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ABSTRACT

With expanding applications of next-generation se-
quencing in medical genetics, increasing computa-
tional methods are being developed to predict the
pathogenicity of missense variants. Selecting op-
timal methods can accelerate the identification of
candidate genes. However, the performances of dif-
ferent computational methods under various condi-
tions have not been completely evaluated. Here, we
compared 12 performance measures of 23 methods
based on three independent benchmark datasets: (i)
clinical variants from the ClinVar database related to
genetic diseases, (ii) somatic variants from the IARC
TP53 and ICGC databases related to human cancers
and (iii) experimentally evaluated PPARG variants.
Some methods showed different performances un-
der different conditions, suggesting that they were
not always applicable for different conditions. Fur-
thermore, the specificities were lower than the sen-
sitivities for most methods (especially, for the experi-
mentally evaluated benchmark datasets), suggesting
that more rigorous cutoff values are necessary to dis-
tinguish pathogenic variants. Furthermore, REVEL,
VEST3 and the combination of both methods (i.e.
ReVe) showed the best overall performances with all
the benchmark data. Finally, we evaluated the perfor-
mances of these methods with de novo mutations,
finding that ReVe consistently showed the best per-
formance. We have summarized the performances of
different methods under various conditions, provid-
ing tentative guidance for optimal tool selection.

INTRODUCTION

In recent decades, next-generation sequencing (NGS) rep-
resented by whole-exome sequencing (WES) rapidly pro-
moted the understanding of the genetic mechanisms of hu-
man diseases (1,2). Numerous sequence variants in the hu-
man genome can be detected by WES, most of which are
missense variants that cause amino acid changes in pro-
teins (3,4). However, only a small subset of missense vari-
ants may be involved in human diseases, including cancers,
Mendelian diseases, and complex and undiagnosed diseases
(5). Experimental validation of many missense variants is
infeasible because it would waste tremendous manpower
and resources. To address these limitations, a growing num-
ber of in silico computational methods have been developed
based on sequence homology, protein structure and evolu-
tionary conservation (6–26). In general, these methods can
be classified into three kinds: (i) function-prediction meth-
ods that predict the likelihood of a given missense variant
causing pathogenic changes in protein function, (ii) conser-
vation methods that use multiple alignments to measure the
degree of conservation at a given nucleotide site and (iii) en-
semble methods that integrate information from multiple-
component methods.

These computational methods have been widely used to
predict potentially deleterious variants in human diseases
(27,28) and were described in our previous studies (29,30).
To facilitate the interpretation of human genomic variants
(31,32), we integrated the functional consequences of dif-
ferent computational methods, allele frequencies, and other
genetic and clinical information related to all possible cod-
ing variants into a database, referred to as VarCards (33).
However, it is unclear how the performances of these com-
putational methods vary under different conditions. Al-
though some previous studies compared the performances
of existing computational methods (34–39), limited bench-
mark datasets and no experimentally evaluated data were
used in these comparative studies. In addition, these stud-
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ies mainly focused on measuring the area under the curve
(AUC) with receiver operating characteristic (ROC) curves,
and other important measures (such as the accuracy at 95%
sensitivity or specificity) were not fully evaluated. For ex-
ample, clinicians and geneticists may adopt computational
methods to estimate the pathogenicity of missense variants
in genetic counseling for known disease-causing genes (40),
which would be expected to distinguish pathogenic vari-
ants with a high sensitivity (a true positive rate [TPR] over
95%) (25). Furthermore, some recently developed tools,
such as REVEL (23), VEST3 (16) and M-CAP (25), were
not fully evaluated in previous studies. Therefore, a more
comprehensive and systematic analysis of pathogenicity-
computation methods is highly needed to meet the demands
of different users and assist them in selecting appropriate
methods.

We did not involve in developing or investing (scientif-
ically or otherwise) in any of pathogenicity-computation
methods, hence we independently evaluated 12 performance
measures of 23 methods based on three classes of bench-
mark datasets. These methods showed different perfor-
mances using different data sources and under different
conditions. REVEL, VEST3 and the combination of both
tools showed the best overall performance under most con-
ditions. Based on our findings, clinicians and researchers
can choose appropriate methods or use several tools simul-
taneously to interpret the pathogenicity of missense vari-
ants.

MATERIALS AND METHODS

Pathogenicity-computation methods

We compared 23 pathogenicity-computation methods, in-
cluding (i) 10 function-prediction methods: FATHMM
(26), fitCons (19), LRT (8), MutationAssessor (14), Muta-
tionTaster (13), PolyPhen2-HDIV (11), PolyPhen2-HVAR
(11), PROVEAN (15), SIFT (10) and VEST3 (16); (ii)
four conservation methods: GERP++ (12), phastCons (6),
phyloP (7) and SiPhy (9); and (iii) nine ensemble meth-
ods: CADD (17), DANN (21), Eigen (24), FATHMM-
MKL (22), GenoCanyon (20), M-CAP (25), MetaLR (18),
MetaSVM (18) and REVEL (23) (Supplementary Table
S1). The predicted pathogenicity scores of the 23 methods
were directly downloaded from the dbNSFP database v3.3
(41). These scores have been widely used in medical genetics
for distinguishing deleterious and tolerable missense vari-
ants. All of the prediction scores and other genetic and clin-
ical information were integrated into the online database,
VarCards (33), which we recently developed. The cutoff val-
ues used for distinguishing deleterious missense variants
were based on the dbNSFP database (41), ANNOVAR (42)
or the original studies (Supplementary Table S1).

Benchmark datasets of missense variants

Three independent data sources were used as benchmark
datasets to compare the performances of the 23 compu-
tational methods. Both deleterious missense variants and
benign missense variants were included in each bench-
mark dataset (Supplementary Table S2). The first bench-
mark dataset was sourced from the ClinVar database (43),

which compiles clinically observed genetic variants (https:
//www.ncbi.nlm.nih.gov/clinvar/). As recommended in the
American College of Medical Genetics and Genomics
(ACMG) guidelines (40), terms such as ‘pathogenic’, ‘likely
pathogenic’, ‘benign’, ‘likely benign’ and ‘uncertain signif-
icance’ were adopted to describe the variants in ClinVar
database. We only selected ‘pathogenic’ and ‘benign’ mis-
sense variants deposited in the ClinVar database after 4
March 2015 to ensure the accuracy of benchmark dataset
and to avoid any overlaps between our tested benchmark
data and the training data used for the 23 computational
methods.

