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Abstract
An acidic tumor microenvironment plays a critical role in tumor progression. However, understanding of metabolic reprogramming of 
tumors in response to acidic extracellular pH has remained elusive. Using comprehensive metabolomic analyses, we demonstrated 
that acidic extracellular pH (pH 6.8) leads to the accumulation of N1-acetylspermidine, a protumor metabolite, through up-regulation 
of the expression of spermidine/spermine acetyltransferase 1 (SAT1). Inhibition of SAT1 expression suppressed the accumulation 
of intra- and extracellular N1-acetylspermidine at acidic pH. Conversely, overexpression of SAT1 increased intra- and extracellular 
N1-acetylspermidine levels, supporting the proposal that SAT1 is responsible for accumulation of N1-acetylspermidine. While 
inhibition of SAT1 expression only had a minor effect on cancer cell growth in vitro, SAT1 knockdown significantly decreased tumor 
growth in vivo, supporting a contribution of the SAT1-N1-acetylspermidine axis to protumor immunity. Immune cell profiling 
revealed that inhibition of SAT1 expression decreased neutrophil recruitment to the tumor, resulting in impaired angiogenesis and 
tumor growth. We showed that antineutrophil-neutralizing antibodies suppressed growth in control tumors to a similar extent to that 
seen in SAT1 knockdown tumors in vivo. Further, a SAT1 signature was found to be correlated with poor patient prognosis. Our 
findings demonstrate that extracellular acidity stimulates recruitment of protumor neutrophils via the SAT1-N1-acetylspermidine 
axis, which may represent a metabolic target for antitumor immune therapy.
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Significance Statement

Acidic tumor microenvironments appear to play a critical role in tumor progression. Recent work has identified several genetic and 
epigenetic transformations of cancer in response to acidic pH, but an understanding of tumor metabolic reprogramming at acidic pH 
has been lacking. We used comprehensive nontarget and quantitative metabolomic analyses to show that acidic extracellular pH has 
a unique metabolic signature linked to protumorigenic immunity. Acidic extracellular pH stimulates the SAT1-N-acetylspermidine 
axis and activates protumor neutrophils. The results shown here serve as a foundation for development of future therapeutics against 
aggressive cancer cells in acidic tumor microenvironments, with an ability to improve conventional cancer therapy in combination 
with immunomodulation.
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Introduction
Metabolic reprogramming of cancer is an essential alteration for 
tumor progression, enhancing drug resistance, tumor invasion, 
and metastasis (1, 2). Aerobic and anaerobic glycolysis are 

representative metabolic reprogramming processes in cancer (de-
scribed as the Warburg and Pastule effects, respectively) (3, 4) and 
occur concomitant with tumor acidosis (5). We and others have 
reported that acidic microenvironments stimulate fat mass and 
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obesity-associated (FTO) genes and sterol regulatory element- 
binding protein 2 (SREBP2)-induced lipid metabolism to promote 
tumor progression (6). However, an understanding of metabolic 
reprogramming and interactions of cancer cells with fibroblasts 
and immune cells in acidic, as distinct from hypoxic or 
nutrient-limited, tumor microenvironments, remain elusive.

The polyamine pathway is stimulated in highly metastatic can-
cers such as castration-resistant prostate cancer (7), colon cancer 
(8), medullomyoblastoma (9), and v-raf murine sarcoma (SARC) 
viral oncogene homolog B1 (BRAF)-mutant melanoma (10). 
Polyamine metabolites may stimulate cancer-associated fibro-
blasts (11) and promote antitumor immunity (12), but the mechan-
ism by which polyamine-associated metabolic reprogramming 
triggers aggressive cancers and its role in tumor progression 
remains largely unknown.

Accumulation of protumorigenic metabolites plays an important 
role in tumor progression by stimulating noncanonical metabolic 
flux (13). For example, 2-hydroxyglutarate is a well-known oncome-
tabolite that supports cancer cell proliferation and is frequently asso-
ciated with isocitrate dehydrogenase 1/2 (IDH1/2) mutations that 
allow escape from the canonical tricarboxylic acid (TCA) cycle in 
leukemia and brain tumors, particularly under hypoxia (14–16). 
Another escape from the canonical TCA cycle is mediated by cancer- 
associated metabolites such as succinate and fumarate (17). We pre-
viously reported a protumor metabolite, phosphoethanolamine, pre-
sent under glutamine deficiency, that escapes the phospholipid 
biosynthetic pathway and promotes tumor persistence (18). 
Although a number of oncometabolites have been reported (19–21), 
few have been characterized in an acidic tumor microenvironment.

Here, we aimed to employ comprehensive nontarget and 
quantitative metabolomics to identify protumor metabolites 
present at acidic pH and identify potential molecular pathways 
involved in protumorigenic immunomodulation under these 
conditions.

