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Simple Summary: Peptide drugs that can specifically target undesirable protein–protein interactions
that lead to oncogenic developments have emerged as the next era of future medicine for cancers. To
combat GBM tumor progression, our study offers an alternative therapeutic strategy via targeting
the protein–protein interaction between MSI1 and AGO2 with synthetic peptides identified from
the C-terminus of MSI1 in peptide arrays. Our present data revealed for the first time that peptidic
disruption to the MSI1/AGO2 complex known for promoting cancer stemness and progression
could lead to encouraging therapeutic efficacy at both in vitro and in vivo levels. The significantly
suppressed tumor growth and prolonged survival rates in PDX tumor models by decoy peptides
evidently provided a new rationale for stratifying patients with MSI1/AGO2-targeted therapeutics.

Abstract: Peptide drugs that target protein–protein interactions have attracted mounting research
efforts towards clinical developments over the past decades. Increasing reports have indicated that
expression of Musashi 1 (MSI1) is tightly correlated to high grade of cancers as well as enrichment
of cancer stem cells. Treatment failure in malignant tumors glioblastoma multiform (GBM) had
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also been correlated to CSC-regulating properties of MSI1. It is thus imperative to develop new
therapeutics that could effectively improve current regimens used in clinics. MSI1 and AGO2 are two
emerging oncogenic molecules that both contribute to GBM tumorigenesis through mRNA regulation
of targets involved in apoptosis and cell cycle. In this study, we designed peptide arrays covering the
C-terminus of MSI1 and identified two peptides (Pep#11 and Pep#26) that could specifically interfere
with the binding with AGO2. Our Biacore analyses ascertained binding between the identified
peptides and AGO2. Recombinant reporter system Gaussian luciferase and fluorescent bioconjugate
techniques were employed to determine biological functions and pharmacokinetic characteristics of
these two peptides. Our data suggested that Pep#11 and Pep#26 could function as decoy peptides
by mimicking the interaction function of MSI1 with its binding partner AGO2 in vitro and in vivo.
Further experiments using GMB animal models corroborated the ability of Pep#11 and Pep#26 in
disrupting MSI1/AGO2 interaction and consequently anti-tumorigenicity and prolonged survival
rates. These striking therapeutic efficacies orchestrated by the synthetic peptides were attributed to
the decoy function to C-terminal MSI1, especially in malignant brain tumors and glioblastoma.

Keywords: decoy peptide; MSI1 C-terminus; MSI1/AGO2 disruption; protein–protein interaction;
tumor suppression

1. Introduction

Protein-targeting drugs including various monoclonal antibodies have been proven
therapeutically effective in clinics and accumulating evidence also suggests targeting
protein–protein interactions that lead to oncogenic developments may be the next era
of future medicine for cancers [1,2]. An attractive strategy on targeting protein–protein
interaction has based on pinpointing smaller but critical motif(s) within the interacting
regions between two binding partners. A series of novel peptides directed against breast
cancer stem cell (BCSC) marker GRP78, for instance, was demonstrated to be exceptional
in eliminating breast cancer stemness [3]. Antibodies against epidermal growth factor
receptors (EGFRs) such as cetuximab and trastuzumab have been used to treat metastatic
colorectal cancer and HER2 breast cancer [4,5]. The binding of growth factor EGF to
EGFRs is among the most well-studied protein kinase signaling pathways in cancers.
Recently, significant breakthroughs have been made into molecular modeling-aided design
and discovery of peptide decoys that mimic EGFR ectodomains to block EGF–EGFR
interactions [6,7]. Moreover, similar molecular dynamics strategies had also been applied
and led to the discovery of Herstatin, a peptide composed of partial HER2 ectodomain
that functioned to auto-inhibit HER2-mediated signaling [8]. Another series of peptides
designed by molecular dynamics modeling that targets HER2 was shown to be at sub-
micro molarities of dissociation constant (KD) that served as a specific probe by molecular
imaging for HER2-positive tumors [9]. To date, such strategies of identifying crucial motifs
to disrupt homo- or hetero-dimerization of EGFRs are increasingly proven to be of great
potential for clinical use.