As TP53 is the most commonly mutated gene in human
cancers, the second dataset was downloaded from the IARC
TP53 database (44,45), which contains various types of clin-
ical and genetic data on human TP53 variants related to dif-
ferent cancers (http://p53.iarc.fr/). To our knowledge, IARC
TP53 database includes the maximum number of somatic
missense variants whose pathogenicity have been charac-
terized. The defined functional and non-functional somatic
missense variants detected in patients with various cancers
in the IARC TP53 database were used as benchmark dataset
for further analysis. Non-functional variants in the IARC
TP53 database are variants that significantly changed the
expression level of the TP53 proteins, whereas functional
variants did not. The term of ‘non-functional variant’ in
the IARC TP53 database is analogous to the pathogenic-
ity measure of ‘pathogenic’ reported in ClinVar. The COS-
MIC database included somatic variants across several can-
cers; however, functional effects or clinical significance of
all collected variants were unknown. We then sourced mis-
sense variants from the ICGC database (http://icgc.org/),
and only 811 somatic missense variants with clinical signif-
icance (pathogenic/likely pathogenic and benign/likely be-
nign mutations) were collected for further analysis.

The third benchmark dataset was sourced from a large-
scale experimentally evaluated study (46), wherein a com-
plementary DNA library was constructed that consisted of
all possible amino acid substitutions in the peroxisome pro-
liferator activated receptor � (PPARG) gene. In this study, a
pooled functional assay was developed and experimentally
evaluated with all possible protein variants. The pathogenic-
ity for any missense variants of the PPARG gene was
sourced from the Missense InTerpretation by Experimental
Response (MITER) database (http://miter.broadinstitute.
org/).

Measures used for performance evaluation

We evaluated the performances of the 23 computational
methods based on following 12 criteria: (i) The positive
predictive value (PPV) represents the conditional proba-
bility that deleterious variants in the benchmark data are
correctly classified as deleterious variants by the computa-
tional method. (ii) The negative predictive value (NPV) rep-
resents the conditional probability that benign variants in
the benchmark data are correctly classified as benign vari-
ants by the computational method. (iii) The false negative
rate (FNR) represents the proportion of deleterious vari-
ants that are incorrectly predicted to be benign variants. (iv)
The sensitivity (also referred to as the TPR) represents the

https://www.ncbi.nlm.nih.gov/clinvar/
http://p53.iarc.fr/
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http://miter.broadinstitute.org/
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proportion of deleterious variants in the benchmark data
that are correctly predicted to be deleterious variants by the
computational method. The FNR and sensitivity are paired
measures whose sum = 100%. (v) The false positive rate
(FPR) represents the proportion of benign variants in the
benchmark data that are incorrectly predicted to be delete-
rious variants by the computational method. (vi) The speci-
ficity (also referred to as the true negative rate) represents
the proportion of benign variants in the benchmark data
that are correctly predicted to be benign variants by the
computational method. The FPR and specificity are paired
measures whose sum = 100%. (vii) The accuracy represents
the proportion of benign variants and deleterious variants
in the benchmark data that are correctly predicted to be
benign variants and deleterious variants, respectively. (viii)
The Mathew correlation coefficient (MCC) represents the
correlation coefficient between the observed and predicted
classifications, within a range of −1 to 1. A coefficient of 1
indicates a perfect prediction, 0 indicates a random predic-
tion and −1 indicates complete disagreement between the
prediction and the true classification. (ix) The ROC curve
reflects the sensitivity and specificity at different thresholds
for each computational method. (x) For each ROC, the
AUC is a single scalar value, which reduces the complex-
ity of the ROC curve. Generally, the higher the AUC, the
better the performance of computational method. In this
study, the ‘pROC’ package (47) was used to plot the ROC
curves. (xi) The high-sensitivity regional AUC (hser-AUC)
is defined as the area under the ROC curve corresponding
to high sensitivity (TPR > 95%). (xii) The high-specificity
regional AUC (hspr-AUC) is defined as the area under the
ROC curve corresponding to high specificity (FPR < 5%).
The hser-AUC and hspr-AUC were evaluated to meet the
needs of some users who expect to distinguish deleterious
variants with a high sensitivity or specificity. Some of the
above measures are derived from the parameters of true pos-
itive (TP), true negative (TN), false positive (FP) and false
negative (FN), as shown below.

PPV = TP
TP + FP

NPV = TN
TN + FN

FNR = FN
TP + FN

Sensitivity = TP
TP + FN

FPR = FP
TN + FP

Specificity = TN
TN + FP

Accuracy = TP + TN
TP + FP + TN + FN

MCC = TP × TN − FP × FN
√

(TN + FN) × (TN + FP) × (TP + FN) × (TP + FP)

Combination of REVEL and VEST3

Because the REVEL and VEST3 methods showed the
best overall performances with all three sets of benchmark
data, we combined the predictive scores of both meth-
ods and named the new method as ReVe. The predictive
score of both the REVEL and VEST3 methods represented
the probability that a missense variant was classified as
pathogenic. Because the distribution of the predicted scores
of all possible missense variants in the whole exome of the
two methods are obviously different, we cannot combine
these methods simply by calculating the average predictive
score. To combine the two computational methods, we sep-
arately ranked the predictive scores of all possible missense
variants in the whole exome obtained with the REVEL and
VEST3 methods, and calculated the percentile value of each
missense variant in each method. The individual percentile
values of the REVEL and VEST3 methods were uniformly
distributed. Then, for each missense variant, we calculated
the mean percentile values based on both of these two meth-
ods. Finally, we ranked the mean values for all missense
variants in the whole exome. To facilitate interpretation, we
present the final predictive scores of ReVe as percentiles that
reflect the relative rank of pathogenicity for missense vari-
ants, with the lowest score (i.e. 0.00) being the most benign
variant and the highest score (i.e. 1.00) being the most dele-
terious variant.