Results
Acidic pH–altered polyamine metabolism 
in cancer cells is a metabolic alteration distinct 
from those in hypoxia and nutrient starvation
Acidic pH is a typical characteristic of the microenvironment of ma-
lignant cancers; however, metabolic reprogramming of cancer cells 
in this context is largely unknown. To investigate the metabolic re-
programming of cancer cells in an acidic environment, we estab-
lished an acidic culture system to maintain cancer cells at pH 6.8 
(Fig. 1A) (6). A comprehensive nontargeted metabolomic analysis 
of pancreatic cancer (PANC-1) cells using capillary electrophor-
esis–mass spectrometry (CE-MS) revealed that more than 100 me-
tabolites, including N1-acetylspermidine, were significantly altered 
in cancer cells under conditions of extracellular acidity (Fig. 1B; 
Table S1). To further examine whether an acidic environment indu-
ces metabolic alterations that are distinct from those of hypoxia and 
nutrient starvation, we conducted quantitative metabolomic ana-
lyses on pancreatic cancer cells (PANC-1 and AsPC-1) cultured under 
hypoxic, nutrient-starved, or acidic conditions, all of which are com-
mon traits in the tumor microenvironment. Then, we compared the 
data with those cultured under control condition.

Acidic pH specifically altered 159 metabolites, including 79 me-
tabolites present at higher levels and 80 metabolites present at 
lower levels in PANC-1 cells, along with 56 metabolites present 
at higher levels and 60 metabolites present at lower levels in 
AsPC-1 cells (Fig. 1C and D; Fig. S1A and B and Table S1). These 
changes were distinct from those characteristics of hypoxia or 

nutrient starvation in pancreatic cancer cells (Fig. 1C and D; 
Fig. S1A and B and Tables S2 and S3), suggesting that acidic 
pH–induced metabolic pathways are distinct from those of 
hypoxia and nutrient starvation.

Next, we examined which metabolic pathways are enriched in 
acidic environments. Pathway analysis for metabolites present 
at higher levels under acidic conditions revealed that the urea 
cycle and glycolytic pathways (Warburg effect) were up-regulated 
in PANC-1 and AsPC-1 cells, similar to results seen under hypoxia 
(Fig. 1E; Fig. S1C). In contrast, glycerophospholipid metabolism 
and nucleobase catabolism were found to be involved in metabolic 
reprogramming under nutrient starvation (Fig. 1E; Fig. S1C). These 
data suggest that acidic extracellular environment and hypoxia in-
duce similar metabolic pathways that are distinct from those in-
duced by nutrient starvation, as previously reported (18).

To further investigate specific metabolic reprogramming in-
duced by acidic pH, we focused on metabolites that were altered 
only in the acidic environment. We found accumulation of 
N1-acetylspermidine under acidic conditions, along with down- 
regulation of putrescine and spermidine in the polyamine path-
way in a broad array of various human cancer cells (PANC-1, 
AsPC-1, HeLa, A431, and HCT116) (Fig. 1F; Fig. S2A and B), suggest-
ing that the acidic pH–induced alteration in polyamine pathway is 
a general metabolic signature conserved in human cancer cells. 
This alteration was not observed under hypoxia or nutrient starva-
tion in PANC-1, AsPC-1, and HeLa cells (Tables S1–S3). We next 
quantified metabolites in other polyamine-related pathways 
such as the urea cycle and methionine salvage pathways at pH 
6.8 in human cancer cells (PANC-1, AsPC-1, HeLa, A431, and 
HCT116) and compared the results to those obtained at pH 7.4 
(Fig. S2C). However, metabolites in the methionine pathway and 
urea cycle pathways did not accumulate in cancer cells under 
acidic pH. We also confirmed that lactic acidosis (pH 6.8) also led 
to accumulation of N1-acetylspermidine in cancer cells 
(Fig. S2D). Based on these results, we hypothesized that accumula-
tion of N1-acetylspermidine plays a role in acidic pH–induced tu-
mor progression.

SAT1 is responsible for N1-acetylspermidine 
accumulation
To elucidate a key enzymatic regulator for the accumulation of 
N1-acetylspermidine, we measured the mRNA expression and pro-
tein levels of enzymes in polyamine pathway at acidic pH (pH 6.8) 
as compared to control condition (pH 7.4) (Fig. 2A). We found that 
spermidine/spermine acetyltransferase 1 (SAT1), a rate-limiting 
enzyme of the polyamine pathway, was up-regulated by acidic 
pH in a series of human cancer cells (PANC-1, AsPC-1, HeLa, 
A431, and HCT116 cells) at both the mRNA (Fig. 2B; Fig. S3A) and 
protein levels (Fig. 2C; Fig. S3B), suggesting that acidic pH–induced 
SAT up-regulation is conserved in human cancer cells. In addition, 
other rate-limiting enzymes such as SRM and PAOX were down- 
regulated at the mRNA level (Fig. 2B; Fig. S3A) but not altered at 
the protein level at acidic pH (Fig. 2C; Fig. S3B). We also examined 
whether enzymes in the urea and methionine pathways may have 
been altered to stimulate the polyamine pathway; however, the 
enzymes in these pathways were not altered at acidic pH, other 
than arginosuccinate lyase (ASL) (Fig. S3C), suggesting that SAT1 
is a key enzyme for N1-acetylspermidine accumulation.

