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Abstract

GABAergic interneurons play an important role in shaping the activity of excitatory pyramidal

cells (PCs). How the various inhibitory cell types contribute to neuronal information process-

ing, however, is not resolved. Here, we propose a functional role for a widespread network

motif consisting of parvalbumin- (PV), somatostatin- (SOM) and vasoactive intestinal pep-

tide (VIP)-expressing interneurons. Following the idea that PV and SOM interneurons con-

trol the distribution of somatic and dendritic inhibition onto PCs, we suggest that mutual

inhibition between VIP and SOM cells translates weak inputs to VIP interneurons into large

changes of somato-dendritic inhibition of PCs. Using a computational model, we show that

the neuronal and synaptic properties of the circuit support this hypothesis. Moreover, we

demonstrate that the SOM-VIP motif allows transient inputs to persistently switch the circuit

between two processing modes, in which top-down inputs onto apical dendrites of PCs are

either integrated or cancelled.

Author summary

Neurons in the brain can be classified as excitatory or inhibitory based on whether they

activate or deactivate the cells to whom they send signals. Compared to their excitatory

counterpart, inhibitory neurons present themselves as a wild diversity of cell classes. It is

broadly believed that these classes serve different purposes, but as of now, those are poorly

understood. In this article, we suggest how an intricate interplay of three inhibitory cell

classes can control whether internal signals—such as predictions, memory signals or

motor commands—are taken into account when sensory signals are interpreted. Using a

mathematical model and computer simulations, we show that such internal signals can be

shut down by regulating which inhibitory cell types are active, and that the interaction of

different cell classes allows weak control signals to do so.
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Introduction

GABAergic interneurons are essential for maintaining normal brain activity [1–3], although

they are outnumbered by excitatory cells throughout the brain [4]. They present a large num-

ber of distinct types that differ in their anatomical, physiological and biophysical properties [3,

5, 6]. This has led to the hypothesis that individual types are optimized to perform specific

computations in neuronal microcircuits [3, 7–10]. The functional roles of these interneuron

classes and how they are supported by their individual characteristics, however, are still largely

unknown.

One conspicuous difference between interneuron types is the location of their synapses

onto their postsynaptic targets: Parvalbumin-expressing (PV) interneurons preferably inhibit

the perisomatic regions and the basal dendrites of excitatory pyramidal cells (PCs), as well as

other PV neurons [3, 11–15]. In contrast, somatostatin-expressing (SOM) neurons mainly tar-

get the apical dendrites of PCs, and strongly inhibit other interneuron types [13, 15, 16]. A

third group expressing vasoactive intestinal peptide (VIP) mainly connects to the dendrite-tar-

geting SOM neurons, thereby providing a disinhibitory circuit for the distal dendrite of PCs

[13, 17–20]. In addition to these distinct connectivity motifs, different interneuron types also

differ in their intrinsic and synaptic properties. For instance, PV neurons hardly exhibit spike-

frequency adaptation [3, 11, 14], a neuronal characteristic that has been observed both for

SOM [3, 16] and VIP cells [3].

As a consequence of the interneuron-specific, spatially distinct distribution of synapses

onto PCs and the direct connection from SOM to PV neurons, it has been hypothesized that

the SOM-PV motif plays a key role in the redistribution of somatic and dendritic inhibition

[13, 21]. Inhibiting specific compartments of PCs may have wide-ranging functional and

computational consequences, because their somata and dendrites are the target of two distinct

information streams. Top-down input originating from higher cortical areas and non-specific

thalamocortical pathways [22–24] selectively aims at apical dendrites [25]. At the same time,

feedforward bottom-up input from lower cortical areas and the core thalamic nuclei arrives at

perisomatic regions and basal dendrites [25]. While top-down feedback is associated with

internal predictions, bottom-up connections are thought to carry information from the exter-

nal world [25]. Hence, control of the different input streams—and consequently, information

processing modes—is of fundamental importance.

Here, we hypothesize that a different subnetwork consisting of SOM and VIP neurons is

optimized to efficiently control the PV/SOM-mediated redistribution of somatic and dendritic

inhibition. In order to support our hypothesis, we perform mathematical analyses and exten-

sive simulations of a microcircuit consisting of these three interneuron types and excitatory

PCs. We show that mutual inhibition between VIP and SOM neurons (that is, VIP neurons

inhibit SOM neurons and vice versa) leads to an amplification of weak signals targeting VIP

neurons. When this mutual inhibition is strong, it can even turn the SOM-VIP motif into a

winner-take-all (WTA) circuit. Furthermore, we reveal how frequently reported connectivity,

neuronal and synaptic properties underpin the amplification abilities of the microcircuit, such

as the lack of recurrent connections among both SOM and VIP cells, their prominent spike-

frequency adaptation and short-term facilitation. Moreover, we show that the circuit can dis-

play slow oscillations ranging from Delta to Alpha bands as a consequence of spike-frequency

adaptation and strong mutual inhibition in SOM and VIP neurons.

Functionally, strong mutual inhibition between SOM and VIP neurons enables a switch

between two distinct processing modes in which top-down inputs arriving at the apical den-

drites of PCs are either integrated or obliterated via VIP cell modulation. The transition
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between these operating modes can be triggered by either weak and persistent input or strong

and transient pulses.

Results

We study a rate-based network model consisting of excitatory PC and inhibitory PV, SOM

and VIP cells (see Fig 1A). The ratio of excitatory and inhibitory neurons and the strength and

probability of their connections are constrained by experimental findings [12, 13, 15, 17, 26–

32] (see Tables 1–3). While GABAergic neurons are described by point neuron models [33],

PCs are modeled as two compartments, to capture both somatic activity and active processes

in their apical dendrites [34] (see Methods).

All neurons receive background input to ensure similar firing rates as observed in vivo [5,

16, 31]. PC input is divided into two separate information streams: top-down feedback arriving

at the apical dendrite and bottom-up input targeting the perisomatic region. In addition, we

consider modulatory inputs onto VIP and SOM cells that regulate the distribution of somatic

and dendritic inhibition. This modulation could be mediated by, e.g., excitatory long-range

Fig 1. Amplifying the redistribution of inhibition along PCs by the SOM-VIP motif. (A) Connectivity of the circuit model, inspired by

experimentally observed connectivity of excitatory pyramidal cells (PCs) and inhibitory PV, SOM and VIP neurons (see main text). VIP neurons

receive an additional, modulatory input. (B) Population rates of all neuron types as a function of the modulatory input onto VIP cells. The PC rate

follows a sigmoid function, the slope of which characterizes the gain of the redistribution of somato-dendritic inhibition upon a change in the

modulatory input. (C) Reference network without VIP neurons, in which modulatory input targets SOM neurons instead (with inverted sign for

comparability). (D) The firing rate curve of the PCs in the full network (A) exhibit a larger slope than in the reference network without VIP neurons

(C). Reference curve shifted for comparability. (E) Reduced network of inhibitory PV, SOM and VIP neurons (left) that allows a mathematical analysis,

and a corresponding reference network without VIP neurons (right). (F) The difference of PV and SOM neuron rates (somatic and dendritic

inhibition, respectively) follows a sigmoid function. In the full interneuron network (E, left), it exhibits a larger slope than a corresponding reference

network without VIP neurons (E, right) (mutual inhibition strength ŵ ¼ 0:9). (G) Amplification index depends strongly on the mutual inhibition

strength. Positive values denote an amplification, negative values indicate an attenuation. An infinitely large amplification index corresponds to a

winner-take-all (WTA) regime. When the connections from SOM to VIP neurons are knocked-out (red), the amplification index rises slowly—

logarithmically with the connection from VIP to SOM neurons—and reaches the amplification regime for much larger connection strengths.

Parameters (A-D): Mutual inhibition strength ŵ ¼ 0:7, adaptation strength b = 0.2, initial synaptic efficacyUs = 0.4.

https://doi.org/10.1371/journal.pcbi.1006999.g001
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inputs [18, 19, 29] or by neuromodulatory signals [18, 35–38]. Because inputs to SOM and

VIP cells have antagonistic effects in the circuit, we simplified the analysis by considering a sin-

gle modulatory input to VIP cells, which can be interpreted as a weighted difference between

two separate modulatory inputs to SOM and VIP neurons. For example, a strong inhibitory

modulation of VIP neurons would be functionally equivalent to a strong excitatory input to

SOM neurons that in turn mediates an inhibition of the VIP neurons.