De novo mutations (DNMs) from the Simons Simplex Col-
lection (SSC)

DNMs identified in 2508 autism spectrum disorder (ASD)
patients and 1911 unaffected siblings were sourced from the
SSC (48,49) and had been previously catalogued in the NP
de novo database that we developed (30). The VarCards (33)
and ANNOVAR (42) were used to annotate these DNMs as
done in our previous studies (30,33), including functional
effects at the transcription level (stop-gain, stop-loss, splic-
ing, frameshift, non-frameshift, missense, synonymous) and
functional consequences of the 23 computational methods
and ReVe. We then compared differences in the mutation
rates for predicted deleterious missense variants, as well as
benign missense variants by the computational methods in
the ASD and sibling groups.

RESULTS

We performed an extensive investigation of the core model,
training data, testing data and updated information of the
23 computational methods (Supplementary Table S1), and
found that most of these computational methods trained
their models based on variants from HGMD and UniProt,
and the genomic differences among mammals, and that
none of these methods trained their model using variants
from the ClinVar, TP53 or MITER databases. In addition,
most of these methods (except MutationAssessor, VEST3,
phastCons and PhyloP) have not been updated since 4
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March 2015. To avoid potential overlaps between bench-
mark data in this study and training data in the compu-
tational methods, only the ‘pathogenic’ and ‘benign’ mis-
sense variants recorded after 4 March 2015 in the ClinVar
database were used for further analysis. Furthermore, al-
though the benchmark data we used in present study and
the training data of computational methods were sourced
from different database, potential circularity may exist, as
previously reported (35). We therefore removed all vari-
ants from ClinVar benchmark data that overlapped with
the training data of the computational methods including
variants from HGMD and UniProt, finally resulting in 2098
pathogenic variants and 2782 benign variants (Supplemen-
tary Table S2).

Performance evaluations based on germline variants in hu-
man genetic diseases

Based on the clinically observed genetic variants from the
ClinVar database (37), we noted that the predicted values
of 2141 (43.87%), 995 (20.39%), 357 (7.32%), 299 (6.13%)
and 299 (6.13%) of the 4880 testing variants were not avail-
able for the M-CAP, LRT, MutationAssessor, Eigen and
fitCons methods, respectively. The evaluation of 12 perfor-
mance measures for all the 23 methods is summarized in
Table 1. We found that the PPV ranged from 51.61% to
83.03% (median, 64.47%), and four methods (MetaSVM,
REVEL, M-CAP and MetaLR) had a PPV > 80% (Sup-
plementary Figure S1a). The NPV values of the 23 methods
were generally higher than those of the PPV values, ranging
from 60.64% to 94.93% (median, 87.07%), and seven meth-
ods (MutationTaster, FATHMM-MKL, CADD, Eigen,
GERP++, VEST3 and PolyPhen2-HDIV) had NPV val-
ues > 90% (Supplementary Figure S2a). In addition, we
found that the specificities (100% – the FPR) ranged from
34.80% to 89.95% (median, 64.75%, Supplementary Fig-
ures S3 and S4) and that the sensitivities (100% – the
FNR) ranged from 50.52% to 96.07% (median, 88.24%,
Supplementary Figures S5 and S6). The overall specifici-
ties were much lower than the sensitivities, suggesting that
some predicted deleterious variants were actually benign
variants and that some methods require more rigorous
cutoff values when distinguishing deleterious variants. We
noted that only two methods (REVEL and VEST3) showed
>80% sensitivity and specificity. Generally, only two meth-
ods [REVEL (84.43%) and VEST3 (84.27%)] presented an
accuracy >80% (Supplementary Figure S7a). Furthermore,
we found that REVEL and VEST3 consistently showed the
highest MCC scores (Supplementary Figure S8a).

We then evaluated the performances of 23 computa-
tional methods by measuring their AUCs. Compared to the
other methods, the VEST3 (AUC = 0.929) and REVEL
(AUC = 0.920) methods showed the best overall perfor-
mance, followed by CADD (AUC = 0.877), MetaLR (AUC
= 0.874) and Eigen (AUC = 0.871) (Table 1 and Fig-
ure 1A). The AUCs of other computation methods ranged
from 0.610 to 0.865. Popularly used methods, such as SIFT
(AUC = 0.860), PolyPhen2-HDIV (AUC = 0.839) and
PolyPhen2-HVAR (AUC = 0.865) performed medially, but
were superior to conservation-only methods. Given that
clinicians and geneticists sometimes require that compu-

tational methods present with a high accuracy at a high
sensitivity or specificity (typically >95%), we further com-
pared the hser-AUC and hspr-AUC values, which were im-
portant for genetic testing (25), but were ignored in pre-
vious comparative studies (34–39). As a result, we found
that VEST3 (0.729), MetaLR (0.703), REVEL (0.689) and
CADD (0.683) showed the best performances with hser-
AUC values > 0.68 (Table 1 and Figure 1B). In addition,
REVEL (0.756), VEST3 (0.756) and MetaSVM (0.693)
showed the best performances in terms of the hspr-AUC
(Table 1 and Figure 1C). It is worth noting that VEST3
and REVEL showed better performances for all AUC, hser-
AUC and hspr-AUC measures. Both methods have a FPR
< 30% at a TPR of 95% (Figure 1B) and a TPR close to
70% at a FPR of 5% (Figure 1C).

Most pathogenic variants of human genetic disease were
extremely rare, we therefore characterized the allele fre-
quency (AF) of ClinVar benchmark data and found that
over 99% of pathogenic variants have AFs < 0.1% and
over 80% of them were not observed in GnomAD database.
Therefore, our results can provide users guidance for distin-
guishing rare pathogenic variants.

