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Bipolar disorder (BD) is a major and highly heritable mental illness with severe

psychosocial impairment, but its etiology and pathogenesis remains unclear. This study

aimed to identify the essential pathways and genes involved in BD using weighted

gene coexpression network analysis (WGCNA), a bioinformatic method studying the

relationships between genes and phenotypes. Using two available BD gene expression

datasets (GSE5388, GSE5389), we constructed a gene coexpression network and

identifiedmodules related to BD. The analyses of GeneOntology and Kyoto Encyclopedia

of Genes andGenomes pathwayswere performed to explore functional enrichment of the

candidate modules. A protein-protein interaction (PPI) network was further constructed

to identify the potential hub genes. Ten coexpression modules were identified from the

top 5,000 genes in 77 samples and three modules were significantly associated with

BD, which were involved in several biological processes (e.g., the actin filament-based

process) and pathways (e.g., MAPK signaling). Four genes (NOTCH1, POMC, NGF,

and DRD2) were identified as candidate hub genes by PPI analysis and CytoHubba.

Finally, we carried out validation analyses in a separate dataset, GSE12649, and verified

NOTCH1 as a hub gene and the involvement of several biological processes such as actin

filament-based process and axon development. Taken together, our findings revealed

several candidate pathways and genes (NOTCH1) in the pathogenesis of BD and call for

further investigation for their potential research values in BD diagnosis and treatment.

Keywords: bipolar disorders, coexpression modules, hub genes, WGCNA, pathway analysis

INTRODUCTION

Bipolar disorder (BD) is a chronic and recurrent severe mental disorder that affect about 1% global
population (1). The disease is associated with high heritability, ranging from 70 to 90% (2), but
its key genetic and neurobiological mechanisms are still not recognized. With the development
of high-throughput sequencing technology, significant progress has been made in the genomics
of BD. Recently, some systematic reviews and genome-wide association study (GWAS) findings
have revealed more than 40 genes, including ANK3, ERBB2, ODZ4, CACNA1C, and FADS (3, 4).
Pathway analyses of these genes showed that they were involved the regulation of insulin secretion,
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apoptosis, immunological response, neuroplasticity, HPA axis
dysregulation, and the signal of endocannabinoid, etc., (5, 6).
Recent RNA-sequencing studies also highlight dysregulation of
neuroplasticity, circadian rhythms, as well as GTPase binding
in BD (7). These findings provide clear evidence that BD
is associated with an extensive polygenic genetic architecture
(5), which calls for the network-level investigation to reveal
the correspondence between risk genes and phenotypes. By
combining public microarray data with bioinformatic analysis,
we can gain an in-depth understanding of the molecular
processes and pathogenesis of BD.

Weighted gene coexpression network analysis (WGCNA)
is a bioinformatic method to study the relationships between
genes and phenotypes. Recently, this technique has been widely
applied to neurological and psychiatric disorders, including
posttraumatic stress disorder, depression, schizophrenia,
Alzheimer’s disease, and Huntington’s disease (8–13). Different
from previous research methods focusing on individual genes,
WGCNA transforms gene expression profiles into coexpression
networks (modules). By examining modules of highly correlated
genes, this method provides insights into the signaling networks
that may be responsible for phenotypic traits of interest and the
results may help identify the candidate biomarkers or therapeutic
targets of many biological processes (14, 15).

The aim of this study is to reveal gene modules related to BD
and to identify their functional pathways and potential hub genes.
Using two available BD gene expression datasets (GSE5388,
GSE5389), we constructed a gene coexpression network using
WGCNA. For the modules related to BD, we then performed
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses to reveal the pathways enriched in
these modules. In addition, a protein-protein interaction (PPI)
network was constructed for the module of interest to identify
candidate hub genes. Finally, we carried out validation analyses
in a separate dataset GSE12649. These analyses based on gene
coexpression profiles would shed light on the polygenic genetic
architecture of BD and help to reveal the potential gene markers
for BD diagnosis and treatment.