The distribution of somatic and dendritic inhibition onto PCs is regulated by VIP input as

follows (see Fig 1B): When the modulatory VIP input is sufficiently small or even inhibitory,

Table 1. Connection probabilities between neuron types. Entries in the same columns correspond to the same pre-

synaptic neuron type, entries in the same row to the same postsynaptic neuron type. Parentheses denote values that are

only used when recurrence is introduced artificially. E: somatic PC compartment, D: dendritic PC compartment.

pre:

E (PC som.) PV SOM VIP

post: E (PC som.) - 0.6 - -

D (PC dendr.) 0.1 - 0.55 -

PV 0.45 0.5 0.6 -

SOM 0.35 - (0.5) 0.5

VIP 0.1 - 0.45 (0.5)

https://doi.org/10.1371/journal.pcbi.1006999.t001

Table 2. PC parameters describing the two-compartment rate model. ŵEP, ŵDS and ŵDE denote the total strength of

connection between PV neurons and the soma of PCs, SOM neurons and the dendrites of PCs and the recurrence

strength between PCs, respectively. The total connection strength is given by the product of the number of existing

connections between two neuron types (or compartments) and the strength for individual connections. All parameters

taken from Murayama et al. (2009) [34]. Note that we incorporated the gain factor present in Murayama et al. (2009)

[34] into the parameters to achieve unit consistency for all neuron types.

parameter (unit) value

Θ (s−1) 14

λE 0.31

λD 0.27

ŵEP 0.7

ŵDS 1.96

ŵDE 0.42

c (s−1) 7

Θc (s−1) 28

https://doi.org/10.1371/journal.pcbi.1006999.t002

Table 3. Connection strengths between neuron types. Entries in the same columns correspond to the same presynap-

tic neuron type, entries in the same row to the same postsynaptic neuron type. Given are the total connection strengths

(absolute values, sign in simulations in line with neuron type—excitatory/inhibitory), which are the product of the

number of existing connections between two neuron types (or compartments) and the strength for individual connec-

tions. The total recurrence strengths ŵSS and ŵVV as well as the total mutual inhibition strengths ŵSV and ŵVS are varied

in the simulations. Parentheses denote values that are only used when recurrence is introduced artificially.

pre:

E PV SOM VIP

post: PV 1 1.5 1.3 -

SOM 1 - ðŵSSÞ ŵSV

VIP 1 - ŵVS ðŵVVÞ

https://doi.org/10.1371/journal.pcbi.1006999.t003
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VIP neurons remain inactive. As this relieves the SOM neurons from VIP inhibition, they can

in turn inhibit the apical dendrites of the PCs and thereby suppress potential top-down inputs.

At the same time, the amount of somatic inhibition in PCs is reduced, because SOM cells

inhibit PV neurons. Once VIP cells are fully deactivated, further reducing the modulatory

input has no effect on the PCs, as the modulatory input acts through VIP neurons only (Fig

1A). The opposite scenario is a strong and excitatory modulatory input that renders VIP cells

sufficiently active to silence SOM neurons. Silencing SOM cells removes dendritic inhibition,

so that PCs are receptive to both bottom-up input and top-down feedback. In turn, the periso-

matic compartments of PCs experience more inhibition, because PV neurons are released

from SOM neuron inhibition. Once the VIP cells are sufficiently active to silence SOM neu-

rons, further increasing the modulatory input has no effect on the PCs, because VIP cells act

through SOM neurons only (Fig 1A). VIP neurons then effectively decouple from the micro-

circuit. In between these two extremes of inactive VIP or SOM neurons, respectively, the ratio

of somatic and dendritic inhibition can be controlled by adjusting the modulatory signal. This

is reflected by the relationship between modulatory VIP input and PC activity, which resem-

bles a sigmoid function (Fig 1B), the slope of which characterizes the gain of the redistribution

of somatic and dendritic inhibition upon a change in the modulatory input. Please note that a

redistribution of inhibition from the dendrites to the soma can either increase or decrease the

activity of the PCs depending on the parameters of the model, but this does not affect the

results presented in the following.

In principle, a similar somato-dendritic redistribution of inhibition could also be achieved

by modulatory input directly to SOM neurons. To understand the role of the SOM-VIP motif

in the circuit, we considered a ‘reference network’ without VIP neurons (Fig 1C), in which the

modulatory input targets SOM cells instead (with inverted sign for comparability). We found

that in this reference network, the slope of the corresponding sigmoid function decreases (Fig

1D) for a large parameter range, indicating that inputs onto VIP neurons in the SOM-VIP

motif are more effective modulators than inputs onto SOM neurons. This observation led us

to the hypothesis that the SOM-VIP motif serves to translate weak signals onto VIP neurons

into large changes of the somato-dendritic distribution of inhibition. We therefore wondered

whether the connectivity and the neuronal and synaptic properties of the circuit are optimized

to support this function, and which computational purpose the circuit could fulfill. To address

these questions, computational modeling is well suited, because it allows us to study the effect

of arbitrary manipulations and variations of the circuit.

Mutual inhibition between SOM and VIP neurons creates an amplifier

To gain a deeper understanding of the circuit mechanisms and the interplay of the interneuron

types, we next studied a simplified microcircuit consisting only of the three interneuron classes

expressing PV, SOM and VIP (Fig 1E, left). The advantage of this simpler model is that it

bypasses the nonlinearities of PCs, thereby allowing an in-depth mathematical analysis of the

parameter dependencies of the network. All results are later verified in the full circuit. In the

simplified network, the local PC input onto the GABAergic interneurons is replaced by addi-

tional excitatory inputs to maintain realistic firing rates. Compartment-specific inhibition

onto PCs is represented by the population firing rate of the respective interneuron type: the

rate of SOM neurons reflects the strength of dendritic inhibition and the rate of PV neurons

the strength of somatic inhibition. Similar to the PC rate in the full microcircuit, the difference

of the PV and SOM neuron rates shows a sigmoidal dependence on the modulatory VIP cell

input (Fig 1F), the slope of which quantifies the system’s sensitivity to changes in the modula-

tory input.
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Again, we compared the circuit to a reference network without VIP neurons (Fig 1E, right),

in which modulatory inputs impinged directly onto the SOM neurons. In line with the full

model, we observed that the removal of the VIP neurons led to a prominent reduction of the

sensitivity to modulatory inputs, i.e., a reduced slope of the somato-dendritic difference of

inhibition (cf. Fig 1D and 1F). To quantify the effect of the SOM-VIP motif, we introduced an

amplification index A, defined as the logarithm of the ratio of slopes in the two networks with

and without VIP neurons (cf. Fig 1F solid and dashed lines, and see Methods for more details).

An amplification index larger than zero indicates that the interneuron network amplifies weak

input onto VIP neurons in comparison to the reference network.

The simplified circuit allows us to derive a mathematical expression for the amplification

index, which shows that the amount of amplification depends critically on two circuit proper-

ties (see Methods for a detailed derivation). Firstly, it increases with the effective VIP!SOM

connection strength, reflecting the monosynaptic effect of VIP inputs onto SOM neurons. Sec-

ondly, it depends in a highly nonlinear way on the product of the connection strengths from

SOM!VIP and VIP!SOM. This second dependence is a consequence of the mutual inhibi-

tion between SOM and VIP neurons: an increase in VIP firing rate not only inhibits SOM

neurons, but also further disinhibits the VIP neurons themselves, which in turn increase their

rate, further inhibiting the SOM neurons etc. As this mutual inhibition approaches a critical

strength, the amplification index increases rapidly. Beyond the critical strength, the circuit

transitions into a competitive winner-take-all regime, in which either the SOM or the VIP neu-

rons are silenced by the other population. Our mathematical analysis is confirmed by simula-

tions, which also show a rapid increase of the amplification index as the mutual inhibition

between VIP and SOM neurons increases (see Fig 1G for symmetric mutual inhibition

strengths, and S1 Fig for asymmetric weights). Much stronger VIP!SOM connection

strengths are required to achieve an amplification (A> 0) when the back-projection

SOM!VIP is knocked out, effectively eliminating the mutual competition between VIP and

SOM neurons (red line in Fig 1G). These results demonstrate that mutual inhibition is a key

player in the amplification of weak inputs onto VIP cells.

Connectivity and short-term plasticity support the amplification

If the SOM-VIP motif were to serve as an amplifier for weak modulatory signals, other circuit

properties should also support this function. A candidate mechanism that would further

enhance the competition between SOM and VIP is synaptic short-term faciliation (STF).

Although short-term plasticity between different types of GABAergic interneurons has

received limited attention, STF has indeed been demonstrated for the mutual connections

between SOM and VIP neurons [39]. We therefore enhanced the network model by a Tso-

dyks-Markram type model of short-term plasticity [40, 41] (see Methods for more details). For

the sake of simplicity, SOM!VIP and VIP!SOM synapses had equal facilitation parameters

(Fig 2A). The overall STF strength was varied by changing the initial release probability, while

adjusting the synaptic weight in order to keep the initial postsynaptic response constant (see

Methods for further details). As expected, STF causes an increase of the amplification index,

such that smaller mutual inhibition strengths are sufficient to achieve an amplification index

above the amplification threshold A = 0 (Fig 2A).

In contrast to PV neurons, which show strong inhibitory connections onto other PV cells

[3, 13, 14], SOM and VIP neurons only very rarely inhibit other neurons of the same class [3,

13, 15]. To investigate whether this lack of recurrent inhibition supports the amplification

properties of the network, we artificially introduced recurrent connections among both SOM

and VIP neurons. We systematically varied their strength, while keeping the strength of
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mutual inhibition between the two populations constant. For simplicity, we considered a sym-

metric situation in which the strength of the recurrent inhibition is the same among VIP and

SOM neurons (see Fig 2B), but similar results are obtained in asymmetric situations (see S2

Fig). We found that recurrent connections among SOM and VIP neurons lead to a strong

reduction of the amplification index (Fig 2B), even for relatively weak recurrent connections

(see Methods for a mathematical analysis). The strongest amplification was always observed

for a connection strength of zero, that is, when recurrent inhibition is absent.