Performance evaluations based on somatic variants of human
cancers

We then collected numerous function-defined somatic mis-
sense variants from the IARC TP53 database (44,45), which
comprises TP53 gene variations related to different human
cancers. This collection contained in 477 non-functional
missense variants and 537 functional missense variants
(Supplementary Table S2). The performance evaluation of
the 23 methods is summarized in Table 2. Generally, most
of the 23 methods presented higher NPVs (ranging from
64.66% to 100%, median value of 90.78%, Supplemen-
tary Figure S2b) and sensitivities (ranging from 50.73%
to 100%, median value of 94.76%, Supplementary Figure
S5b), but lower PPVs (ranging from 47.04% to 76.64%,
median value of 63.71%, Supplementary Figure S1b) and
specificity (ranging from 0.00% to 80.07%, median value
of 51.96%, Supplementary Figure S3b). These data sug-
gested that some computational methods need to employ
more rigorous cutoff values for predicting deleterious so-
matic missense mutations. In general, the PROVEAN, SIFT
and VEST3 methods presented the highest accuracies (Sup-
plementary Figure S7b) and MCC scores (Supplementary
Figure S8b).

We found that two methods had AUCs > 0.90
(VEST3 = 0.912, REVEL = 0.901) and that seven
methods (PROVEAN, MetaLR, PolyPhen2-HVAR, Mu-
tationAssessor, SIFT, FATHMM, PolyPhen2-HDIV) had
AUCs > 0.85 (Figure 1D and Table 2). We note that none
of these nine methods with high AUCs were conservation-
only methods. In addition, we found that the SIFT (0.691),
PROVEAN (0.688), CADD (0.679), PolyPhen2-HVAR
(0.665), VEST3 (0.663), REVEL (0.663) and PolyPhen2-
HDIV (0.655) methods had relative hser-AUC values > 0.65
(Figure 1E and Table 2). Furthermore, the VEST3 (0.727),
MetaLR (0.694), MutationAssessor (0.674), PROVEAN
(0.666) and REVEL (0.664) methods had relative hspr-
AUCs > 0.65 (Figure 1F and Table 2). Together, only three
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Table 1. Performance evaluation based on ClinVar benchmark data

Methods Missing PPV (%)
NPV
(%)

Specificity
(%)

FPR
(%)

Sensitivity
(%)

FNR
(%)

Accuracy
(%) MCC AUC

hser-
AUC

hspr-
AUC

Class one: function prediction methods
FATHMM 195 63.48 67.35 77.84 22.16 50.52 49.48 66.02 0.296 0.694 0.536 0.586
fitCons 299 51.61 64.47 62.23 37.77 54.01 45.99 58.72 0.162 0.611 0.505 0.509
LRT 995 72.28 87.52 67.63 32.37 89.75 10.25 78.35 0.586 0.789 0.631 0.521
MutationAssessor 357 68.42 83.15 69.66 30.34 82.32 17.68 75.28 0.518 0.850 0.584 0.668
MutationTaster 34 62.01 94.93 55.56 44.44 96.07 3.93 72.99 0.542 0.610 0.560 0.504
PolyPhen2-HDIV 52 61.84 90.26 56.58 43.42 92.02 7.98 71.93 0.503 0.839 0.644 0.551
PolyPhen2-HVAR 52 68.50 88.47 68.97 31.03 88.24 11.76 77.32 0.571 0.865 0.657 0.627
PROVEAN 134 73.03 83.45 76.99 23.01 80.32 19.68 78.45 0.569 0.858 0.617 0.628
SIFT 190 67.11 86.78 67.90 32.10 86.36 13.64 75.86 0.541 0.860 0.633 0.597
VEST3 16 77.95 90.33 81.03 18.97 88.55 11.45 84.27 0.689 0.929 0.729 0.756
Class two: conservation methods
GERP++ 16 52.48 91.12 34.80 65.20 95.50 4.50 60.90 0.364 0.739 0.598 0.507
phastCons 0 63.60 87.58 61.86 38.14 88.37 11.63 73.26 0.507 0.767 0.642 0.517
phyloP 0 61.13 88.96 56.51 43.49 90.71 9.29 71.21 0.486 0.848 0.619 0.594
SiPhy 17 63.65 82.12 64.75 35.25 81.40 18.60 71.93 0.460 0.776 0.625 0.515
Class three: ensemble methods
CADD 1 63.96 93.19 59.99 40.01 94.18 5.82 74.69 0.556 0.877 0.683 0.584
DANN 1 64.47 83.32 65.71 34.29 82.55 17.45 72.95 0.480 0.807 0.649 0.544
Eigen 299 65.05 91.97 62.88 37.12 92.64 7.36 75.59 0.563 0.871 0.669 0.595
FATHMM-MKL 1 56.54 93.70 44.36 55.64 96.04 3.96 66.57 0.451 0.822 0.663 0.552
GenoCanyon 0 56.10 80.99 50.22 49.78 84.37 15.63 64.90 0.358 0.683 0.561 0.509
M-CAP 2141 80.51 60.64 35.00 65.00 92.20 7.80 77.58 0.335 0.814 0.562 0.622
MetaLR 31 80.28 75.98 88.21 11.79 63.24 36.76 77.44 0.538 0.874 0.703 0.670
MetaSVM 31 83.03 77.09 89.95 10.05 64.77 35.23 79.09 0.574 0.858 0.547 0.693
REVEL 30 81.12 87.07 85.27 14.73 83.33 16.67 84.43 0.684 0.920 0.689 0.756

AUC, area under the curve; FNR, false negative rate; FPR, false positive rate; hser-AUC, high-sensitivity regional area under the curve; hspr-AUC, high-
specificity regional area under the curve; MCC, Mathew correlation coefficient; NPV, negative predictive value; PPV, positive predictive value. ClinVar is
an open database that aggregates clinically observed genetic variants. We obtained 4880 missense variants from this database, including 2098 pathogenic
variants and 2782 benign variants.