MATERIALS AND METHODS

Microarray Data
Two gene expression datasets of BD patients, GSE5388, and
GSE5389, were downloaded from the GEO database in May
2019 (https://www.ncbi.nlm.nih.gov/geo/). The GSE5388 dataset
contained 61 samples (30 bipolar and 31 control subjects) from
the dorsolateral prefrontal cortex (DLPFC). The GSE5389 dataset
contained 21 samples (10 bipolar and 11 control subjects) from
the orbitofrontal cortex (OFC). Both datasets were from the study
of Ryan et al. (16) and based on the GPL96 platform ([HG-
U133A] Affymetrix Human Genome U133A Array). The clinical
data of these datasets, such as diagnosis, demographics (e.g.,
age, sex), and technical information (e.g., post-mortem interval,
pH, RNA degradation, Batch), were also obtained. These two
datasets were chosen based on prior evidence of involvement of
DLPFC and OFC in BD (17). Ryan and colleagues found that
gene expression changes in two regions were comparable (16),

which suggests that the two datasets could be merged. Below we
performed quality control analysis to further make sure that there
are no batch effects between the two datasets.

Data Preprocessing and Quality Control
The preprocessing was carried out separately for each dataset,
including quality control and normalization, using the affy
package in R (version 3.6.0; https://www.r-project.org/) (18).
Demographic and technical variables were treated as covariates
to control for their potential influence on the differences between
bipolar and control subjects. The samples with standardized
sample network connection Z-scores <-2 were excluded
from further analysis. Five samples (GSM123204, GSM123205,
GSM123206, GSM123214, and GSM123243) were defined as
outliers and removed, resulting in 77 samples for final analysis.
The chip scan date extracted from the metadata was used as
an experimental batch for each dataset. The ComBat function
of sva package in R was used to correct for batch effects (19).
Annotations to the probes were performed using Ensembl gene
IDs (v75; Feb 2014 data freeze) by the biomaRt package in R
(20). A larger dataset was built by merging the two datasets
following previous practics (12). The ComBat function was used
to eliminate study batch effects if present (19).

Weighted Gene Coexpression Network
Analysis (WGCNA)
The WGCNA was performed on the average expression levels of
the top 5,000 genes in 77 samples using the WGCNA package
in R (14). The sample network connectivity was standardized by
function scale according to the distance before WGCNA, which
excluded the outlier samples connectivity <-5. The hierarchical
clustering of samples was analyzed using the default method
(hclust function), and no sample outliers were found. The soft
thresholding power was then screened by the pickSoftThreshold
function. Candidate powers from 1 to 20 were applied to test
the mean connectivity degrees and the independence of modules.
The soft thresholding power was selected if the R2 ≧ 0.8. To
construct the WGCNA, the blockwiseModules function in R was
used, and multiple parameters were defined. Here, the following
parameters were used: power = 8, minModuleSize = 50,
deepSplit= 1, networkType= “unsigned.” Themodule detection
process was performed automatically by BlockwiseModules.
Specifically, it can build a correlation network, create a cluster
tree, and then merge nearby branches to form modules.
A hierarchical clustering tree (dendrogram) was plotted to
display hierarchical clustering. DissTOM (1-Topological Overlap
Matrix) was calculated, and the relationships among all genes
were visualized in R. Finally, the heatmap function in R was used
to analyze the correlations between the modules.

Relationship Analysis Between
Coexpression Modules and BD
The module eigengene (ME) represents the first principal
component in each module and therefore reflects the level of
gene expression in the module (14). Pearson’s correlation test
was applied to assess the correlation between ME and BD and
the heatmap package in R was used to visualize the correlations
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between modules and BD. Modules with significantly negative
or positive correlations between ME and clinical traits were
considered as candidate modules.

GO and KEGG Analyses of Coexpression
Modules for Bipolar Disorder
The Gene Ontology (GO) analysis, which includes the biological
process (BP), cellular component (CC), and molecular function
(MF) ontologies, is a standard method for gene functional
annotation (21, 22). The Kyoto Encyclopedia of Genes and
Genomes (KEGG) database, which stores gene metabolic
pathways, is widely used to determine functional enrichment
(23). Here, GO and KEGG analyses were performed for the
genes in candidate modules in Metascape (http://metascape.org/
gp/index.html#/main/step1), which is a reliable and widely used
online software for omics-based research (24). The candidate
modules were calculated with a P-value cutoff of 0.01, a min
overlap of 3, and a min enrichment of 1.5.