To test whether SAT1 was responsible for N1-acetylspermidine 
accumulation, we knocked down SAT1 using siRNAs (Fig. 2D; 
Fig. S4A and B). siRNA-mediated silencing of SAT1 under acidic 
conditions impaired the accumulation of both intracellular and 
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Fig. 1. Targeted and nontargeted metabolomic analyses reveal up-regulation of polyamine metabolism under acidic culture conditions. A) Schematic of 
experimental design illustrating acidic culture system and nontargeted metabolomics. Cancer cells were cultured under control (pH 7.4) or acidic (pH 6.8) 
culture conditions for 24 h, and then intracellular metabolites were extracted and subjected to targeted or nontargeted metabolomic analysis using 
CE-TOFMS. B) Nontargeted metabolomics revealing differential intracellular metabolomic profiles in PANC-1 cells between control (pH 7.4) and acidic 
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and other metabolites were defined as not significantly changed. C) Heatmap representation of differential intracellular metabolomic profiles in PANC-1 
cells under control (C), acidic (pH), hypoxic (H), or nutrient starvation (NS) conditions. Representative targeted metabolites specifically up- or 
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hypoxic, or nutrient starvation conditions. F) Schematic of polyamine pathway. Metabolites up- or down-regulated under acidic conditions are shown in 
red or blue, respectively (left). Intracellular levels of polyamine pathway metabolites in PANC-1 cells under control (pH 7.4) or acidic (pH 6.8) conditions 
(right). Data represent the mean ± SEM of at least three independent experiments. NS: not significant; *P < 0.05; **P < 0.01.
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extracellular N1-acetylspermidine in PANC-1 and HeLa cells 
(Fig. 2E; Fig. S4C). Moreover, SAT1 overexpression increased the 
accumulation of N1-acetylspermidine in PANC-1 and HeLa both 
intracellular and extracellularly at pH 7.4 (Fig. 2F and G; 
Fig. S4D–F). In addition, disruption of SAT1 expression (silen-
cing/overexpression of SAT1) did not affect the levels of other me-
tabolites, including putrescene, spermidine, and spermine (not 
detected [N.D.]), in the polyamine pathway (Fig. S4C and F), sup-
porting the hypothesis that SAT1 is responsible for the accumula-
tion of N1-acetylspermidine at acidic pH.

Inhibition of SAT1 expression suppresses tumor 
growth through decreased recruitment of 
immune cells and angiogenesis
To examine the role of SAT1 in tumor progression, we silenced 
SAT1 in PANC-1 and HeLa cells and examined in vitro and in 

vivo cell growth. Although silencing of SAT1 had only a minor ef-
fect on cell proliferation in vitro (Fig. S5A), constitutive silencing of 
SAT1 using shRNA significantly suppressed tumor growth for 
HeLa and PANC-1 cells in vivo, associated with decreased 
N1-acetylspermidine levels (Fig. 3A–C; Fig. S5B and C), suggesting 
a role for the SAT1-N1-acetylspermidine axis in immunomodula-
tion of tumorigenesis. To explore the role of SAT1 in tumorigen-
icity, we examined whether SAT1 influences the recruitment of 
CD11b+ myeloid cells into tumors. SAT1 knockdown significantly 
suppressed CD11b+ myeloid cell infiltration and decreased angio-
genesis (Fig. 3C). To further investigate the role of SAT1 in the re-
cruitment of immune cells, RNA-sequencing (RNA-seq) analysis 
was conducted on SAT1 knockdown tumor samples, and the re-
sults were compared with those for shRNA control tumors. Gene 
expression analysis revealed that inhibition of SAT1 expression 
decreased leukocyte activation and leukocyte-mediated immun-
ity (Fig. 3D and E), whereas the senescence-associated secretory 
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phenotype (SASP) pathway was enriched in cancer cells (Fig. S5D 
and E). Immune profiling of SAT1 knockdown tumor tissue using 

quanTIseq suggested that the fraction of monocytes and NK cells 

increased while the fraction of neutrophils and M1 and M2 macro-

phages decreased in shSAT1 knockdown tumors (Fig. 3F). Taken 

together, the results indicate that SAT1 modulates tumor immun-

ity and angiogenesis during tumor progression.

SAT1-mediated recruitment of neutrophils 
stimulates tumor progression
Since SAT1 may affect immunomodulation, we assessed whether 
inhibition of SAT1 expression in cancer cells suppressed infiltra-
tion of immune cells into tumors. Inhibition of SAT1 expression 
increased natural killer (NK) cell and dendritic cell numbers and 
suppressed infiltration of neutrophils into tumors (Fig. 4A), 
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Fig. 3. Inhibition of SAT1 expression suppresses tumor growth through decreased angiogenesis and recruitment of immune cells (leukocytes). A) 
Validation of SAT1 shRNA-mediated silencing and intracellular levels of N1-acetylspermidine in HeLa cells with and without shRNA-mediated silencing 
of SAT1 under control (pH 7.4) or acidic (pH 6.8) conditions. B) Tumor growth curve of HeLa xenografts with and without shRNA-mediated silencing of 
SAT1. C) Hematoxylin and eosin staining and immunostaining of HeLa xenografts with and without shRNA-mediated silencing of SAT1. Myeloid cells, 
endothelial cells, and nuclei were detected using CD11b, CD31 and DAPI, respectively. Scale bars: 1 mm (left). Numbers of CD11b+ myeloid cells per unit 
area and percentage of CD31+ area in tumor xenograft. Scale bars: 100 µm (right). D) RNA-seq of HeLa xenograft tissue showing differentially expressed 
host (fibroblasts/immune cells)-derived genes regulated by shRNA-mediated silencing of SAT1. E) Pathway analysis of host (fibroblasts/immune 
cells)-derived genes up-regulated at least two-fold in tumor tissue by shRNA-mediated silencing of SAT1 in HeLa xenografts. F) Immune profiling of SAT1 
knockdown tumor tissue. Violin plots of the differences in percentage of cell types identified by quanTIseq in shSAT1 and control samples. Data represent 
the mean ± SEM of at least three independent experiments. NS: not significant; *P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 4. SAT1-mediated recruitment of neutrophils stimulates tumor progression. A) Schematic showing experimental workflow for sorting CD45+ 