Table 2. Performance evaluation based on TP53 benchmark data

Methods Missing PPV (%)
NPV
(%)

Specificity
(%)

FPR
(%)

Sensitivity
(%)

FNR
(%)

Accuracy
(%) MCC AUC

hser-
AUC

hspr-
AUC

Class one: function prediction methods
FATHMM 0 47.04 NA 0.00 100.00 100.00 0.00 47.04 NA 0.877 0.612 0.638
fitCons 0 47.04 NA 0.00 100.00 100.00 0.00 47.04 NA 0.521 0.521 0.501
LRT 29 70.38 82.73 66.67 33.33 85.05 14.95 75.53 0.524 0.731 0.556 0.513
MutationAssessor 1 64.49 92.56 53.36 46.64 95.18 4.82 73.05 0.526 0.880 0.634 0.674
MutationTaster 0 60.92 90.81 46.00 54.00 94.76 5.24 68.93 0.459 0.568 0.538 0.502
PolyPhen2-HDIV 0 58.48 93.30 38.92 61.08 96.86 3.14 66.17 0.430 0.865 0.655 0.556
PolyPhen2-HVAR 0 61.01 92.45 45.62 54.38 95.81 4.19 69.23 0.471 0.883 0.665 0.595
PROVEAN 0 76.64 87.77 76.16 23.84 88.05 11.95 81.76 0.643 0.898 0.688 0.666
SIFT 0 67.68 90.78 60.52 39.48 93.08 6.92 75.84 0.560 0.879 0.691 0.606
VEST3 0 65.61 92.86 55.68 44.32 95.18 4.82 74.26 0.545 0.912 0.663 0.727
Class two: conservation methods
GERP++ 0 57.67 81.23 41.90 58.10 89.10 10.90 64.10 0.347 0.732 0.577 0.541
phastCons 0 67.43 78.92 65.55 34.45 80.29 19.71 72.49 0.461 0.751 0.591 0.517
phyloP 0 64.73 78.69 60.52 39.48 81.55 18.45 70.41 0.427 0.802 0.561 0.584
SiPhy 4 65.45 66.84 71.48 28.52 60.38 39.62 66.24 0.321 0.731 0.537 0.531
Class three: ensemble methods
CADD 0 63.71 92.08 51.96 48.04 94.97 5.03 72.19 0.512 0.841 0.679 0.577
DANN 0 64.78 76.85 61.82 38.18 79.04 20.96 69.92 0.412 0.752 0.638 0.520
Eigen 0 69.14 85.78 65.18 34.82 87.84 12.16 75.84 0.540 0.849 0.632 0.618
FATHMM-MKL 0 57.54 84.86 39.66 60.34 92.03 7.97 64.30 0.367 0.804 0.601 0.539
GenoCanyon 0 69.34 64.66 80.07 19.93 50.73 49.27 66.27 0.324 0.679 0.501 0.520
M-CAP 11 47.49 100.00 0.95 99.05 100.00 0.00 47.76 0.067 0.803 0.614 0.560
MetaLR 0 47.94 100.00 3.54 96.46 100.00 0.00 48.92 0.130 0.898 0.628 0.694
MetaSVM 0 48.13 100.00 4.28 95.72 100.00 0.00 49.31 0.144 0.578 0.562 0.562
REVEL 0 56.20 94.54 32.22 67.78 97.90 2.10 63.12 0.391 0.901 0.663 0.664

AUC, area under the curve; FNR, false negative rate; FPR, false positive rate; hser-AUC, high-sensitivity regional area under the curve; hspr-AUC, high-
specificity regional area under the curve; MCC, Mathew correlation coefficient; NA, not available; NPV, negative predictive value; PPV, positive predictive
value. The IARC TP53 Database compiles TP53 mutation data that have been reported in the peer-reviewed literature. We obtained 1014 somatic missense
mutations that have been reported in this database, including 477 non-functional mutations and 537 functional mutations.
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Figure 1. Overall performance of the computational methods with the three sets of benchmark data. The AUC, hser-AUC and hspr-AUC of all computa-
tional methods are shown, based on germline variants of human genetic diseases from the ClinVar database (A–C), somatic variants of human cancers from
the IARC TP53 database (D–F) and experimentally validated PPARG variants (G–I). The AUC, hser-AUC and hspr-AUC values for each computational
method are shown in the figures. The solid lines represent function-prediction methods, the dashed lines represent conservation methods and the dotted
lines represent ensemble methods. The performance measures of AUC, hser-AUC and hspr-AUC does not rely on the cutoff values. This figure is online
available interactively at http://159.226.67.237/sun/roc/.

http://159.226.67.237/sun/roc/
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methods (VEST3, REVEL and PROVEAN) showed both
hser-AUCs and hspr-AUCs > 0.65, based on the TP53
benchmark data.

To further evaluate their performance using somatic
variants, we collected missense variants from the ICGC
database. The functional effects of most of the collected
variants in the ICGC database were unknown, only 763
missense variants were classified into ‘pathogenic/likely
pathogenic mutations’ and 48 variants were classified into
‘benign/likely benign mutations’. Based on these variants,
we re-evaluated the performances of the 23 computational
methods and found that most showed similar performances,
based on the IARC TP53 benchmark data (Supplementary
Table S3). The REVEL (AUC = 0.896) and VEST3 (AUC
= 0.890) methods once again exhibited the best overall per-
formances.