Protein-Protein Interaction Network
Analysis for Selected Modules of Bipolar
Disorder
The genes in candidate modules were mapped into the STRING
database (Version 11.0, https://string-db.org/) for PPI network
analysis. The Cytoscape software (v3.7.1) (25) was used for
visualization, and the CytoHubba plug-in (http://hub.iis.sinica.
edu.tw/cytohubba/) was applied to find hub genes in each
module. To reduce potential errors caused by a complex
biological network, it is necessary to use multiple methods
to identify essential proteins (26). Hub genes were analyzed
by CytoHubba using the following five methods: maximum
neighborhood component, node connect degree, closeness, edge
percolated component, and radiality (27–29).

Validation Using Another Gene Expression
Dataset of BD
The microarray dataset GSE12649, which was deposited by
Iwamoto et al. (30), was used to validate our findings. This
dataset contained 102 subjects from the prefrontal cortex
(BA46), including 33 BD, 35 schizophrenia, and 34 control
subjects. The BD and control samples were used for validation
analysis. We carried out the same analyses as our main study,
including data preprocessing, WGCNA, GO and KEGG analyses,
PPI visualization, and hub genes screening. We validated our
previous GO enrichment and KEGG pathway results in this
dataset, focusing on top five GO enrichment results in each
module and the important KEGG pathways. Finally, the hub
genes of main and validation analyses were compared with each
other to identify shared hub genes across datasets.

RESULTS

Data Preprocessing and Quality Control
As shown in the boxplots and histograms, each microarray
dataset indicated valid normalization and quality control
for further analyses (Supplementary Figure 1). Bipolar

and control status were not significantly associated
with sex, age, pH, post-mortem interval (PMI), RNA
degradation (RNAdeg), and Batch (P > 0.05). Five samples
(GSM123204, GSM123205, GSM123206, GSM123214,
and GSM123243) were defined as outliers and removed,
resulting in 77 samples for final analysis. There were a
total of 12,300 genes shared between the two datasets
and no batch effects were observed (P > 0.05; see
Supplementary Figure 2). The gene coexpression network
was constructed by 5,000 genes with the highest average
expression values (31).

WGCNA to Identify Modules Critical to BD
The clustering results in Supplementary Figure 3 showed
that all 77 samples were clustered well. With a soft-
threshold power of 8 (Figure 1A), nine coexpression modules
were identified, ranging in size from 192 to 1,419 genes
(Figures 1B,C). Specifically, there were 1,419 genes in module
1 (MEturquoise), 944 genes in module 2 (MEblue), 749
genes in module 3 (MEbrown), 352 genes in module 4
(MEyellow), 318 genes in module 5 (MEgreen), 272 genes
in module 6 (MEred), 211 genes in module 7 (MEblack),
196 genes in module 8 (MEpink), and 192 genes in module
9 (MEmagenta). In addition, 374 genes not assigned to any
of the above modules were classified as a gene set Module
0 (MEgrey). The interactions among the ten modules
are shown in Figure 2 and suggest that the modules were
relatively independent.

The correlations between the coexpression modules and
clinical traits are shown in Figure 3. Three modules were
significantly associated with BD status (Bonferroni-corrected
P < 0.05). The MEblue module (r = 0.39, P = 4e-04,
corrected P = 4e-03) showed a positive correlation, whereas
the MEgreen (r = −0.39, P = 5e-04, corrected P = 5e-
03), and MEturquoise (r = −0.38, P = 6e-04, corrected
P = 6e-03) modules showed negative correlations. None
of the 10 modules was significantly associated with sex or
age (Ps > 0.05).