In summary, connectivity properties like short-term facilitation and the absence of recur-

rent connections among both VIP and SOM neurons support the effective translation of small

stimuli onto VIP cells into large changes of somato-dendritic inhibition.

Spike-frequency adaptation introduces a frequency-selective amplification

Both SOM and VIP neurons show an absence of recurrent inhibition within the same popula-

tion, but they make use of a different negative feedback mechanism: spike-frequency adapta-

tion (SFA). SFA is a prominent feature observed in many cortical neurons [3, 42]. Upon

Fig 2. Connectivity properties of the SOM-VIP motif support the amplification in the interneuron network. (A)

Network of inhibitory PV, SOM and VIP neurons with short-term facilitation (STF) of SOM!VIP and VIP!SOM

connections (left). STF increases the amplification index. Smaller mutual inhibition strengths are sufficient to achieve

an amplification index above the amplification threshold A = 0 (right). Inset: The dynamics of the mutual inhibition

strength (’weight’) after a step increase of the presynaptic firing rate from 0/s to 5/s for three different values of the

initial release probabilities. STF parameters are equal for SOM and VIP neurons:Us = 0.1 (strong STF), Us = 0.5 (weak

STF),Us = 1 (no STF) and τf = 100 ms. (B) Network of inhibitory PV, SOM and VIP neurons with artificially

introduced recurrent connections among both SOM and VIP neurons (left). Recurrence leads to a decrease of the

amplification index (right). Recurrence strengths are equal for SOM and VIP neurons. Mutual inhibition strength

ŵ ¼ 0:8.

https://doi.org/10.1371/journal.pcbi.1006999.g002
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stimulation, adapting cells decrease their firing rate gradually, and consequently exhibit a dif-

ference between steady-state and onset firing rate. SOM neurons feature salient SFA [3, 5, 6,

11, 16], whereas VIP neurons claim a broad spectrum from weak to strong adaptation. To

study the effect of SFA, we augmented the rate dynamics of SOM and VIP neurons by an addi-

tional rate adaptation variable (see Methods). The adaptation process is governed by two

parameters: an adaptation strength and a time constant. While the adaptation time constant

controls the temporal evolution of the adaptation process, the adaptation strength controls the

difference between onset and steady-state firing rate. An adaptation strength of one corre-

sponds to a steady-state firing rate that is half the onset firing rate. For simplicity, we again

assumed the same adaptation parameters for SOM and VIP neurons.

Adaptation and recurrence both generate a negative feedback on neuronal activity. For

comparability, we parameterized the strength of recurrence such that the steady state activity

in a population is the same when adaptation strength and total recurrence strength have the

same value. While we expected both adaptation and recurrent inhibition to weaken the ampli-

fication, they differ with respect to the time scales on which they operate. Recurrent inhibition

acts on the rapid time scale of synaptic transmission (e.g, of 5–10 ms for GABAA receptor-

based transmission). In contrast, adaptation operates on a wide range of time scales from

tens to thousands of milliseconds [42]. Consequently, adaptation allows a gradual transition

over time from amplification to attenuation. To characterize the time dependence of the

amplification properties, we performed a frequency response analysis (Fig 3A and 3B), a com-

mon technique to analyze linear dynamical systems. The idea is that any input signal can be

decomposed into oscillations of different frequencies, and that the system processes these dif-

ferent oscillations independently. In practice, this means that the response of the system to any

signal can be understood as a superposition of the responses to its frequency components. To

characterize the response of the circuit to different frequencies, we hence stimulated VIP neu-

rons with oscillating inputs. The difference of the population firing rates of PV and SOM neu-

rons—as a reflection of the somato-dendritic distribution of inhibition—oscillates in response

to this stimulation with the same frequency, but phase-shifted. The logarithm of the ratio of

the oscillation amplitudes in networks with and without VIP neurons (full vs. reference net-

work, see Fig 1) yields a frequency-resolved amplification index that ranges from negative

(attenuation) to positive (amplification) values. We found that increasing recurrent inhibition

among both SOM and VIP neurons systematically reduces the frequency-resolved amplifica-

tion index across all frequencies (Fig 3A), confirming the steady-state analysis (cf. Fig 2B).

Note that to control for the overall reduction in activity when recurrent inhibition is increased,

we adjusted the time-independent external inputs such that the mean firing rates are kept con-

stant in spite of changes in recurrent strength. In contrast to recurrent inhibition, spike-fre-

quency adaptation introduces a prominent frequency selectivity: For low-frequency

oscillations, the frequency-resolved amplification index decreases with increasing adaptation

strength. For high-frequency oscillations, it increases (Fig 3B and 3C). Furthermore, the circuit

exhibits a preferred frequency (resonance frequency), for which it yields a maximal response.

This resonance frequency arises from an interplay of the rate and adaptation time constants.

For low-frequency oscillations, adaptation is fast enough to track the input changes and hence

able to suppress the frequency-resolved amplification index. With increasing stimulation fre-

quency, this suppression weakens because adaptation is too slow. As a consequence, the oscil-

lation amplitude increases with stimulation frequency. For high-frequency oscillations that are

faster than the time constant of the firing rate, the frequency-resolved amplification index

declines, because the neuron cannot react sufficiently quickly. Neuronal adaptation hence

introduces a frequency-selective amplification that preferentially transmits specific neuronal

rhythms within the broad spectrum of oscillations in the brain [43].
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Spike-frequency adaptation and recurrent inhibition also have distinguishable conse-

quences for the correlation structure of the interneuron network. Karnani et al. (2016) [39]

demonstrated that both SOM and VIP neurons are cooperatively active as populations rather

than individually. We studied this co-activity by stimulating both interneuron populations

with shared and individual noise on top of a constant background input. The shared noise

between members of the same interneuron class introduced strong correlations between both

VIP/VIP and SOM/SOM neurons as described by Karnani et al. [39]. We then studied how

recurrent inhibition and adaptation differentially affect the co-activity of the populations,

quantified by the averaged pairwise correlation coefficient. We found that recurrent inhibition

strongly decreases the correlation between members of the same interneuron class [44]

Fig 3. Spike-frequency adaptation enables frequency-selective amplification and preserves co-activity. (A) Frequency response analysis of the interneuron

network with recurrent connections among both SOM and VIP neurons. Increasing recurrence reduces the frequency-resolved amplification index across all

stimulation frequencies. (B) Same as in (A), but with spike-frequency adaptation instead of recurrence. The circuit yields a maximal response at a resonance

frequency. With increasing adaptation strength, this resonance frequency increases. (C) The frequency-resolved amplification index decreases with increasing

adaptation strength for low-frequency oscillations, but increases for high-frequency oscillations (frequency-selective amplification, cf. markers in (B)). (D)

Neurons show stronger correlations (positive or negative) with spike-frequency adaptation (left, upper panel) than with recurrent inhibition among SOM and

VIP neurons (left, lower panel). Mean SOM-SOM neuron correlation is more sensitive to increasing recurrence strength than to adaptation strength (right).

(E) While strengthening mutual inhibition leads to an increase of the maximal frequency-resolved measure of amplification, it does not change the resonance

frequency (top, adaptation strength b = 0.8). In contrast, increasing the adaptation strength allows to adjust the resonance frequency, with a weak impact on the

maximum of the frequency-resolved amplification index (bottom, recurrence strength ŵr ¼ 0:8). (F) Schematic representation of both separate “knobs”

(mutual inhibition and adaptation) and their independent control of the amount and frequency-selectivity of the amplification. Parameter (A-E): Mutual

inhibition strength ŵ ¼ 0:8.

https://doi.org/10.1371/journal.pcbi.1006999.g003
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(Fig 3D), while adaptation introduces only a marginal reduction, and thereby preserves the

high correlations seen by Karnani et al. [39].

As for any amplifier, it would be useful to allow a dynamic adjustment of the amplification

in the circuit. Very strong amplification would lead to small ranges of effective modulatory sig-

nals and a rapid saturation of the system, and hence to potential distortions in the translation

of the modulatory signal into somatic and dendritic inhibition. Similarly, it could be beneficial

to allow an adjustable frequency-based selection of the modulatory input. A neuronal mecha-

nism that is suitable to tune these two properties could be a neuromodulatory control of circuit

parameters [18, 35–38, 45]. In simulations, we found that a strengthening of mutual inhibition

increases the overall amplification, while leaving the resonance frequency largely unaltered

(Fig 3E, top). At the same time, changes of the adaptation strength allow to tune the resonance

frequency, while leaving the maximum of the frequency-resolved measure of amplification

largely unchanged (Fig 3E, bottom). In summary, the circuit seems to display separate

“knobs”, which offer an independent control of the amount and frequency-selectivity of the

amplification through separate neuromodulatory channels (Fig 3F).