Performance evaluations based on experimentally validated
variants

To further evaluate the performance of these 23 methods, we
collected benchmark data containing 147 pathogenic vari-
ants and 2386 benign variants in the PPARG gene that were
experimentally validated in a pooled functional assay (46)
(Supplementary Table S2). Unlike ClinVar datasets which
were directly submitted by various researchers, all entries in
the PPARG dataset have been experimentally validated and
fewer false positive variants exist in the PPARG datasets
than in the ClinVar datasets. We found that most meth-
ods showed relatively high NPVs (ranging from 94.20% to
100%, median value of 98.92%, Supplementary Figure S2c),
FPRs (ranging from 33.29% to 90.65%, median value of
70.52%, Supplementary Figure S4c), and sensitivities (rang-
ing from 65.31% to 100%, median value of 96.6%, Supple-
mentary Figure S5c), but relatively low PPVs (ranging from
6.16% to 13.63%, media value of 7.62%, Supplementary
Figure S1c), specificities (ranging from 9.35% to 66.71%,
median value of 29.49%, Supplementary Figure S3c), and
FNRs (ranging from 0.00% to 34.69%, median value of
3.4%, Supplementary Figure S6c) (Table 3). Similar to
the above two benchmark datasets, these results suggested
that most deleterious variants predicted by some computa-
tional methods were actually benign variants. In addition,
we found that the fitCons, MutationAssessor, PROVEAN
and FATHMM methods had the highest accuracies (Sup-
plementary Figure S7c) and that the PROVEAN, Muta-
tionAssessor, REVEL, SIFT and VEST3 methods had the
highest MCC scores (Supplementary Figure S8c).

Compared with the other methods, the VEST3 method
had the best overall performance in PPARG dataset with an
AUC of 0.880, followed by PROVEN with an AUC of 0.855,
MutationAssessor with an AUC of 0.852 and REVEL with
an AUC of 0.849 (Table 3 and Figure 1G). In addition, we
found that REVEL (0.722) and VEST3 (0.719) had hser-
AUCs > 0.70, followed by CADD with a hser-AUC of
0.692 and SIFT with a hser-AUC of 0.658 (Table 3 and Fig-
ure 1H). Furthermore, VEST3 had an hspr-AUC of 0.646,
which was higher than the hspr-AUC values of 0.623 for
LRT, 0.599 for MutationAssessor, 0.594 for MetaLR, 0.593
for PROVEN and 0.585 for REVEL (Table 3 and Figure 1I).
These results indicated that REVEL and VEST3 showed the

best overall performances based on the experimentally val-
idated benchmark data.

Correlation of computational methods

Based on the ClinVar benchmark dataset, we calculated
the Spearman rank correlation coefficient between any
two computational methods and found that fitCons, Mu-
tationTaster, FATHMM, M-CAP and GenoCanyon were
lowly to moderately correlated with other methods and
the rest of methods were moderately to highly correlated
with each other (Supplementary Figure S10a). We then
respectively investigated consistencies between computa-
tional methods based on ClinVar deleterious data or be-
nign data. In particular, we found that M-CAP, REVEL,
MetaLR and MetaSVM were highly correlated with each
other and the rest of methods were almost lowly correlated
based on the ClinVar deleterious data (Supplementary Fig-
ure S10b). In addition, MutationTaster, fitCons and Geno-
Canyon were lowly correlated with other methods, Eigen,
GERP++, phastCons, phyloP and FATHMM-MKL were
highly correlated with each other and the rest of meth-
ods were moderately correlated with other methods based
on ClinVar benign data (Supplementary Figure S10c). We
also analyzed their consistencies based on the somatic TP53
mutation benchmark data (Supplementary Figure S10d–f)
and the experimentally PPARG validated benchmark data
(Supplementary Figure S10g–i) and observed similar re-
sults, compared with the ClinVar benchmark data. Gener-
ally, most of methods exhibited lower correlation based on
deleterious data than benign data for all benchmark data,
suggesting that these methods have high consistencies for
distinguishing benign variants but low consistencies for dis-
tinguishing deleterious variants.

To further investigate the correlations between the com-
putational methods, we then characterized the respective
ratios of overlapping TP, TN, FP or FN variants among
computational methods, based on the ClinVar benchmark
dataset. Specifically, most methods moderately to highly
shared TP and TN variants (Supplementary Figure S11a
and b), but lowly to moderately shared FP and FN variants
(Supplementary Figure S11c and d), suggesting the cor-
rectly predicted variants were obviously shared, but that the
incorrectly predicted variants were not obviously consistent
among the different methods. In addition, we found that
TP variants exhibited more consistencies than the TN vari-
ants and that the FP variants exhibited more consistencies
than the FN variants. Together, these results can provide
researches guidance in further study for combining differ-
ent methods and obtaining better performance, compared
to standalone methods.

Combining the REVEL and VEST3 methods

Based on the three sets of benchmark data, we found
that the REVEL and VEST3 methods had the best over-
all performance. We then evaluated whether the combina-
tion of both methods (i.e. ReVe) could achieve better per-
formance than either method individually with the three
benchmark datasets (Supplementary Figure S12), based on
measures of AUC, hser-AUC and hspr-AUC. For the Clin-
Var benchmark dataset, the AUC of the combined ReVe



7800 Nucleic Acids Research, 2018, Vol. 46, No. 15

Table 3. Performance evaluation based on PPARG benchmark data

Methods Missing PPV (%)
NPV
(%)

Specificity
(%)

FPR
(%)

Sensitivity
(%)

FNR
(%)