immune cells from tumor xenografts using fluorescence-activated cell sorting (FACS). Percentage of monocytes (CD45+ F4/80− Ly6ChighLy6G−), 
tumor-associated macrophages (CD45+ F4/80+ CD11b+), neutrophils (CD45+ F4/80− Ly6C+ Ly6G+), dendritic cells (CD45+ F4/80− CD11c+), and NK cells 
(CD45+ F4/80− NK1.1+) in CD45+ immune cells are shown for tumors of human cancer (HeLa) xenograft under sh-control or shSAT1 treatment (right). 
B) Tumor growth in the shSAT1 human cancer (HeLa) xenograft model with anti-IgG or antineutrophil (anti-Ly6G) antibody treatment. C) Numbers of 
neutrophils in spleen of the shSAT1 human cancer (HeLa) xenograft model with anti-IgG or anti-Ly6G treatment at day 14. D) Immunostaining of the 
shSAT1 human cancer (HeLa) xenograft model with anti-IgG or anti-Ly6G treatment. Neutrophils, endothelial cells, and nuclei are indicated by Ly6G, 
CD31, and DAPI, respectively. Scale bars: 100 µm (left). Numbers of Ly6G+ neutrophils per unit area and percentage of CD31+ area in tumor xenograft 
(right). E) mRNA expression of cytokines (Ccl2, Ccl3, Ccl4, Il16, Il33, and Cxcl12) in vehicle- or shSAT1-treated tumor of human cancer (HeLa) xenograft. 
F) Kaplan–Meier plots for estimation of overall survival of patients. Patients were classified into high risk (HR) and low risk (LR) using the 
Lasso-regularized Cox proportional hazard model based on expression profiles of genes with reduced expression following shSAT1 treatment. Data 
represent the mean ± SEM of at least three independent experiments. NS: not significant; *P < 0.05; **P < 0.01; ***P < 0.001.

6 | PNAS Nexus, 2023, Vol. 2, No. 10



suggesting that modulation of NK cell and/or neutrophil behavior 
via SAT1 influences tumor progression.

To investigate whether the effect of shSAT1 on decreased tumor 
volume was due to NK cells or neutrophils, we first examined if in-
hibition of NK cells increased tumor growth in shSAT1 knockdown 
tumors. Although the number of NK cells was significantly lower 
in spleens following this intervention, depletion of NK cells by 
anti-asialo-GM1 antibody did not affect the growth of shRNA knock-
down tumors (Fig. S6A and B). We confirmed that shSAT1 decreased 
the number of neutrophils in tumor by immunofluorescence 
(Fig. S6C). We next hypothesized that lower neutrophil numbers fol-
lowing SAT1 knockdown may decrease tumor growth. We examined 
whether depletion of neutrophils suppresses tumor growth in 
vehicle-treated shRNA control tumors to a similar extent to that 
seen in shSAT1 tumors. Anti-Ly6G antibody treatment significantly 
decreased the number of neutrophils in shRNA control tumors, to 
a similar extent to that seen in SAT1 knockdown tumors and sup-
pressed tumor growth of control shRNA. In contrast, the antibody 
treatment did not significantly affect tumor growth in shSAT tumors 
when compared to growth seen under isotype-matched control anti-
body treatment (Fig. 4B); as expected, the number of neutrophils was 
significantly lower in spleens following this intervention (Fig. 4C). In 
addition, anti-Ly6G antibody significantly decreased neutrophil in-
filtration and angiogenesis in control tumors (Fig. 4D), suggesting 
that the SAT1-N1-acetylspermidine axis decreased neutrophil num-
bers, contributing to decreased tumor growth.

To further examine the role of the SAT1-N1-acetylspermidine 
axis, we examined expression levels of inflammatory cytokines 
in vehicle- or shSAT1-treated tumors (Fig. S6D and E). mRNA ex-
pression levels of Ccl2, Ccl3, Ccl4, Il16, Il33, and Cxcl12 were signifi-
cantly decreased following shSAT1 treatment (Fig. 4E), suggesting 
that the SAT1-N1-acetylspermidine axis stimulates expression of 
inflammatory cytokines promoting infiltration of neutrophils into 
tumors. To investigate the effect of N1-acetylspermidine on neu-
trophil migration, we performed a trans-well migration assay on 
human neutrophil-like cell line HL-60. We found that the addition 
of N1-acetylspermidine to the cell culture increases the cell mi-
gration ability of HL-60 (Fig. S6F), altogether suggesting that acidic 
pH–induced N1-acetylspermidine from cancer cells promotes tu-
mor growth via protumorigenic neutrophil infiltration.