These results demonstrate that spike-frequency adaptation, though similar in its steady-

state properties to recurrent inhibition within SOM and VIP populations, enables a frequency-

selective amplification with well-separated target parameters for neuromodulatory control.

While a neuromodulation of synaptic and cellular properties has been studied both for pyra-

midal cells [45, 46] and interneurons [18, 35–38, 47], it is not clear how strong the various

forms of modulation are in vivo and how they interact on the circuit level. It therefore remains

to be seen whether interneurons support a sufficient degree of neuromodulation of spike-fre-

quency adaptation and mutual inhibition to dynamically tune the frequency selectivity of the

circuit.

The computational repertoire of the SOM-VIP motif

Our simulations indicate that the SOM-VIP subnetwork supports different computational

functions, ranging from signal amplification and frequency selection to switching behavior for

strong mutual inhibition between the populations. To understand how these computational

states are determined by the parameters of the system, we ran extensive simulations of the

SOM-VIP motif alone, accompanied by mathematical analyses of a linearized network without

rate rectification.

We first investigated a network of VIP and SOM neurons that is consistent with experimen-

tally observed characteristics, i.e., with adaptation and inhibitory connections exclusively

between neurons of different type. Simulations reveal four operating modes for such a network

(Fig 4A). For weak mutual inhibition, the two interneuron populations can be active at the

same time, and modulatory VIP signals are attenuated (Fig 4A, region (a)). As the inhibition

between the two populations increases, the amplification index increases and leads the circuit

into an amplification domain (Fig 4A, region (b)). Beyond a critical strength of mutual inhibi-

tion, the network then transitions into a switch-like winner-take-all domain (Fig 4A, regions

(c) & (d)), in which one of the two populations silences the other. Notably, this state comes in

two variants: For weak adaptation, the winning population silences the other permanently, or

until an external event switches the network to a different winner (Fig 4A, region (c)). We will

show later that this allows transient VIP inputs to persistently switch the operating mode in

the full microcircuit. For strong adaptation, the network shows oscillations (Fig 4A, region

(d)), because adaptation gradually decreases the firing rate of the winning interneuron popula-

tion. This releases the other population from inhibition until it can no longer be silenced and

becomes the new winner and in turn starts to adapt. A mathematical analysis of the linearized
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network predicts the parameter ranges of the four computational states almost perfectly (see

black lines in Fig 4A, and Methods for more details). The observed oscillations comprise a

wide spectrum of frequencies that depend non-linearly on the strength and time constant of

adaptation and on the strength of mutual inhibition (Fig 4B, see also S3 and S4 Figs for net-

works with asymmetric adaptation parameters for SOM and VIP neurons). Deviations

between the frequencies observed in simulations and those predicted by the mathematical the-

ory are caused by the omission of the rate rectification in the theory. The four computational

states of the network are also observed when short-term plasticity is introduced into the net-

work, although the transition boundaries change such that the switch-like state is reached for

weaker mutual inhibition and the oscillation regime requires stronger adaptation (Fig 4C).

Two inhibitory populations that mutually inhibit each other may well be a common net-

work motif in cortical circuits, and the absence of recurrent inhibitory connections within the

two populations—as observed in the SOM-VIP motif—may not always hold. We therefore

also performed an analysis of the computational states of a network with recurrent inhibition.

Simulations reveal five operating modes for such networks (see S5 Fig). When mutual inhibi-

tion and recurrent inhibition is weak, we again found that both interneuron populations can

be active at the same time. Depending on the strength of the mutual inhibition, we again

observed attenuation and amplification, respectively. For sufficiently strong mutual inhibition

Fig 4. Dynamical states of the SOM-VIP motif. (A) Left: Bifurcation diagram reveals distinct operation modes: all

interneurons are active (divided into amplification (a) and attenuation regime (b)), a winner-take-all (WTA) regime

implementing a switch (c) and an oscillation regime (d). Regime boundaries (black lines) are obtained from a

mathematical analysis (see S1 Appendix). Right: Example firing rate traces for all SOM (blue) and VIP (green) neurons

for four network settings taken from the bifurcation diagram (cf. markers). Adaptation time constant τa = 50 ms. (B)

The oscillation frequency in the oscillation regime depends on the adaptation strength (left), the adaptation time

constant (right) and the total mutual inhibition strength (black: ŵ ¼ 1:3, gray: ŵ ¼ 1:4). Left: τa = 50 ms, right: b = 1.

The frequencies cover a broad range from Delta to Alpha oscillations. (C) When short-term facilitation (STF) is

present, the WTA (switch) regime is enlarged and the oscillation mode requires stronger adaptation. Initial synaptic

efficacyUs = 0.1, facilitation time constant τf = 100 ms.

https://doi.org/10.1371/journal.pcbi.1006999.g004
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between SOM and VIP cells, the amplification regime transitions into the switch-like state

where only one population is active. In contrast to adapting neurons, the network did not

show an oscillatory state. Instead, very strong recurrent inhibition introduces strong competi-

tion between the neurons within the interneuron populations, leading to pathological states

where either one single cell per cell type is active (if mutual inhibition is weak) or only one sin-

gle neuron at all is active (if mutual inhibition is strong). Again, these dynamical states and

their transitions are predicted almost perfectly by a mathematical eigenvalue analysis (see

black lines in S5 Fig, and Methods for derivation). The mathematical analysis also unveils that

for sufficiently large populations, the pathological states require very strong synapses (ulti-

mately, a single cell must silence all others) and are hence unlikely to be observed in the ner-

vous system.

In summary, the SOM-VIP network motif allows different computational states, covering

attenuation, amplification, switching and—for adapting neurons— oscillations in a frequency

range of Delta (1-4 Hz), Theta (4-8 Hz) or Alpha (8-12 Hz) oscillations.

Switch between distinct processing modes in local microcircuits

To investigate the computational consequences of the SOM-VIP circuit, we returned to the

full microcircuit comprising PCs and inhibitory PV, SOM and VIP cells (S6 Fig). We first veri-

fied that all results observed in the simplified interneuron networks still hold for the larger cir-

cuit. Again, stronger mutual inhibition and the presence of STF increase, while negative

feedback mechanisms like recurrent inhibition or adaptation decrease the system’s sensitivity

to the modulatory input (S6 Fig). Furthermore, adaptation leads to a frequency-selective

amplification for which the processing of rapidly changing input signals benefits from power-

ful spike-frequency adaptation in SOM and VIP neurons (S6 Fig). Finally, the experimentally

observed elevated correlation between members of the same interneuron class is also preserved

for adaptation and decreases strongly for recurrent inhibition (S6 Fig). In summary, the results

obtained in the simplified interneuron network also hold in the full circuit.

What is the computational impact of a somato-dendritic redistribution of inhibition on

PCs? It is well established that on their apical dendrites, many pyramidal cells receive top-

down input from higher cortical areas [22, 23] and matrix thalamic nuclei [24]. On their basal

dendrites and the perisomatic domain, they receive bottom-up input from lower cortical areas

and core thalamic nuclei [25]. Although inputs at the electrically distant apical dendrites have

a small impact on initiating spikes at the axon initial segment [48, 49], they can initiate long-

lasting calcium spikes when they coincide with back-propagating action potentials from the

soma [50–52], leading to a significant gain increase of L5 pyramidal cells [53]. How the two

streams of information are integrated is not fully resolved [54]. In particular, it is conceivable

that top-down inputs are only used when they provide useful and reliable information, and are

ignored otherwise. Given that calcium spikes in apical dendrites are very sensitive to inhibition

[55], dendrite-targeting interneurons are well suited to control the integration of top-down

inputs, and, consequently, the switch between distinct modes of operation. We therefore simu-

lated the full microcircuit with top-down and bottom-up inputs, in a “switch” configuration of

strong mutual inhibition between VIP and SOM, and without spike-frequency adaptation. For

illustration, we chose as inputs two sinusoidal oscillations with different frequencies (Fig 5A &

5C), and determined how strongly these two input streams are represented in the firing rate of

PCs (Fig 5A & 5B). When the network is in the “switch” regime, we found that small changes

in VIP input are sufficient to switch the network between two computational states in which

top-down inputs are either transmitted or cancelled entirely (Fig 5B). Interestingly, transitions

between those two computational states can also be triggered by transient modulatory pulses.
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The evoked change of the processing mode persists even after the end of the pulse (Fig 5C),

reflecting a bistability of the system. As a consequence, the current processing mode of the net-

work depends on the recent history of the input to the SOM-VIP motif (S7 Fig).

In summary, we demonstrate that the integration of top-down feedback from higher corti-

cal areas can be induced or prevented by persistent, weak input or short, strong input pulses

onto VIP cells. As the network exhibits hysteresis, the switching depends on the collective state

of SOM and VIP neurons.

Amplification of small mismatch signals

The SOM-VIP circuit can be interpreted as an amplifier for small differences between two

inputs that impinge onto SOM and VIP neurons. We therefore simulated a network with two

modulatory signals targeting SOM and VIP neurons. By systematically varying these inputs in

an amplification regime, we verified that the somato-dendritic distribution of inhibition is

determined by the mismatch between the two inputs (Fig 6A).

This observation is interesting in the context of a recent study of Attinger et al. (2017) [56].