Accuracy
(%) MCC AUC

hser-
AUC

hspr-
AUC

Class one: function prediction methods
FATHMM 0 7.43 95.89 49.87 50.13 65.31 34.69 50.77 0.071 0.700 0.626 0.584
fitCons 0 NA 94.20 100.00 0.00 0.00 100.00 94.20 NA 0.539 0.550 0.512
LRT 0 7.84 99.44 29.59 70.41 97.28 2.72 33.52 0.140 0.642 0.505 0.623
MutationAssessor 7 13.63 98.63 66.71 33.29 85.03 14.97 67.78 0.252 0.852 0.625 0.599
MutationTaster 0 6.37 100.00 9.47 90.53 100.00 0.00 14.73 0.078 0.580 0.580 0.502
PolyPhen2-HDIV 0 7.78 99.56 28.46 71.54 97.96 2.04 32.49 0.139 0.755 0.630 0.523
PolyPhen2-HVAR 0 8.16 98.83 35.41 64.59 93.20 6.80 38.77 0.141 0.809 0.617 0.577
PROVEAN 0 13.47 98.92 65.00 35.00 88.44 11.56 66.36 0.257 0.855 0.654 0.593
SIFT 0 8.95 99.57 39.02 60.98 97.28 2.72 42.40 0.176 0.827 0.658 0.538
VEST3 0 8.56 100.00 34.16 65.84 100.00 0.00 37.98 0.171 0.880 0.719 0.646
Class two: conservation methods
GERP++ 0 6.16 97.81 9.35 90.65 96.60 3.40 14.41 0.049 0.596 0.533 0.533
phastCons 0 6.85 98.92 19.11 80.89 96.60 3.40 23.61 0.095 0.580 0.565 0.502
phyloP 0 6.69 98.09 19.36 80.64 93.88 6.12 23.69 0.080 0.744 0.525 0.538
SiPhy 0 6.95 98.09 23.64 76.36 92.52 7.48 27.64 0.090 0.618 0.568 0.568
Class three: ensemble methods
CADD 0 8.02 100.00 29.38 70.62 100.00 0.00 33.48 0.154 0.773 0.692 0.531
DANN 0 7.30 97.65 31.31 68.69 87.76 12.24 34.58 0.097 0.666 0.609 0.519
Eigen 0 7.02 99.38 20.03 79.97 97.96 2.04 24.56 0.107 0.821 0.610 0.543
FATHMM-MKL 0 6.42 97.83 15.13 84.87 94.56 5.44 19.74 0.064 0.647 0.533 0.508
GenoCanyon 0 6.71 99.00 16.64 83.36 97.28 2.72 21.32 0.089 0.569 0.546 0.502
M-CAP 20 6.46 100.00 9.97 90.03 100.00 0.00 15.24 0.080 0.817 0.650 0.582
MetaLR 0 8.07 98.60 35.54 64.46 91.84 8.16 38.81 0.135 0.731 0.605 0.594
MetaSVM 0 9.12 98.86 43.63 56.37 91.84 8.16 46.43 0.168 0.719 0.613 0.522
REVEL 0 9.54 99.80 42.37 57.63 98.64 1.36 45.64 0.196 0.849 0.722 0.585

AUC, area under the curve; hser-AUC, high-sensitivity regional area under the curve; hspr-AUC, high-specificity regional area under the curve; FNR, false
negative rate; FPR, false positive rate; MCC, Mathew correlation coefficient; NA, not available; NPV, negative predictive value; PPV, positive predictive
value. We obtained experimentally validated 2533 missense mutations including 147 pathogenic mutations and 2386 benign mutations of PPARG gene
from MITER database.

method was 0.942, which was higher than that of VEST3
(AUC = 0.929), REVEL (AUC = 0.920) or any other
method (Figure 1A). In addition, we found that the hser-
AUC for ReVe (0.742) was also higher than that of VEST3
(0.729) and REVEL (0.689) (Figure 1B). Similarly, the hspr-
AUC for ReVe (0.793) was higher than that for REVEL
(0.756) and VEST3 (0.756), respectively (Figure 1C). Gen-
erally, the ReVe method showed the best overall perfor-
mance, achieving a specificity of 71.60% at a sensitivity of
95% (Figure 1B) and a sensitivity of 76.17% at a speci-
ficity of 95% (Figure 1C). Consistently, for the benchmark
datasets of somatic variants and experimentally validated
variants, the ReVe method showed a similar or better per-
formance than REVEL, VEST3 and other methods (Fig-
ure 1D–I). Particularly, ReVe achieved the second highest
AUC and hspr-AUC after VEST3, and the third highest
hspr-AUC higher than VEST3 based on the somatic bench-
mark dataset (Figure 1D–F). For the experimentally vali-
dated PPARG benchmark dataset, ReVe outperformed all
other methods in terms of the AUC and hser-AUC, and
showed the second highest hspr-AUC after VEST3 (Figure
1G–I). All the predictive scores of missense variants of ReVe
method in the whole genome were freely searched, browsed,
and downloaded from the VarCards database (33), which
we recently developed. We encourage further studies can de-
velop new tool by combining more computational methods
based our guidance and test their performance.

De novo missense mutations in autism

Previous WES studies have demonstrated that de novo mu-
tations (DNMs) play important roles in the pathogenesis of
ASD (49–51). We then sourced 1651 and 1107 de novo mis-
sense mutations (DNMMs) from 2508 ASD subjects and
1911 unaffected siblings from a previous study (49), and
applied the 23 computational methods and ReVe to iden-
tify deleterious DNMMs and evaluate the performances
of the methods. The better methods would be expected to
show higher odds ratios (ORs) and more predicted dele-
terious DNMMs in ASD subjects compared to their sib-
lings. Based on the results of computational methods, we
found that the rate of deleterious DNMMs in ASD subjects
was significantly higher than that in control subjects (Fig-
ure 2A and Supplementary Table S4). The ReVe method
achieved the highest OR value and lowest P-value (OR =
1.42, P = 0.0002), followed by FATHMM (OR = 1.41, P =
0.0004), MetaSVM (OR = 1.34, P = 0.0006), MetaLR (OR
= 1.34, P = 0.0006), REVEL (OR = 1.27, P = 0.0004) and
VEST3 (OR = 1.21, P = 0.0009). The quantity of deleteri-
ous DNMMs predicted by ReVe was 313, similar to that for
FATHMM (n = 300), MetaSVM (n = 372) and MetaLR (n
= 380). Although REVEL and VEST3 exhibited lower OR
values than ReVe, MetaSVM and MetaLR, but predicted
more deleterious DNMMs (REVEL = 539, VEST3 = 806).
As a negative control, we found that the rate of benign DN-
MMs predicted by most computation methods including
ReVe in subjects with ASD was not significantly higher than
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Figure 2. Performance evaluations based on DNMs. The OR, 95% confidence interval and P-values were calculated by Poisson’s ratio test. The area of
each ball is proportional to the number of missense variants predicted to be deleterious or benign. The orange balls represent function-prediction methods,
the dark gray balls represent conservation methods, and the green balls represent ensemble methods. A given missense variant with a predictive score of
ReVe greater than 0.86 was regarded as a deleterious variant. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

that in control subjects (Figure 2B and Supplementary Ta-
ble S4).