Gene Function and Annotation Enrichment
(Functional Enrichment) Analysis of Key
Modules
As shown in Figure 4, the GO and KEGG pathway analyses
were performed for the three key modules. The top five
GO enrichment results showed that genes in MEblue were
mainly enriched in GO:0003012 (muscle system process),
GO:1901137 (carbohydrate derivative biosynthetic process),
GO:0030029 (actin filament-based process), GO:0061564
(axon development), and GO:0010817 (regulation of hormone
levels). Genes in MEgreen were enriched in GO:0071417
(cellular response to organonitrogen compound), GO:0017038
(protein import), GO:0042391 (regulation of membrane
potential), GO:0005773 (vacuole), GO:0018105 (peptidyl-
serine phosphorylation). Genes in MEturquoise were mainly
enriched in GO:0016604 (nuclear body), GO:0006397 (mRNA
processing), GO:0006403 (RNA localization), GO:0006753
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FIGURE 1 | Construction of genes coexpression modules for BD. (A) Analysis of network topology for a set of soft-thresholding powers. (B) Number of genes in each

coexpression module. (C) Construction of genes coexpression modules. Each color represents a module and each branch represents a gene. ME, module.

(nucleoside phosphate metabolic process), and GO:0005635
(nuclear envelope). For the top 20 clusters enriched in each
module, please refer to Supplementary Table 1.

The KEGG pathway analysis showed that genes in
MEblue were mainly enriched in hsa04010 (MAPK signaling

pathway), hsa01522 (Endocrine resistance), and hsa05414
(Dilated cardiomyopathy), and genes in MEgreen were
mainly enriched in hsa03450 (Non-homologous end-
joining). No significantly enriched pathways were found
for MEturquoise.
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FIGURE 2 | Visualization of TOM of co-expressed genes in different modules by a heat map. Light colors indicate low overlap and dark red indicates high overlap. The

darker color blocks along the diagonal are coexpression modules.

Visualization of the PPI Network and Hub
Genes
Among the 3 modules, MEblue (r = 0.39, P = 4e-04) and
MEgreen (r = −0.39, P = 5e-04) had the strongest correlations
with BD, and the number of genes in MEblue was greater than
that in MEgreen. Therefore, we selected the MEblue module
for the subsequent analysis (32). The PPI network analysis was
performed on the MEblue module using the STRING database.
As a result, 853 nodes and 2,687 edges were established in
the module and the PPI enrichment P-value was 1.0e-12. The
interactions of proteins in MEblue were selected and converted
into a network, which was visualized with Cytoscape, as shown
in Figure 5. Each term is represented by a circular node, and
its cluster identity is represented by its color. The top 10 hub
genes in the PPI network were calculated by CytoHubba (28).
As a result, four genes (NOTCH1, POMC, NGF, and DRD2),
which overlapped among the five methods, were deemed hub
genes. Then we analyzed the gene expression levels of these hub

genes, and found that, compared with controls, the expression
level ofNOTCH1 (t75 = 2.159, P= 0.034),NGF (t75 = 3.183, P=

0.002), and POMC (t75 = 3.791, P = 3e-04) presented significant
up-regulation in BD (Supplementary Figure 4).

Validation of Gene Function, Annotation
Enrichment, and Hub Genes
In an independent dataset, GSE12649, we carried out the
same analyses as above to validate our results. WGCNA
revealed seven coexpression modules in this dataset. Among
these modules, MEbrown (including 460 genes) showed a
significant positive correlation (r = 0.27, P = 0.04) with BD
(Supplementary Table 2). In this module, we then validated
the top five GO functional enrichment results of each
module and four KEGG pathways we observed previously
(Supplementary Table 3). The following GO enrichment results
appeared in the clusters of MEbrown: GO:0071417 (cellular
response to organonitrogen compound), GO:0030029 (actin
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FIGURE 3 | Module-trait relationship. Each row corresponds to a module eigengene, and each column corresponds to one feature. Each cell contains the

corresponding correlation and p-value.

filament-based process), GO:0003012 (muscle system process),
GO:0061564 (axon development), GO:0010817 (regulation
of hormone levels), Go:0042391 (regulation of membrane
potential). Among the four important KEGG pathways, only
the hsa05414 (Dilated cardiomyopathy) was verified in the
MEbrown. Finally, among the four hub genes of the main results,
NOTCH1 was verified as a hub gene in this validation dataset
(Supplementary Table 4).