The authors suggested a conceptual model for layer 2/3 of mouse V1, in which SOM neurons

receive visual inputs, while VIP neurons and the apical dendrites of the PCs receive an internal

(motor-related) prediction of the expected visual input. When properly tuned, the excitatory

top-down input to the PC dendrites is then cancelled by SOM inhibition, as long as the inter-

nal prediction matches the sensory data. Deviations between sensory inputs and internal

Fig 5. Integration or cancelation of top-down signals by modulatory VIP input. (A) PCs of the full microcircuit are stimulated

at the soma and the apical dendrites with two oscillations with different frequencies, emulating bottom-up (orange, xE) and top-

down (blue, xD) input, respectively. PC rate reflects the two inputs xE and xD with different coefficients α and β, depending on the

modulatory input. (B) In an amplification regime (ŵ ¼ 1:1), weak, permanent modulatory VIP input is sufficient to switch

between two operation modes, in which top-down input is either integrated (β> 0) or cancelled (β = 0). In the WTA regime, the

network exhibits hysteresis, that is, the level of modulatory input needed to cause a switch depends on the network state. For a

range of inputs, the circuit is bistable. (C) In the bistable regime (ŵ ¼ 1:2), persisting transitions between the states can be

triggered by strong, short pulses delivered to VIP neurons (10 ms duration, amplitude 8.4/s, timing denoted by green arrows).

Parameters (A-C): Weight between SOM neurons and dendrites ŵDS ¼ 2:8, External stimulation xE = 25/s + 0.5 sin(5 t)/s, xD = 7/s
+ 0.1 sin(30 t)/s, xPV = 12/s, xSOM = xVIP = 3.5/s.

https://doi.org/10.1371/journal.pcbi.1006999.g005
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predictions, however, change the level of dendritic inhibition and thereby generate mismatch

responses, as observed in a subset of PCs in V1 [56, 57] and in other systems [58, 59].

To test this hypothesis in silico, we stimulated our full circuit model with visual inputs—

impinging onto PV and SOM neurons and the somata of PCs—and motor feedback—imping-

ing onto VIP neurons and the apical compartment of PCs (Fig 6B). Similar to the findings of

Keller et al. (2012) [56], we found network configurations in which we observed selective

responses in PCs when motor feedback was present in the absence of visual stimulation (Fig

6C), but not when visual stimuli were presented in the absence of motor feedback (Fig 6D).

These responses were reduced when the circuit was brought into an attenuation configuration

by weakening mutual inhibition between VIP and SOM neurons (Fig 6E).

We therefore suggest that the amplification brought about by the competition between

SOM and VIP neurons could serve to amplify small deviations between different input

streams, such as sensory signals and internal predictions. Because such deviations are powerful

learning signals for the internal prediction system [60], an amplification may be beneficial for

learning highly accurate predictions.

Discussion

We have shown that the broadly observed microcircuit comprising excitatory PC and inhibi-

tory PV, SOM and VIP neurons can act as an amplifier that translates weak input onto VIP

Fig 6. Mismatch detection by SOM/VIP-dependent amplification. (A) Additional modulatory input onto SOM neurons shifts

the transition point (green) of the PC rate as a function of modulatory VIP input (top). When plotted as a function of the

difference of SOM and VIP input, the transition points align, indicating that the circuit amplifies differences between two input

streams (bottom). Additional input onto SOM neurons ranges from −2/s to 0/s. (B) Model for the integration of visual inputs and

motor-related predictions [56]. SOM neurons, PV neurons and the somatic compartment of PCs receive external visual input, VIP

neurons and the apical dendrites of PCs receive an internal (motor-related) prediction of the expected visual input. The connection

strengths from PV neurons to the somatic compartment of PCs and the SOM!PV connection were chosen to ensure a response

only when the visual input is switched off and the (motor-related) prediction is switched on (see S1 Appendix for details). (C) PCs

respond with an increase in firing rate when visual input is off and the motor-related input is on (mismatch), but show a negligible

increase in activity above baseline when both input streams are on. (D) Also, only negligible responses above baseline are evoked

when motor-related input is permanently off (playback session). ŵSV ¼ 0:9, ŵVS ¼ 1:1. (E) The mismatch-induced increase in

firing rate is more pronounced in an amplification regime (ŵSV ¼ 0:9, ŵVS ¼ 1:1, dark red) in comparison to an attenuation

regime (ŵSV ¼ 0:1, ŵVS ¼ 0:3, gray). Parameters (B-E): Motor-related and visual input on corresponds to an additional input of

10.5/s and noise drawn from a Gaussian distribution with zero mean and SD = 3.5/s. Background stimulation xE = 28/s, xD = 0/s.

Time constant of PCs increased by factor 6 to reduce onset responses.

https://doi.org/10.1371/journal.pcbi.1006999.g006
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cells into large changes in the somato-dendritic distribution of inhibition onto PCs. A cor-

nerstone of this amplification is mutual inhibition between SOM and VIP neurons that—if

sufficiently strong—allows switch-like spatial shifts of somato-dendritic inhibition. Connec-

tivity properties like short-term facilitation of those mutual connections and the absence of

recurrent connections among both SOM and VIP neurons support the amplification. Spike-

frequency adaptation as observed for SOM and VIP cells gives rise to a frequency-selective

amplification, as a consequence of the slow time scales of adaptation. Furthermore, adapta-

tion in conjunction with sufficiently strong mutual inhibition results in an oscillation regime,

in which SOM and VIP neurons alternately win the competition, thus generating rhythmic

shifting of somato-dendritic inhibition. These oscillations are inherited by PCs that fluctuate

between two different computational states with frequencies ranging from approximately 1

to 10 Hz. Functionally, such oscillations could reflect a rhythmic switching between a state in

which sensory data is acquired and a state in which it is calibrated against internal

predictions.

A strong amplification is inextricably linked with a small dynamic range, in which modula-

tory signals influence the output. This trade-off is an intrinsic property of any amplifier and

cannot be circumvented. An efficient transmission of modulatory signals would require to

align the statistics of the modulatory input and the dynamic range of the amplifier. We hypoth-

esize that this could be achieved by plasticity within the SOM-VIP motif. Which plasticity

rules could achieve such an alignment is beyond the scope of the present work. Whether the

SOM-VIP motif would act as an attenuator, amplifier, switch or oscillator depends on details

of the circuit and should be task- and area-specific.

The microcircuit we studied has been observed in several cortical areas, including mouse

primary somatosensory (S1), visual (V1) and vibrissal motor (vM1) cortex, and both in layer

2/3 and 5 [12, 13, 15, 26–32]. We did not strive to resolve subtle differences between these

areas, but rather covered broad parameter ranges to explore the computational repertoire of

the circuit (see, e.g., [61] for area-to-area variations). We suggest that the observed architec-

ture of the microcircuit is consistent with the function of an amplifier for modulatory signals,

but an amplification could of course also be achieved by different mechanisms, such as non-

linear input-output (transfer) function with steep (switch-like) slope for SOM or VIP neu-

rons or very strong synapses for modulatory inputs. It can be assumed that the brain employs

a number of different co-existing mechanisms to achieve a high amplification index when

needed.

The absence of recurrent connections among both SOM and VIP neurons has been sup-

ported by many studies, both in vitro and in vivo [13, 39]. It has been argued, however, that

SOM neurons should be subdivided into ‘Martinotti’ and ‘non-Martinotti’ cells to account for

differences in their morphology and biophysical properties [15]. While recurrence seems to be

weak or absent within both sub-populations, connections between these subgroups have been

reported. However, most of the SOM neurons belong to the class of Martinotti cells that avoid

connections to each other. The majority of the ‘non-Martinotti’ cells recorded by Jiang et al.

[15] were classified as basket cells which target the somatic compartment of the PCs, suggest-

ing that within our model, they would fall into the category of soma-targeting cells rather than

into the class of dendrite-targeting cells. A detailed analysis of the consequences of splitting up

these two cell classes is beyond the scope of the present study.

Following the model of Murayama et al. (2009) [34], recurrent excitation among PCs tar-

gets the dendritic compartment. However, the results presented here remain qualitatively

unaltered if recurrent excitation targets the somatic compartment instead, because we consid-

ered a homogeneous population of PCs, in which excitatory recurrent connections served no
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specific purpose. In other contexts, in which recurrent excitation plays a particular role, the

question of whether an inhibitory control of the top-down input also affects recurrent excit-

atory processing can have profound consequences.

The model contained a unidirectional connection from SOM neurons onto PV neurons.

This assumption is based on the common observation that this connection is strong and fre-

quent, while the backprojection is rather weak or absent in layer 2/3 and 5 [13, 16]. An excep-

tion is the study of Walker et al. (2016) [62], who reported strong and frequent connections

from PV to Martinotti cells in layer 2/3 of mouse S1. We expect that such a mutual inhibition

between PV and SOM neurons would not violate our hypothesis, but rather introduce another

amplification mechanism with a similar structure. However, PV!SOM connections may also

introduce complex interactions between inputs to PV and VIP neurons that are not captured

in our model. It remains for future work to explore the computational and functional conse-

quences of such serially connected amplifiers.