We hypothesized that SAT1 may contribute to cancer progres-
sion and decrease overall survival in patients. We performed a 
Kaplan–Meier survival analysis for genes down-regulated by 
shSAT1 (Table S5) and found that there was markedly reduced 
overall survival in patients with bladder urothelial carcinoma 
(BLCA), glioblastoma multiforme (GBM), kidney renal clear cell 
carcinoma (KIRC), acute myeloid leukemia (LAML), lung adeno-
carcinoma (LUAD), mesothelioma (MESO), pancreatic adenocar-
cinoma (PAAD), skin cutaneous melanoma (SKCM), and 
thymoma (THYM) (Fig. 4F; Table S6), indicating the importance 
of SAT1 in cancer progression and malignancy. The role of 
SAT1, however, may vary across different cell types, which could 
have implications for the proposed therapeutic strategies.

Discussion
In this study, using comprehensive metabolomic analyses, we 
demonstrated that acidic pH induces changes in the polyamine 
metabolic pathway through up-regulation of SAT1 expression, re-
sulting in accumulation of N1-acetyl spermidine, via a protumori-
genic metabolic pathway distinct from those characteristic of 
hypoxia and nutrient starvation. The SAT1-N1-acetylspermidine 
axis stimulated in vivo tumor growth accompanied by infiltration 

of protumor neutrophils, suggesting that this axis can act as a pro-
tumorigenic immunomodulator.

Tumor microenvironments such as those characterized by 
hypoxia and nutrient starvation contribute to tumor malignancy 
(22). In tumor microenvironments, the pH can become as acidic 
as pH 6.4–6.9 due to elevated glycolysis and proton and lactate se-
cretion under hypoxia (23, 24); however, the metabolic reprogram-
ming associated with acidic pH has remained largely unknown. 
We found that acidic pH induces metabolic alteration of poly-
amine pathways through up-regulation of SAT1, a rate-limiting 
enzyme, with the changes being different from those induced by 
hypoxia and nutrient starvation, suggesting the existence of acid-
ic pH–responsive metabolic regulation distinct from those of hyp-
oxia and nutrient starvation. We found that the polyamine 
pathway is involved in a major metabolic response to acidic pH, 
distinct from pathways identified for hypoxic responses (e.g. gly-
colysis) and nutrient starvation (e.g. amino acid metabolism) 
and contributing to the metastatic phenotypes of a variety of can-
cer types (7–10).

Polyamine metabolism has been reported to be regulated in 
highly metastatic cancers, such as castration-resistant prostate 
cancer (7), colon cancer (8), medullomyoblastoma (9), and BRAF 
mutant melanoma (10). SAT1 is a rate-limiting enzyme in poly-
amine metabolism (25, 26) and has been shown to directly regu-
late transcription (27); however, its involvement in cancer 
progression has not been well understood.

We found that SAT1 activity led to accumulation of 
N1-acetylspermidine under conditions of acidic extracellular pH 
(pH 6.8) and stimulated protumor neutrophil infiltration into tu-
mors, consistent with a recent report (12) that polyamines can 
modulate tumor immunity. In addition, we found that lactic acid-
ification, as opposed to lower pH achieved at lower NaHCO3 levels, 
triggered up-regulation of SAT1 expression and accumulation of 
N1-acetylspermidine, indicating that activation of SAT1 was not 
a specific response to low NaHCO3 levels.

SAT1 has previously been reported to be associated with the 
adaptive immune system in the TME, including with CD8+ T cells 
(28). Additionally, we have recently reported that spermidine sup-
presses the proliferation of CD8+ T cells in the syngeneic tumor 
model (29). We found that SAT1 knockdown did not lead to the ac-
cumulation of spermidine (Fig. S4C); therefore, CD8 T cell activa-
tion is not responsible for the reduced tumor volume in the SAT1 
KD tumor in the mouse model. To explore other possible 
mechanisms linking SAT1 in cancer to the TME, in this study, 
we focused on the up-regulation of SAT1 expression in cancer 
cells under acidic pH and the effect of the resulting metabolite, 
N1-acetylspermidine, on protumor immunity.

CD11b+ myeloid cells have been considered important compo-
nents in protumor immunity for their roles in matrix remodeling 
and secretion of proinflammatory cytokines (30). Furthermore, 
CD11b+ myeloid cells were reported to promote the suppression 
of T cell proliferation and are associated with the absence of 
IFN-γ response in the tumor microenvironment during the early 
stages of oncolytic virus therapy (31). Thus, CD11b+ myeloid cells 
are recently gaining attention as indicators of tumorigenicity and 
potent immunotherapeutic targets.

Extensive studies have reported neutrophil heterogeneity and 
specific markers for protumor neutrophils (32, 33). However, in 
this study, we did not differentiate neutrophils based on specific 
subtypes (we used a marker for Ly6G+ neutrophils). We found 
that depletion of neutrophils with anti-Ly6G significantly sup-
presses tumor progression and concluded that anti-Ly6G targeted 
the protumor neutrophil.
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In conclusion, our findings provide evidence that the SAT1- 
N1-acetylspermidine axis plays an important role in immunomodu-
lation and tumor progression in response to extracellular 
acidification. An important goal for future studies will be to under-
stand the mechanisms by which acidic intracellular pH activates 
SAT1 in cancer cells. Based on the results of the present study, we sug-
gest that inhibitors of SAT1-N1-acetylspermidine-mediated immu-
nomodulation may prove to be effective chemotherapeutic agents 
in combination with conventional chemotherapy, offering a thera-
peutic approach to treating acidosis-activated malignant cancers.