DISCUSSION

In this study, we applied WGCNA to the BD gene expression
profiles GSE5388 and GSE538 and identified 10 modules on
the top 5,000 genes from 77 samples. Three out of 10 modules
were significantly associated with BD. Functional enrichment

and the PPI network of these BD-related modules were explored
with Metascape and the STRING database. We then identified
four genes, NOTCH1, POMC, NGF, and DRD2, as hub genes
underlying BD. In a further validation analysis using a separate
dataset (GSE12649), we validated several biological processes
and pathways (such as actin filament-based process, axon
development, hormone level regulation) and NOTCH1 as a hub
gene of BD.

To understand the genetic mechanisms of BD, various studies
have been carried out, adopting various genetic techniques
such as microarray, single-cell sequencing, RNA-sequencing, and
GWAS. The microarray datasets we analyzed were contributed
by Ryan and colleagues; their results suggest that BD is
associated with the dysregulation of the ubiquitin pathway and
synaptic genes in orbitofrontal cortex (16). As we mentioned
in the Introduction, given the complex and multifactorial
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FIGURE 4 | Functional enrichment analysis of three co-expressing network modules: enriched terms are represented by circle nodes, and nodes of the same color

belong to the same cluster. (A) Colored by cluster ID in MEBlue, where nodes that share the same cluster ID are typically close to each other. (B) Colored by cluster ID

in METurquoise. (C) Colored by cluster ID in MEGreen. ME, module.

nature of BD genetic mechanisms, here we investigated the
potential alterations of the interconnection between genes
in BD using WGCNA (33). We identified three critical
modules in the main analyses, which are associated with
various biological processes and pathways, such as muscle
system processes, biosynthesis of carbohydrate derivatives,
actin filament formation, axon development, hormone level
regulation, MAPK signaling pathway, and endocrine resistance.
Some of these findings were confirmed in the validation analysis
in a separate dataset, such as actin filament-based process, axon
development, hormone level regulation. Previous studies have
revealed alterations of gene sets mediating synaptic transmission
and nervous system development in BD based on microarray
technology (16), pathway-based analyses (34) or prioritized
gene framework (35) of the genome-wide association datasets.
Other studies have highlighted many other pathways, showing
convergence on neuroplasticity (5–7). Our findings of actin
filament-based process and axon development are in line with
consistent observations of neuroplasticity alterations in BD
and provide evidence for potential frontal structural plasticity
abnormalities in BD.

The most significant KEGG pathways associated with BD
were the MAPK signaling pathway and endocrine resistance.
A GWAS study has shown that one of the KEGG pathways
involved in BD was the MAPK signaling pathway (36), which is
involved in mediating entrainment of the circadian system (37).

Many circadian genes have been associated with BD (38). The
MAPK change in the intracellular signal cascade may be caused
by the immune imbalance in BD (39). Endocrine resistance
refers to resistance to endocrine therapy agents, such as selective
estrogen receptor modulators (e.g., tamoxifen). Some studies
have found that tamoxifen was effective against manic episodes
(40) and our study lends further support to the potential role
of endocrine resistance in BD pathogenesis. Nevertheless, these
two pathways were not confirmed in the validation dataset.
Instead, both primary and validation datasets revealed that
BD-related modules are mainly enriched in has05414 (Dilated
cardiomyopathy). Future studies are warranted to examine
whether this pathway is involved in the pathophysiology of BD
or a by-product of long-term mood stabilizer treatment.