In our model, VIP neurons are connected exclusively to SOM neurons. We neglected

potential VIP input to PCs and other interneuron classes. This assumption is supported by a

wealth of experimental studies that reported no or weak connections from VIP to PC and PV

neurons [13, 15, 17]. However, in a study of Garcia-Junco-Clemente et al. (2017) [63] strong

and direct connections between VIP neurons and PCs were found during arousal in layer 2/3

of the mouse frontal association area. The strength of this inhibition was highly variable

between cells, covering a wide range of almost two orders of magnitude. Also, this connection

was reported to be weaker in the occipital cortex in the same study [63]. Notwithstanding the

presence of this connection in different systems, it is tempting to speculate on its computa-

tional function, because it may enable to run different operating modes in parallel. Karnani

et al. (2016) [39] have demonstrated that SOM and VIP neurons receive local excitation from

distinct (non-overlapping) PC groups rather than non-selectively from all nearby excitatory

neurons. If the respective interneuron types also selectively project back, and if the VIP projec-

tion would also impinge onto apical dendrites, one group of PCs may operate in a feedback-

modulated state, whereas another group runs in a feedforward-driven mode at the same time

(see Fig 7).

In our model, we assume that the activation of VIP neurons leads to a disinhibition of PCs

through the suppression of SOM cells. This net disinhibitory effect has been observed in S1

[29], V1 [13, 17–19] and the auditory cortex [17]. However, data from a recent study [64]

challenges the perspective of a sole disinhibitory impact by showing an increase of SOM

activity in the presence of visual stimuli during locomotion. In a theoretical study by del

Fig 7. Diverse processing modes at the network level. Garcia-Junco-Clemente et al. (2017) [63] suggested that VIP

neurons also target the apical dendrites of PCs. Moreover, Karnani et al. (2016) [39] suggested that SOM and VIP

neuron populations receive excitatory input from distinct (non-overlapping) PC populations. If SOM and VIP

interneurons preferably inhibited those PCs from which they get their input, it is conceivable that the distinct PC

populations operate in a feedback-modulated state and a feedforward-driven mode, respectively. The switch between

these states could then be triggered by VIP neuron input or the difference between modulatory input onto SOM and

VIP cells.

https://doi.org/10.1371/journal.pcbi.1006999.g007
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Molino et al. (2017) [65], this response reversal has been explained by the interaction of mul-

tiple neuron types, and different baseline activity levels due to non-linear input-output func-

tions. This non-linearity is not present in our model, and hence, we cannot model response

reversal effects.

The modulatory VIP neuron input in our microcircuit represents an abstract control signal.

We deliberately did not specify the origin of this signal throughout most of this study, because

inputs to VIP cells are very diverse. Besides local excitation from PCs in the same and deep lay-

ers, the greatest source of excitatory input of VIP cells is feedback from higher cortical areas

and thalamus [3, 66, 67]. Moreover, VIP neurons are also strongly excited by acetylcholine and

serotonin [66], and Pi et al. (2013) [17] have shown that VIP neurons in the auditory and pre-

frontal areas are recruited by reinforcement signals during an auditory discrimination task.

Furthermore, in barrel cortex, VIP cells increase their activity during whisking as they receive

substantial input from vM1 pyramidal neurons [29]. Finally, it has been shown that locomo-

tion activates VIP cells in V1 (independent of visual stimulation) and their firing rate is corre-

lated with running speed [18]. In summary, the assumption of a modulatory signal targeting

VIP cells is supported by experimental data, but its origin or functional meaning may well vary

between areas or over time.

Modulatory inputs may not comprise inputs to VIP neurons alone. The ability to amplify

weak signals arriving in the SOM-VIP motif may be of particular importance in the context of

detecting mismatches between two sources of information [56, 57]. This could allow not only

to amplify, but also to compute error signals that drive the refinement of internal models or

the computational function of hierarchical “deep” networks [68–71].

The ability to switch between distinct operating modes increases the computational reper-

toire of principal cells. When SOM neurons are inactive, top-down inputs onto apical den-

drites elevate the output of pyramidal cells, for instance by bursts generated by dendritic

calcium spikes [25]. On the other hand, when SOM neurons are highly active, the transmission

of dendritic signals can be effectively cancelled. Feedback “top-down” projections have been

associated with a variety of cognitive parameters, including attention and visual awareness [68,

72, 73], context [68, 72, 74], internal predictions of the outside world [25, 72, 75] and error or

reinforcement signals for learning [68–71]. Hence, the integration or cancellation of top-down

inputs from higher to lower cortical areas is likely to play a crucial role in information process-

ing, cognition and perception [25, 72, 73]. The SOM-VIP microcircuit could enable an effi-

cient control over these processes by cortical and thalamic inputs to VIP neurons [18, 19, 29,

67]. We did not strive to resolve branch-specific (dis-)inhibition effects but rather considered

a blanket of inhibition that suppresses the dendritic tree as a whole. Pathway-specific gating

has been investigated in a network comprising several interneuron types [76]. The authors

suggest that signals reflecting distinct, sensory modalities arriving at different branches of the

dendritic tree can be selectively forwarded to the soma by releasing the target branch from

SOM-mediated inhibition. More generally, our model does not account for intricate non-lin-

ear interactions in spatially extended dendrites that are observed in detailed compartmental

models [77–79]. Therefore, it is conceivable that taking into account spatially extended den-

drites with a rich arborization could further enhance the computational repertoire of the

system.

Despite the accumulating data on the broad variety of interneurons [3], their computational

function is still poorly understood. The present study provides a hypothesis for one candidate

function: An effective redistribution of inhibition along the somato-dendritic axis by an ampli-

fication of small control signals within the SOM-VIP motif. Functionally, we have shown that

this can control whether top-down input is integrated or cancelled. This computational role

may well be only one in a broad repertoire of functions performed in parallel. Computational
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models may offer a useful resource to understanding this functional repertoire [65, 76, 80–83],

given that they offer a degree of control over the circuit that is hard to achieve in experimental

setups.

Methods

Neural network model

We simulated a rate-based network of excitatory pyramidal cells (NPC = 70) and inhibitory

PV, SOM and VIP cells (NPV = NSOM = NVIP = 10). All neurons are randomly connected with

connection probabilities (see Table 1) consistent with the experimental literature [12, 13, 15].

If not stated otherwise, all cells of the same neuron type have the same number of incoming

and outgoing connections, respectively. This assumption is made merely for purposes of math-

ematical tractability and does not qualitatively alter the results.

The excitatory pyramidal cells are simulated by a two-compartment rate model taken from

[34]. The steady-state firing rate rE,i of the somatic compartment of neuron i obeys

tE
drE;i
dt
¼ � rE;i þ ½Ii � Y�þ; ð1Þ

where [x]+ =max(0, x) is a rectifying nonlinearity and τE denotes a rate time constant (τE = 10

ms, unless stated otherwise). Θ denotes the rheobase of the neuron and Ii is the total somatic

input generated by somatic and dendritic synaptic events and potential dendritic calcium

spikes,

Ii ¼ lD½I
syn
D;i þ ci�þ þ ð1 � lEÞI

syn
E;i : ð2Þ

IsynD;i and IsynE;i are the total synaptic inputs into dendrites and soma, respectively, and ci denotes

the dendritic calcium event. λD and λE are the fraction of “currents” leaking away from den-

drites and soma, respectively. The synaptic input to the soma IsynE;i is given by the sum of exter-

nal bottom-up inputs xE and PV neuron-induced (P) inhibition,

IsynE;i ¼ xE �
XNPV

j¼1

wEP;ij rP;j: ð3Þ

IsynD;i is the sum of top-down inputs xD, the recurrent, excitatory connections from other PCs

and SOM neuron-induced (S) inhibition:

IsynD;i ¼ xD �
XNSOM

j¼1

wDS;ij rS;j þ
XNPC

j¼1

wDE;ij rE;j: ð4Þ

The weight matrices wEP, wDS and wDE denote the strength of connection between PV

neurons and the soma of PCs (wEP), SOM neurons and the dendrites of PCs (wDS) and the

recurrence strength between PCs (wDE), respectively (see Table 2). Note that all existing con-

nections between neurons of type X and Y have the same strength, wXY,ij = wXY, X, Y 2 {E, D,

P, S, V}. All weights are scaled in proportion to the number of existing connections (i.e., the

product of the number of presynaptic neurons and the connection probability), so that the

results are independent of population sizes. The input generated by a calcium spike is given

by

ci ¼ c � HðI0D;i � YcÞ; ð5Þ
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where c scales the amount of current,H is the Heaviside step function, Θc represents a thresh-

old that describes the minimal input needed to produce a Ca2+-spike and I0D;i denotes the

total, synaptically generated input in the dendrites,

I0D;i ¼ lEI
syn
E;i þ ð1 � lDÞI

syn
D;i : ð6Þ

Unless stated otherwise, parameters were taken from [34] (see Table 2). Note that we incor-

porated the gain factor present in Murayama et al. (2009) [34] into the parameters to achieve

unit consistency for all neuron types.