Materials and methods
Acidic pH cell culture
Human epithelial cell line derived from pancreatic cancer 
PANC-1, human pancreatic cell line derived from adenocarcin-
oma ascites AsPC-1, human cervical cancer cell line HeLa, human 
epidermoid carcinoma A431, human colorectal carcinoma cell 
lines HCT116, and human neutrophil-like cell line HL-60 were 
purchased from the American Type Culture Collection (ATCC). 
AsPC-1, HeLa, A431, and HCT116 were maintained in Dulbecco’s 
modified Eagle’s medium (DMEM) (Nacalai Tesque) supplemented 
with 10% fetal bovine serum (FBS). PANC-1 and HL-60 were main-
tained in RPMI 1640 medium (Nacalai Tesque) supplemented with 
10% FBS. All cells were maintained at 37°C in a 5% CO2 atmos-
phere, except otherwise specified. Acidic pH culture (pH 6.8) was 
prepared by reducing the amount of NaHCO3 or addition of lactate 
or hydrochloric acid (HCl) based on DMEM (Nissui). Cells were 
treated for 24 h under each condition, unless stated otherwise.

Metabolite extraction and metabolomic analysis
Metabolites extracted from cancer cell and tumor tissue samples 
were measured by CE-MS (Agilent Technologies). For the meas-
urement of cationic metabolites, a fused silica capillary (50 mm 
i.d. × 100 cm) was used with the electrolyte 1 M formic acid. 
Methanol/water (50% v/v) containing 0.1 mM hexakis 
(2,2-difluoroethoxy) phosphazene was added at 10 µL/min as 
sheath solution. In positive ion mode, electrospray ionization 
(ESI)-TOFMS was performed and capillary voltage was set to 
4 kV. Acquired spectrum recalibration was conducted by two ref-
erence standards ([13C isotopic ion of a protonated methanol 
dimer (2 MeOH + H)]+, m/z 66.0632) and ([hexakis(2,2- difluoroe-
thoxy)phosphazene + H]+, m/z 622.0290). To identify metabolites, 
relative migration times of all peaks were measured with normal-
ization to the reference compound 3-aminopyrrolidine, compar-
ing their m/z values and relative migration times to the 
standards. Quantification of metabolite level was performed by 
comparing peak areas of each metabolite to calibration curves 
generated using internal standardization with methionine sul-
fone. Measurement of cationic metabolites, a commercially avail-
able COSMO(+) (chemically coated with cationic polymer) 
capillary (50 mm i.d. × 105 cm), was used with a 50 mM ammo-
nium acetate solution (pH 8.5) as the electrolyte. Methanol/ 
5 mM ammonium acetate (50% v/v) containing 0.1 mM hexakis 
(2,2-difluoroethoxy) phosphazene was applied at 10 mL/min as 
the sheath liquid. ESI-TOFMS was performed in negative ion 
mode, and the capillary voltage was set to 3.5 kV. Trimesate and 
CAS were used for the reference of the internal standards. 
Capillary electrophoresis time-of-flight mass spectrometry 
(CE-TOFMS) raw data were analyzed using Master Hands software 
(Ver. 2.17.0.10). Relative peak areas were calculated by the ratio of 
peak area divided by the internal standards. Metabolite 

concentrations were calculated based on the relative peak area 
between the sample and the standard as previously described 
(18, 34)

RNA-seq data analysis
RNA-seq data were aligned to the human transcriptome (UCSC 
gene) and genome (GRCh37/hg19) references respectively by using 
Burrows–Wheeler Aligner software package. After transcript co-
ordinate was converted to genomic positions, an optimal mapping 
result was chosen from either transcript or genome mapping ac-
cording to minimal distance to the reference. Local realignment 
was completed within in-house short reads aligner with a smaller 
k-mer size (k = 11). Fragments per kilobase of exon per million 
fragment mapped (FPKM) values were calculated for each UCSC 
gene for strand-specific information as previously described (18)

Quantitative real-time PCR
The total RNA of cells was extracted using Isogen reagent (Nippon 
Gene) and converted to cDNA by applying the PrimeScript reverse 
transcriptase (Takara) as per the manufacturer’s instructions. 
Converted cDNA was used for quantitative real-time PCR amplifi-
cation with Thunderbird SYBR Green qPCR mix (Toyobo) and pri-
mers (Table S4). All results of mRNA expression level were 
normalized by the expression level of ACTB.

Western blotting
Aliquots of proteins were separated by SDS–PAGE and transferred to 
nitrocellulose membrane (BioRad Laboratories). Immunodetection 
was carried out with Rabbit polyclonal anti-SAT1 (ProteinTech, 
#10708-1-AP, 1:200), rabbit polyclonal anti-PAOX (ProteinTech, 
#18972-1-AP, 1:3,000), rabbit polyclonal anti-SRM (19858-1-AP, 
ProteinTech, 1:1,500), and mouse monoclonal anti-β-actin 
(Sigma-Aldrich #A5441, 1:5,000): antibodies in combination with 
peroxidase-conjugated affinity-purified donkey antimouse 
(Sigma-Aldrich, 1:1,000) or antirabbit (Cell Signaling Technology, 
1:1,000) IgG and then visualized using SuperSignalTM West Dura 
Extended Duration Substrate (Thermo Fisher Scientific). 
Luminescence images were analyzed by luminescent image analyz-
er (Fusion FX, Vilber).

