessive melatonin 

not only leads to serous subchondral bone degeneration at 

the cellular level but also inhibits the expression of 

chondrocyte-related genes at the molecular level. These 

findings will further ensure the precise use of melatonin 

at a therapeutic dose. 

 

Targeting melatonin in cartilage-related diseases 

The key functions of melatonin, such as its reduction of 

inflammation and apoptosis and maintenance of 

metabolic balance, make it a potential treatment for OA 

[67, 69, 77]. Studies have discovered that melatonin can 

maintain the survival of MSCs and promote their 

osteogenic differentiation under the inflammatory 

conditions induced by IL-1β. Melatonin may become a 

new drug for OA treatment and bone tissue regeneration 

[91]. As exercise helps protect against articular cartilage 

degeneration in animals and humans [92], melatonin 

therapy and exercise have preventive and synergistic 

effects against cartilage degeneration in OA [83, 93]. 

Melatonin also plays an important role in cartilage injury-

related diseases due to its function in promoting cartilage 

cell growth and the formation and differentiation of MSCs 

into cartilage. In a rat model of acute rotator cuff tear, 

melatonin-loaded aligned polycaprolactone electrospun 

fiber membranes began to inhibit macrophage infiltration 

at the tendon–bone interface early in healing, leading to 

the increased formation of cartilage regions, maturation of 

collagen and improved biomechanical strength of 

regenerated skeletons [94]. Since melatonin promotes 

cartilage formation and the differentiation of MSCs, its 

application may provide a new approach for rotator cuff 

repair in plastic surgery. At present, hydrogels or 

hydrogel/microparticle systems containing melatonin 

have become suitable substitute materials for cartilage in 

tissue engineering due to their noncytotoxicity, sustained 

drug release capability and high biological activity [95]. 

A hyaluronic acid hydrogel system containing various 

amounts of polylatide-co-glycolide micro/nanoparticle-

coated with chitosan-acrylic acid increased GAG 

synthesis, promoted cartilage cell growth and 

proliferation, and improved the mechanical properties of 

cartilage tissue [96]. In a study of heterogeneous MSC 

transplantation, Pescador et al.[97] concluded that the use 

of xenogeneic MSCs embedded in an elastin-like 

recombinamer-based hydrogel led to the successful 

regeneration of hyaline cartilage in osteochondral lesions. 

Novel therapeutic tools for osteochondral regeneration 

have arisen from the combination of MSCs and highly 

specialized smart biomaterials, such as hydrogel-forming 

elastin-like recombinamers (ELRs), which can serve as 

cell carriers. Recently, hydrogels and 

hydrogel/microparticle systems have been highly 

recommended as alternatives for cartilage tissue 

engineering in tissue engineering and regenerative 

medicine. The functions of melatonin in cartilage-related 

diseases are shown in Table 1. 

 

Table 1. The functions of melatonin in cartilage-related diseases. 

Cartilage-related disease Function of melatonin References 

OA 

Reducing inflammation, maintaining metabolic balance 

and reducing apoptosis 

[67, 69, 77] 

Maintaining the survival of MSCs and promoting their 

osteogenic differentiation 

[91] 

Rotator cuff repair 

Inhibiting macrophage infiltration at the tendon–bone 

interface and increasing the formation of cartilage 

regions 

[94] 

Cartilage tissue 

engineering 

Hydrogels or hydrogel/microparticle systems, 

cartilage regeneration 

[95,96,97] 

 

Conclusions 

The incidence of cartilage injury increases with aging. 

Due to the lack of blood vessels, the self-repair capability 

of cartilage after injury is quite ineffective. Once 
unbalanced, cartilage homeostasis is hard to restore; thus 

far, there are no satisfactory drugs or therapeutic methods 

for the treatment of cartilage-related diseases such as OA. 

Melatonin, which possesses biological effects including 

its antioxidant, antiaging, analgesic, and hypnotic effects 

and the ability to stabilize the circadian rhythm, shows 

unique prospects in maintaining cartilage homeostasis. 

Melatonin plays an important role in protecting 

chondrocyte growth and promoting the expression of 
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cartilage-related genes and regeneration of cartilage, 

which are closely related to its anti-inflammatory and 

antioxidative stress effects. Thus, melatonin is expected 

to become a promising, safe and effective intervention 

strategy to delay aging and the occurrence and 

development of cartilage-related diseases. Although some 

progress has been made, many mechanisms underlying its 

effects remain unclear, and more scientific research and 

clinical trials are needed to explore the specific role of 

melatonin in cartilage homeostasis and cartilage injury-

related diseases. 
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