The firing rate dynamics of each interneuron is modeled by a rectified, linear differential

equation [33]:

ti _ri ¼ � ri þ
X

j

wij uij rj � ai þ xi;

ðif ri < 0; then ri ! 0Þ

ð7Þ

where ai represents an adaptation variable, wij denotes the relevant synaptic weight onto the

neuron, uij describes a synaptic facilitation variable and xi denotes external inputs. The rate

time constant τi was chosen to resemble the GABAA time constant of approximately 10 ms for

all interneuron types included. The weight matrixW (see Table 3) was chosen such that the

relative connection strengths are consistent with experimental findings [12, 13, 15, 17, 29].

When we simulated mismatch neurons (see Fig 6, main text), we set the total SOM!PV con-

nection strength to ŵPS ¼ 0:2, the total PV!PV weight to ŵPS ¼ 1:0, and tuned the total syn-

aptic strength from PV neurons to the somatic compartment of PCs in order to ensure a

response only when the visual input is switched off and the (motor-related) prediction is

switched on: ŵEP ¼ ð1þ ŵPPÞ=ð1 � ŵPSÞ. Note that the total weight is given by the product of

the number of existing connections between two neuron types and the strength for individual

connections.

In contrast to PV neurons, both SOM and VIP cells show pronounced spike-frequency

adaptation [3, 5, 6, 11, 16], which is described by an adaptation variable ai,

ta _ai ¼ � ai þ b ri: ð8Þ

At constant neuronal activity ri, the adaptation variable ai exponentially approaches the

steady-state value b ri with time constant τa. For simplicity, if not otherwise stated, the adapta-

tion strength b and time constant τa are the same for both cell types (b 2 [0, 2], τa = 100 ms). If

adaptation is not present, we set the parameter b to zero.

Short-term facilitation is only modeled for SOM!VIP and VIP!SOM connections. The

facilitation variable uij between neuron j and neuron i evolves according to the Tsodyks-Mark-

ram model [40, 41]:

_uij ¼
Us � uij
tf

þ Usð1 � uijÞrj: ð9Þ

The facilitation variable uij ranges from 0 to 1 and represents the release probability, which

changes according to the availability of calcium in the axon terminals. In the absence of pre-

synaptic activity, the facilitation variable uij relaxes exponentially with time constant τf to a

steady state Us, which represents the initial release probability. Presynaptic activity increases

the facilitation variable uij by an amount proportional to Us. If not stated otherwise, the initial

release probability Us and facilitation time constant τf are equal for SOM and VIP neurons

(Us 2 [0, 1], τf = 200 ms). When STF is not present, uij = 1 (or, equivalently, Us = 1). In
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simulations where the strength of short-term facilitation is varied, we ensured comparability

by scaling the weights wij by Us, thereby keeping constant the initial synaptic response after a

long period of inactivity.

External stimulation

To achieve physiologically reasonable activity levels, all neurons are stimulated with a time-

independent background rate xi. PCs receive constant bottom-up input xE at the soma and

top-down feedback xD at their dendrites. Additionally, VIP (in the full network setting) or

SOM neurons (in the reference network) receive an external stimulus xmod that was varied sys-

tematically to investigate the amplification properties of the microcircuit. If not indicated dif-

ferently, all cells of the same neuron type are presented with an identical stimulus.

In the interneuron network, for the sake of comparability across different parameter set-

tings, we always adjust the background inputs xi such that the spontaneous activity (that is, at

xmod = 0) is equal to r0 = 3/s for all interneurons. In the non-WTA regime this can be achieved

by

xi ¼ ð1þ bÞ r0;i �
X

j

wij uij r0;j ð10Þ

with uij = 1, if short-term facilitation is not present, or

uij ¼
Usð1þ tf r0;jÞ
1þ Us tf r0;j

ð11Þ

otherwise. In the full microcircuit comprising PC, PV, SOM and VIP cells, the external stimu-

lation is set to xPV = xSOM = xVIP = 3/s for the interneurons and xE = 17.5/s and xD = 21/s for

the PCs, if not otherwise stated.

To characterize the dynamics of the system, we perform a frequency response analysis that

measures the amplitude of the output signal as a function of the frequency 1/T. In that case,

the weak external stimulus xmod is expressed by a sine wave

xmod ¼ sin
2pt
T

� �

; ð12Þ

where T 2 [50, 600]ms. The frequency-resolved amplification index is then given by the loga-

rithm of the ratio of the oscillation amplitudes in full and reference networks.

To investigate correlations, we stimulated SOM and VIP neurons with an input consisting

of i) a constant component �x (calculated as before, see Eq (10)), ii) individual noise and iii)

noise that it shared among the neurons of the same type:

xmod;i ¼ �xð1þ 0:6 xshared þ 0:4 xiÞ ; ð13Þ

where the noise terms ξshared and ξi are drawn at each time t from Gaussian distributions with

zero mean and unit variance. The shared component of the noise accounts for the strong cor-

relations seen by Karnani et al. (2016) [39]. Furthermore, the number of cells per neuron type

is increased in these simulations by a factor 5 to obtain reliable statistical estimates.

For the example firing rate traces (in Fig 4 and S3 & S4 Figs), we stimulated SOM and VIP

neurons with an input consisting of i) a constant component of 25/s and ii) individual noise

drawn at each time t from a Gaussian distribution with zero mean and SD of 5/s.
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Definition and mathematical derivation of the amplification index

To quantify the strength of amplification in our neural microcircuit, we introduce the amplifi-

cation index,

A ¼ log
2

mfull

mref

� �

; ð14Þ

wheremfull andmref denote the slope of the sigmoid function of the full and the reference net-

work (see Fig 1D or 1F), respectively. These slopes represent the redistribution of somatic and

dendritic inhibition upon a change in modulatory VIP input. Hence, the amplification index

measures how much stronger the redistribution is when weak input passes through the SOM-

VIP motif instead of directly through the SOM neurons.

The amplification index can be calculated analytically for the simplified linear network

without PCs and short-term facilitation. To this end, we first derive the slopemfull from the

mean-field population dynamics,

t
drPV
dt

¼ xPV � ð1þ ŵPPÞ rPV � ŵPS rSOM; ð15Þ

t
drSOM
dt

¼ xSOM � ð1þ ŵSSÞ rSOM � ŵSV rVIP; ð16Þ

t
drVIP
dt

¼ xVIP þ xmod � ð1þ ŵVVÞ rVIP � ŵVS rSOM; ð17Þ

where ŵmn denotes the total weight from neuron type n ontom, and the rates rn denote the

mean-field population rate of neuron type n. For the sake of generality, we included the possi-

bility of recurrent connections among both SOM and VIP neurons. Solving this set of equa-

tions for the steady-state population activity yields

rPV ¼
xPV � ŵPS rSOM

1þ ŵPP
; ð18Þ

rSOM ¼
xSOMð1þ ŵVVÞ � ŵSVðxVIP þ xmodÞ

ð1þ ŵSSÞð1þ ŵVVÞ � ŵSVŵVS
: ð19Þ

The slopemfull is given by the derivative of rPV − rSOM with respect to xmod,

mfull ¼ 1þ
ŵPS

1þ ŵPP

� �
ŵSV

ð1þ ŵSSÞð1þ ŵVVÞ � ŵSVŵVS
: ð20Þ

Similarly, the slopemref in the reference network can be derived from the mean field equa-

tions without VIP neurons and PCs,

t
drPV
dt

¼ xPV � ŵPP rPV � ŵPS rSOM; ð21Þ

t
drSOM
dt

¼ xSOM � xmod � ŵSS rSOM; ð22Þ
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and is given by

mref ¼ 1þ
ŵPS

1þ ŵPP

� �
1

1þ ŵSS
: ð23Þ

Finally, the amplification index is given by the ratio of the slopes,

A ¼ log 2

mfull

mref

� �

¼ log 2

ŵSVð1þ ŵSSÞ

ð1þ ŵSSÞð1þ ŵVVÞ � ŵSVŵVS

� �

: ð24Þ

In the absence of recurrent inhibition within SOM and VIP populations, this expression

simplifies to

A ¼ log 2

ŵSV

1 � ŵSVŵVS

� �

: ð25Þ

Mathematical analysis of the computational repertoire of the SOM-VIP

network

To analyze the computational repertoire of the SOM-VIP motif, we considered a network

composed of SOM (hereafter only S) and VIP neurons (hereafter only V) that are mutually

and fully connected. Again, the rectifying nonlinearity of the neurons is neglected.

Computational states with recurrent inhibition within SOM and VIP neurons. In the

absence of adaptation, the dynamics of the system is fully characterized by the change in rates.

Each population comprises n cells, so the dynamics of the full network are described by a (2 ×
n)-dimensional system of linear differential equations,

_r ¼Wrþ s ð26Þ

with rT ¼ ½rS1
; . . . ; rSn ; rV1

; . . . ; rVn
�. s represents a vector of external stimuli andW is a block

matrix that contains the connection weights.