Overexpression of SAT1
For transient overexpression of SAT1, PANC-1 or HeLa cells were 
transfected with the corresponding plasmid using Lipofectamine 
2000 (Invitrogen). Cells at 70% confluence were incubated for 
24 h with 20 µL of Lipofectamine 2000 and 8 µg of plasmid DNA. 
DNA–lipid complexes were diluted in Opti-Minimal Essential 
Medium (Opti-MEM; Gibco) and incubated for 30 min before being 
added to the cells. After 24 h of transfection, the medium was 
changed to a medium containing serum. Expression level of 
mRNA and metabolite level of cells were analyzed 48 h after 
transfection.

Gene silencing using siRNA or shRNA
siRNAs designed against human SAT1 were obtained commercial-
ly (Thermo Fisher Scientific). In this study, two sequences of 
siRNAs were used against SAT1, designated as siRNA:

sense: 5ʹ-CCUUGAAUAUCUUUCGAUAaa-3ʹ and antisense: 
5ʹ-UAUCGAAAGAUAUUCAAGGag-3ʹ,

siRNA2:
sense: 5ʹ-UAUCGAAAGAUAUUCAAGGag-3ʹ and antisense 5ʹ- 

UAGCAAGUACUCCUUGUCGat-3ʹ, respectively.
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Cells were transfected with siRNAs against target genes or 
negative (scramble) control siRNA using Lipofectamine RNAiMAX 
transfection reagent (Thermo Fisher Scientific) according to the in-
structions of the manufacturer. In addition, two sequences of 
shRNAs were used against SAT1, designated as

shRNA1:
sense: 5ʹ-ccggCCTTGAATATCTTTCGATAAActcgagTTTATCG 

AAAGATATTCAAGGtttttg-3ʹ and antisense: 5ʹ-aattcaaaaaCCTTG 
AATATCTTTCGATAAActcgagTTTATCGAAAGATATTCAAGG-3ʹ

shRNA2:
sense: 5ʹ-aattcaaaaaCCTTGAATATCTTTCGATAAActcgagTTT 

ATCGAAAGATATTCAAGG-3ʹ and antisense 5ʹ-aattcaaaaaCG 
ACAAGGAGTACTTGCTAAActcgagTTTAGCAAGTACTCCTTGTCG-3ʹ, 
respectively. shRNAs expressing 293 T cells was generated for len-
tiviral infection, and shRNA expressing target cells were selected 
with puromycin. The ability of the si/shRNA to inhibit target 
gene expression was assessed posttransfection.

Animal studies and tumor xenograft
PANC-1 or HeLa cells (1 × 107) were subcutaneously injected into 
C.B17/Icr-scidJcl scid/scid mice. Tumor volume was measured 
every other day and analyzed using the paired Student’s t-test. 
All animal care procedures were in accordance with institutional 
guidelines approved by The University of Tokyo.

Immunohistochemical staining
Tumors were isolated, directly embedded in optimal cutting tem-
perature (OCT) compound and stored in −80°C until analysis. 
Frozen tumor tissues were cut 15-µm thick by using Cryostat 
CM1950 (Leica), fixed with 4% paraformaldehyde, and stained 
with Hamster monoclonal antimouse PECAM-1 (Sigma-Aldrich, 
Cat# MAB1398Z; 1:100), rat monoclonal antimouse CD11b (BD 
Pharmingen, Cat# 550282; 1:100), and rat monoclonal antimouse 
Ly6G (BioLegend, Cat# 127602; 1:100) primary antibodies for over-
night at 4°C. The sections were then incubated for 60 min at room 
temperature with Alexa Fluor 488–conjugated goat antirat 
(Thermo Fisher Scientific), Alexa Fluor 568–conjugated goat anti- 
hamster (Thermo Fisher Scientific),, or Alexa Fluor 568–conju-
gated goat antirabbit (Thermo Fisher Scientific) secondary 
antibodies, which were diluted at 1:1,000 in phosphate buffered 
saline (PBS). Tumor sections were mounted on Dapi- 
Fluoromount-G (SouthernBiotech) and then analyzed using a con-
focal microscope (STELLARIS 5, Leica).

Gene expression analysis of mouse immune cell 
populations
To examine the immune cell population in each sample, the ex-
pression of mouse genes was quantified through RNA-seq. The 
process entailed aligning RNA-seq reads to the GRCh38 human 
genome reference and then diverting unmapped reads to the 
mouse genome (mm10) reference using STAR version 2.7.10a 
(35). Utilizing the derived bam files, HTseq version 2.0.2 (36) was 
employed to generate a gene-wise count matrix. The composition 
of immune cell types was analyzed using quanTIseq (37) in the R 
package immunedeconv (version 2.1.0) (38) with default parame-
ters and an input signature matrix.