The Notch signaling pathway plays critical roles in neural
development and brain homeostasis and is involved in neuronal
migration, early differentiation, memory formation, and synaptic
plasticity (41). The Notch receptor contains four members
(Notch1, Notch2, Notch3, and Notch4), and their expression
patterns in the forebrain are as follows: NOTCH1 in neurons,
astrocytes, precursors, ependymal cells, and endothelium;
NOTCH2 in neurons and precursors; NOTCH3 in precursors;
NOTCH4 in the endothelium (42). The Notch pathway is closely
associated with the pathological mechanism of BD (43, 44). For
example, the NOTCH4 gene expression in peripheral blood cells
has been found to be upregulated in BD (45). The NOTCH3
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FIGURE 5 | Protein-protein interaction network of MEBlue for BD. Yellow node represents the most important protein of the network and the related gene is defined

as hub gene. Node size represents the degree of connectivity.

mutation has also been reported in BD, which however was
not consistent across studies (46, 47). A recent WGCNA study
with relatively small samples (17 BD vs. 19 controls) from the
prefrontal cortex reported NOTCH2 as one of the 30 hub genes
in BD (48). Our results highlight NOTCH1 as a hub gene for
BD in both primary and validation datasets. While these results
together suggest the involvement of Notch pathway in BD, the
inconsistent findings across studies may arise from differences
in tissue types, analysis methods, and sample sizes. Intriguingly,
the NOTCH1 signaling could be activated by valproic acid (49),
a commonly used mood stabilizer, which suggests that NOTCH1
may serve as a potential treatment target for BD.

Our main results also revealed POMC,NGF, andDRD2 as hub
genes for BD. Proopiomelanocortin (POMC)-derived peptides
are involved in the regulation of energy homeostasis, learning,
memory, inflammation, and immune modulation (50, 51). The
significantly increased levels of the critical pituitary hormones
POMC indicated dysfunction of the HPA axis of BD (52, 53).
POMC is also one of the shared genes between mood disorder

and cardiometabolic diseases (54). In the central nervous system,
nerve growth factor (NGF) play key roles in neuroprotection and
neural repair (55). Based on published GWASs and candidate
gene studies, the NGF gene might be a useful biological marker
for the manic state and early detection of conversion from
significant depression to BD (56–58). Finally, the DRD2 gene
encodes the D2 subtype of the dopamine receptor. Several studies
have shown that the DRD2 gene is associated with BD and that
polymorphism in DRD2 may play a role in BD development
(59–61). However, these candidate genes were not observed in
the validation dataset and their involvement in BD warrants
further scrutiny.

LIMITATIONS

Our study has some limitations. First, the small sample size
for WGCNA may affect the robustness of the observed results.
Sample sizes in our main and validation datasets met the
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minimum requirements for WGCNA (i.e., larger than 15
samples per group) (62), but may be not large enough to
detect modules with smaller effect sizes. Future studies with
larger sample sizes are needed to validate our findings. Second,
compared to RNA-sequencing, the microarray data is limited
by the probes pre-defined by the manufacturer and is not
sensitive to low-abundance genes. As the RNA-sequencing
data storage and analysis become increasingly available to
researchers, future studies have the opportunities to reveal other
potential BD-related genetic alterations. Third, the brain tissue
we analyzed contained multiple cell types, which may have
different gene expression profiles. For instance, the NOTCH1
seems to have higher expression levels in glia cells than in
neurons [Supplementary Figure 5, based on the single-cell RNA
sequence of 466 cells in the healthy human brain in a public
scRNA-seq database scRNASeqDB (63, 64)]. Our study may fail
to detect BD-related changes in specific cell types; it is also
unclear whether our results were driven by one or some cell types.
Future investigation is warranted to reveal the cell-type-specific
alterations associated with BD. Finally, this was a preliminary
study by using public data, and the results need to be further
validated with molecular biology experiments. Although some
essential genes and pathways were verified in another dataset
(GSE12649), the reliability of our study was still insufficient and
the findings should be interpreted with caution.

CONCLUSIONS

In summary, we performed WGCNA in independent gene
expression datasets and highlighted NOTCH1 as one candidate
gene of BD and the involvement of several biological processes
such as actin filament-based process and axon development,

which might be targets for BD diagnosis and treatment.
These results provide new perspectives for understanding BD
pathogenesis and invite further investigations and validations
on the candidate genes and biological processes/pathways
we observed.
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