By deriving the eigenvalue spectrum of the matrixW (see S1 Appendix for a detailed deriva-

tion), we can perform a bifurcation analysis. For the sake of simplicity, we suppose that the

rate time constants, recurrence and mutual inhibition strengths are equal for both interneuron

types: τS = τV = τ, wSS = wVV = wr and wSV = wVS = w. By analyzing the sign and nature (com-

plex or real) of the eigenvalues, we can define five dynamical regimes:

(i) All interneurons can be active and operate in an attenuation regime,

(ii) All interneurons can be active and operate in an amplification regime,

(iii) Winner-take-all (WTA) between SOM and VIP neuron population (strong competition,

either all SOM or all VIP cells are silenced, neurons within the winning population are all

active),

(iv) WTA in each population separately (exactly one VIP and one SOM cell remain active),

(V) Total WTA (only one single neuron in the whole network is active).

The transition between the attenuation and the amplification regime ((i) and (ii)) is deter-

mined by the condition that the amplification index, Eq (24), is equal to one (for the symmet-

ric case ŵVV ¼ ŵSS ¼ ŵr and ŵSV ¼ ŵVS ¼ ŵ). The transition to WTA regimes ((iv) and (v))

within each neuron population emerges when the total recurrence strength ŵr is greater or
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equal to the leak multiplied by the population size,

ŵr � n � 1: ð27Þ

Moreover, the transition to a WTA regime between SOM and VIP neurons (regime (iii))

occurs when the total mutual inhibition strength ŵ is larger than the sum of total recurrence

ŵr and leak,

ŵ2 > ð1þ ŵrÞ
2
; ð28Þ

where ŵr ¼ ðn � 1Þwr and ŵ ¼ nw. Finally, the pathological regime (v) of a total WTA

requires that Eq (27) is fulfilled and that ŵ > n, i.e., condition (28) at the transition boundary

to WTA within the two populations.

Computational states with adaptation. In order to derive the qualitative changes in

the bifurcation structure when adaptation (instead of recurrence) is present, we extended the

rate-dynamics (see Eq (26)) with linear differential equations describing the evolution of an

adaptation current (cf. Eq (8)). The (4 × n)-dimensional state-vector r is now given by

rT ¼ ½rS1
; aS1

; . . . ; rSn ; aSn ; rV1
; aV1

; . . . ; rVn
; aVn
�. For the sake of simplicity and comparability,

we suppose that the rate time constants, the mutual inhibition strength as well as the adapta-

tion parameters are equal for SOM and VIP neurons: τS = τV = τ, wSV = wVS = w, bS = bV = b
and τa,S = τa,V = τa. This symmetry simplifies the derivation of the eigenvalues considerably

(see S1 Appendix).

The eigenvalue spectrum reveals that, in contrast to recurrence, adaptation does not lead to

pathological states (see conditions (iv) and (v) in subsection above). Furthermore, depending

on the sign and nature of the eigenvalues, we find four dynamical regimes:

(i) All interneurons can be active and operate in an attenuation regime (Fig 4A, region (a)),

(ii) All interneurons can be active and operate in an amplification regime (Fig 4A, region (b)),

(iii) Switch regime (Fig 4A, region (c)): WTA between SOM and VIP neuron population when

total mutual inhibition strength is larger than the sum of the adaptation strength and the

leak:

ŵ � bþ 1: ð29Þ

(iv) Oscillation regime (Fig 4A, region (d)), in which SOM and VIP cells alternate between

active and inactive states. It requires two conditions: First, adaptation must be stronger

than the difference of total mutual inhibition and leak. Second, this total reciprocal inhibi-

tion must be larger than leak and ratio of rate and adaptation time constant:

b > ŵ � 1;

ŵ > 1þ t=ta:
ð30Þ

The derivation of the amplification index A for a network with adaptation is analogous to

the derivation with recurrent inhibition, and merely requires to replace the total recurrence

strength ŵr by the strength b of adaptation. Hence, the transition between the attenuation and

the amplification regime ((i) and (ii)) is determined by this minor modification of Eq (24).

Amplifying the redistribution of somato-dendritic inhibition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006999 May 16, 2019 23 / 29

https://doi.org/10.1371/journal.pcbi.1006999


In the oscillation regime, some of the eigenvalues of the dynamical system are complex. An

approximation of the oscillation frequency can then be derived from their imaginary part:

f ¼
1

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4b
tta
�

1

t
�

1

ta
�
ŵ
t

� �2
s

: ð31Þ

Simulation details and code availability

All simulations were performed in customized Python code written by LH. Differential equa-

tions were numerically integrated using a 2nd-order Runge-Kutta method with a maximum

time step of 0.05 ms. Neurons were initialized with ri(0) = 0 Hz, ai(0) = 0 Hz (if adaptation was

modeled) and uij(0) = Us (if STF was present) for all i. Source code will be made publicly avail-

able upon publication.

Supporting information

S1 Fig. Asymmetric mutual inhibition strengths for SOM and VIP neurons also enhances

the amplification index. When one of the connections, VIP!SOM (ŵSV) or SOM!VIP

(ŵVS), is kept constant, increasing the respective other weight leads to a strengthening of the

amplification. Fixed weight was set to ŵVS=SV¼1.

(PDF)

S2 Fig. Asymmetric recurrence strengths for SOM and VIP neurons also reduce the ampli-

fication index. When one of the recurrent connections, VIP!VIP (ŵVV) or SOM!SOM

(ŵSS), is kept constant, increasing the respective other weight leads to a decrease of the amplifi-

cation index. Fixed weight was set to ŵSS=VV¼0:5. Mutual inhibition strength ŵ ¼ 0:8.

(PDF)

S3 Fig. Oscillations also arise for asymmetric adaptation strengths in SOM and VIP neu-

rons, with altered firing rate and oscillation frequency. Firing rate traces for SOM (blue)

and VIP (green) neurons for a range of adaptation strengths (bS/V 2 {0.4, 0.6, 0.8, 1}). Off-diag-

onal plots correspond to asymmetric adaptation strengths. Mutual inhibition strength

ŵ ¼ 1:3, adaptation time constants τa = 50 ms.

(PDF)

S4 Fig. Asymmetric adaptation time constants for SOM and VIP neurons lead to different

duration of active and inactive periods. Firing rate traces for SOM (blue) and VIP (green)

neurons for a range of adaptation time constants (τa,S/V 2 {50, 100, 200, 400} ms). Larger adap-

tation time constants cause longer active states. Mutual inhibition strength ŵ ¼ 1:3, Adapta-

tion strength b = 0.5.

(PDF)

S5 Fig. Dynamical states of the SOM-VIP motif with recurrence. Left: Bifurcation diagram

reveals distinct operation modes: all interneurons are active (divided into amplification and

attenuation regime), winner-take-all (WTA) regime leading to a switch, and two pathological

states (WTA in each population separately and total WTA). Regime boundaries (black lines)

are obtained from a mathematical analysis (see S1 Appendix). Right: Example firing rate traces

for all SOM (blue) and VIP (green) neurons for four network settings (see markers) taken

from the bifurcation diagram. NSOM = NVIP = 5. SOM and VIP neurons were stimulated with

an input consisting of i) a constant component of 25/s and ii) individual noise drawn at each
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time t from a Gaussian distribution with zero mean and SD of 1/s.
(PDF)

S6 Fig. The full microcircuit with excitatory PCs and inhibitory PV, SOM and VIP neurons

shows the same phenomena as the reduced interneuron network. (A) PCs in the full micro-

circuit (left) exhibit a steeper firing rate slope with increasing mutual inhibition strength

(ŵ ¼ 0:7 and 0.9), increasing short-term facilitation (STF) (Us = 0.4 and 0.25, τf = 200 ms),

but a reduced slope for increasing recurrence strength (ŵr ¼ 0 and 0.3) and adaptation

(b = 0.2 and 0.5, τa = 100 ms). (B) With adaptation, the frequency response analysis reveals a

frequency-selective amplification. (C) Mean SOM-SOM neuron correlation is more sensitive

to increasing recurrence strength than to adaptation strength (right). Parameter (B–C): Mutual

inhibition strength ŵ ¼ 0:8.

(PDF)

S7 Fig. WTA between SOM and VIP neurons causes hysteresis in the reduced interneuron

network and full microcircuit. (A) Example phase planes (top) for three distinct values of the

modulatory input (cf. bottom). The intersection points of SOM- (blue) and VIP-nullcline

(green) correspond to the fixed points that are either stable (filled circle) or unstable (open cir-

cle). The vector field shows the direction and strength of flow. In a WTA regime, the network

exhibits bistability for a range of modulatory input values, leading to hysteresis (bottom).

(B) Same as above for the full microcircuit. PC rate exhibits two stable states for a range of

modulatory inputs. The steady-state activity depends on the initial state. Parameter (A–B):

Mutual inhibition strength ŵ ¼ 1:05.

(PDF)

S1 Appendix. Mathematical analysis of the SOM-VIP motif. Mathematical analysis of a sim-

plified model that comprises only SOM and VIP cell populations either with recurrent connec-

tions among both SOM and VIP neurons or adaptation. The derivations provide analytical

conditions for the parameter boundaries between different computational states of the SOM-

VIP motif. Approximations for these boundaries for the nonlinear case that includes short-

term plasticity are also provided.

(PDF)
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