DISCUSSION

In silico computational methods have been widely em-
ployed in investigating the pathogenicity of missense vari-
ants (5,40,52). The selection of appropriate methods is
strongly needed for prioritizing candidate variations and
genes in human diseases. We evaluated 12 performance
measures of 23 computational methods based on three inde-
pendent benchmark datasets that represented different ge-
netic aspects: the ClinVar dataset represented germline vari-

ants in human genetic diseases, the TP53 and the ICGC
datasets represented somatic variants of human cancers and
the PPARG dataset from MITER database represented ex-
perimentally validated variants. All these dataset have not
been directly used as training data for the 23 computational
methods.

According to the results of ClinVar benchmark dataset,
we preliminarily found that the ensemble methods per-
formed better than the function prediction methods and
conservation-only methods. Based on the somatic variants
and experimentally validated variant benchmark dataset,
we found that function prediction methods and ensemble
methods have comparable performances and were supe-
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rior to conservation-only methods. Although, some meth-
ods (such as REVEL) with high AUCs do employ the con-
servation score as an important component for their pre-
dictions, we think that conservation is likely still an impor-
tant predictor. In addition, we found that computational
methods within a class exhibited various performances for
different benchmark datasets, possibly because they em-
ployed different training models and training data. For
example, PROVEAN showed better performance for so-
matic variants and experimentally validated variants bench-
mark data than the germline variants benchmark data. Fur-
thermore, REVEL (23) and VEST3 (16) stably achieved
the highest discriminatory power under most conditions
based on all the sets of benchmark data. We noted that
both REVEL and VEST3 were trained using random for-
est model, which is different from the rest of 21 compu-
tational methods. However, whether it is a main factor
need to be further validated. Although the fitCons (19),
MutationTaster (13), GERP++ (12), phastCons (6), phy-
loP (7), SiPhy (9), CADD (17), DANN (21), Eigen (24),
FATHMM-MKL (22) and GenoCanyon (20) methods did
not perform better than VEST3 (16) or REVEL (23), they
offer important advantage in genome-wide NGS applica-
tions because they provide predictive scores for non-coding
and regulatory variants.

It has been reported that a large degree of circularity ex-
ists between the training data and the testing data of com-
putational methods (35). To reduce the potential circularity,
the following strategies were adopted in this study. First,
we selected benchmark datasets that have not been used
as training data for any computational method. Second,
only variants recorded after 4 March 2015 in the ClinVar
database were selected in the analysis. Third, we evaluated
the degree of circularity and removed any overlaps between
the benchmark datasets and the publicly available training
data of computational methods. Although we could not re-
move all potential redundancy since not all training data
of computational methods were publicly available, we en-
courage further developers to publish all training and test-
ing data used in supplementary files. In this study, the TP53
gene variants and ICGC somatic variations related to hu-
man cancers, experimentally evaluated PPARG variants,
and DNMs in autism served as additional benchmark data
without any overlaps between training data of computa-
tional methods, strengthening the confidence of our con-
clusion that REVEL and VEST3 showed the best overall
performances.

For all three sets of benchmark data, most computational
methods exhibited higher sensitivities than specificities, sug-
gesting that some predicted deleterious variants were ac-
tually benign variants. Therefore, clinicians and geneticists
should be careful with predicted deleterious variants when
prioritizing candidate variants and genes of human dis-
eases. Stricter cutoff values and the combination of multi-
ple methods were previously recommended for predicting
deleterious variants (41). To provide researchers and clin-
icians more guidance, we summarized the recommended
cutoff values and corresponding sensitivities and specifici-
ties based on the benchmark data shown in Supplementary
Table S5. In particular, FATHMM, MutationTaster, Eigen,
M-CAP, MetaLR and MetaSVM were most affected by

the recommended cutoff values. Furthermore, we compared
the performance measures of hser-AUC and hspr-AUC to
provide tentative guidance for clinicians and geneticists in
selecting high-sensitivity or high-specificity computational
methods with different applications in mind (25). Our re-
sults indicated that REVEL and VEST3, as well ReVe out-
performed the other computational methods in testing with
all three benchmark datasets and with the DNMs. We en-
courage further study to select appropriate methods for pre-
dicting the pathogenicity of missense variants.

Although previous studies have been conducted to com-
pare the performances of some computational methods
(34–39), major differences are evident between earlier stud-
ies and this study. First, we collected different independent
benchmark datasets covering clinically observed genetic
variants, cancer somatic variants, and experimentally vali-
dated variants, in order to systematically evaluate their per-
formances. Second, our analysis included several recently
developed methods such as REVEL (23), M-CAP (25) and
Eigen (24), which were all reported first in 2016. The best
performing computational methods (such as REVEL and
VEST3) identified in this study were not included in previ-
ous comparative studies. We strongly recommend employ-
ing these two methods, as well as ReVe, in further studies
and genetic testing, rather than other well-known compu-
tation methods (such as SIFT, Polyphen2 and Mutation-
Taster). Third, a total of 12 performance measures of the
computational methods were systematically compared in
light of the different needs of users. For example, the hser-
AUC performance measure was essential for distinguishing
deleterious variants from variants of uncertain significance,
and hspr-AUC was useful for accurately identifying disease-
causing variants and genes.

We noted that the computational methods exhibited an
overall better performance for the ClinVar than the experi-
mentally evaluated PPARG benchmark data. One possible
reason for this outcome is that various researchers submit-
ted the ClinVar data, most of which was not experimen-
tally validated, and false-positive data may be included in
the ClinVar data. We strongly recommend that scientists
develop new methods of functional prediction based on
more strict training data, especially for the experimentally
validated data. Additionally, to interpret whether a mis-
sense variant is involved in human disease, more systematic
evaluations regarding its pathogenicity are urgently needed
(5,33,40,52). Users should also investigate the AF of vari-
ants and the gene-level mutation rate in the general popula-
tion, as well as the gene function and protein domain (3,33).
Together, our findings could help clinicians and researchers
choose appropriate methods or use several tools simultane-
ously to interpret the pathogenicity of missense variants.
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