Violin plots of the differences in the percentage of cell types 
identified by quanTIseq in shSAT1 samples and control samples 
are shown in Fig. 3F.

We then employed the R package DESeq2 (version 1.38.0) (39) to 
identify differentially expressed genes between shSAT1 samples 
and control samples.

The genes that were up-regulated and down-regulated in 
shSAT1 samples compared to control samples were identified us-
ing the following criteria. The down-regulated genes of the 
shSAT1 samples were 73 genes that satisfied the following 
criteria: (i) the log2-fold change (shSAT1 vs control) was ≤log2 
(1/1.2), and (ii) the P-value of DESeq2 (shSAT1 vs control) was ≤0.05.

Flow cytometry analysis
Tumor xenografts were isolated from mice, excised, minced, and 
treated by collagenase (0.75 μg/mL, Roche), DNase I (40 μg/mL, 
Roche), and dispase (0.5 μg/mL, Thermo Fisher Scientific), with rigor-
ous agitation (180 rpm, 37°C, 1 h). The resulting cell suspension was 
passed through cell strainer (BD Falcon) and treated with RBC lysis 
buffer (Invitrogen). After washing by PBS, cells were incubated 
with anti-CD16/32 antibody (BioLegend) for 5 min on ice. The follow-
ing antibodies were purchased from BioLegend and used: APC or 
PerCP-Cy5.5 anti-CD11b mAb (M1/70); PE anti-Ly6C mAb (HK1.4); 
APC anti-CD11c mAb (N418); FITC anti-NK1.1 mAb (PK136); APC 
anti-CD206 mAb (C068C2); FITC anti-F4/80 mAb (BM8); Pacific Blue 
anti-Ly6G mAb (1A8); and Pacific Blue or APC-Cy7 anti-CD45 mAb 
(IM7). The cells were then stained with antibodies in PFE (PBS with 
2% FBS and 1 mM of EDTA) for 20 min on ice and analyzed by BD 
LSR Fortessa (BD Biosciences). Flow cytometry data were collected 
by FACSDiva (BD Biosciences). Collected data were analyzed with 
FlowJo software (v10.2, BD BioSciences).

Migration assay of Hl-60
106 neutrophil (HL-60) cells were seeded on the upper chamber of 
8-µm pore Transwell plate (Corning) in 200 µL of RPMI 1640 sup-
plemented with 1% FBS. In the lower chamber, 500-µL RPMI 
1640 supplemented with 10% FBS was added. Cells were cultured 
for 8 h under with/without 100 µM N1-acetylspermidine, and the 
number of migrated cells in the lower chamber was counted by 
TC20 Automatic Cell Counter (BioRad).

Survival analysis
To evaluate prognosis of cancer patients by differential expression 
profiles of genes in shSAT1 cells, we analyzed RNA-seq expression 
data from following 30 cancer cohorts (49 adrenocortical carcinoma 
[ACC], 330 BLCA, 1,073 breast invasive carcinoma [BRCA], 236 cervical 
squamous cell carcinoma and endocervical adenocarcinoma [CESC], 
25 cholangiocarcinoma [CHOL], 161 colon adenocarcinoma [COAD], 
45 lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), 147 
esophageal carcinoma (ESCA), 163 GBM, 465 head and neck squamous 
cell carcinoma [HNSC], 84 kidney chromophobe [KICH], 595 KIRC, 286 
kidney renal papillary cell carcinoma [KIRP], 92 LAML, 481 brain lower 
grade glioma [LGG], 365 liver hepatocellular carcinoma [LIHC], 490 
LUAD, 468 lung squamous cell carcinoma [LUSC], 32 MESO, 302 ovar-
ian serous cystadenocarcinoma [OV], 152 PAAD, 483 prostate adeno-
carcinoma [PRAD], 52 rectum adenocarcinoma [READ], 208 SARC, 
290 SKCM, 344 stomach adenocarcinoma [STAD], 521 thyroid carcin-
oma [THCA], 115 THYM, 376 Uterine Corpus Endometrial Carcinoma 
[UCEC], and 21 uterine carcinosarcoma [UCS]) from the Broad TCGA 
GDAC web site (http://gdac.broadinstitute.org/).

To build a SAT1 signature-based prognostic classifier, we utilized 
a Lasso-regularized Cox proportional hazard model using the glmnet 
package (version 4.1.2) in R statistical environment (version 4.2.2). 
The tuning parameter λ in the Lasso regularization was chosen 
based on the corrected Akaike’s information criterion. The Cox mod-
el for each cohort is summarized in Table S6. Out of the 30 cohorts, 
21 studies (ACC, BRCA, CESC, CHOL, COAD, DLBC, ESCA, HNSC, 
KICH, KIRP, LGG, LIHC, LUSC, OV, PRAD, READ, SARC, STAD, 
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THCA, UCEC, and UCS) were not used for further analysis. For the re-
maining nine cohorts (BLCA, GBM, KIRC, LAML, LUAD, MESO, PAAD, 
SKCM, and THYM), patients were classified into two groups based on 
their risk score in the Cox model. The prognostic significance of the 
Cox model was evaluated by Kaplan–Meier method, and log-rank 
test was used in the calculation of the P-values, which were further 
corrected for multiple hypothesis testing using the Benjamini– 
Hochberg procedure as previously described (18).
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