As a member of RNA-binding protein that is abundant in the central nervous system,
MSI1 has been shown to function as a predominantly functional marker by governing cell
fate decision, differentiation, maintenance of stemness for progenitor neural stem cells,
and tumorigenesis for cancer cells [10,11] (Figure 1A). MSI1 has been highlighted for its
importance in mediating cellular EMT (epithelial–mesenchymal transition), radioresistance,
invasion, and migration via molecules such as VCAM, ICAM, TNS3, and downloading
signaling pathway of PTEN and Akt [12–14]. The ability of MSI1 to bind with mRNA
and translation initiation factors allows translational regulation of its target molecules,
thereby suppressing Notch/m-Numb or promoting PKR/eIF2 signaling to control self-
renewal capability of cells [15–17]. MSI1 was also shown to promote tumor progression
as the silencing of MSI1 hampered cancer cell proliferation and apoptosis inhibition [18].
More recently, accumulating reports correlated MSI1 to stemness maintenance in breast
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and glioma cancer stem cells by downregulating proteasome expression, or by enhancing
tumor invasion and migration to regulate cancer radioresistance [12,14,19]. The increasing
importance of MSI1 as a prognostic marker in GBM is also reflected by close correlation
between MSI1 expression and overall survival rate from high-grade glioma patients [20].
Nonetheless, there is currently no study that strategizes MSI1 as a therapeutic target against
any cancer types. A novel regimen that can specifically target aMSI1-associated cancer
stem cells (CSCs) populations could lead to effective treatments to refractory tumors.Cancers 2022, 14, x  4 of 20 

 

 

 
Figure 1. Functional significance of MSI1 in GBM cancer stemness and schematic workflow that 
illustrates the design, methodology, and key findings from the current study. (A) As a member of 
RNA-binding protein, MSI1 has been functioning to mediate cell fate decision, differentiation, 
maintenance of stemness for progenitor neural stem cells, and tumorigenesis for cancer cells. The 

Figure 1. Functional significance of MSI1 in GBM cancer stemness and schematic workflow that
illustrates the design, methodology, and key findings from the current study. (A) As a member
of RNA-binding protein, MSI1 has been functioning to mediate cell fate decision, differentiation,
maintenance of stemness for progenitor neural stem cells, and tumorigenesis for cancer cells. The
roles of MSI1 have recently been explored regarding involvement in cellular EMT, radioresistance,
invasion, and migration as well as downloading signaling pathways of PTEN/Akt, Notch/m-
Numb, and PKR/eIF2, etc. The oncogenic formation of MSI1/AGO2 protein complex has also been
implicated in promoting GBM tumor progressions. (B) The workflow that had been conducted for
discovery of unknown peptides that could specifically interfere with MSI1 interaction with AGO2.
Key experimental designs utilized for validations of identified peptides are also outlined.
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AGO2 is a membrane-associated cytoplasmic protein known for the catalytic center
within the RNA-induced silencing complex (RISC) [21]. AGO2 belongs to another RNA-
binding protein (RBP) family, the argonaute subfamily, that is responsible for their pivotal
role in RNA silencing processes by mediating mRNA translation and stability of their
targets [22,23]. This post-transcriptional control on target genes of AGO2 was achieved
by remodeling its occupancy on targets’ 3′-UTR and coding sequence (CDS) region in
response to cellular stress [22]. Epidermal growth factor receptor (EGFR), for instance,
was demonstrated to enhance its oncogenic role in cancer progression by suppressing mi-
croRNA (miRNA) maturation of tumor suppressors when associated with phosphorylated
AGO2 under hypoxia [24,25]. The tumorigenic properties of AGO2 through inhibition of
target mRNA maturation of tumor suppressors were also established by elevated AGO2
expression in various cancers in addition to GBM [23,26–28].

We previously reported that MSI1 mediates stress-induced conditions, such as hy-
poxia and chemotherapeutic treatments, tumor progression, and recurrence of GBM by
translocation to the cytosol and interaction with AGO2 [29]. Through binding to AGO2, the
protein complex stabilizes the mRNAs of several cell-cycle promoting genes and promotes
the mRNA degradation of several tumor suppressor genes such as p53 and p21. Over-
expression of the C-terminus of MSI1 disrupts endogenous MSI1/AGO2 interaction and
effectively reduces stress-induced tumor progression [29]. In our present study, therefore,
we designed an array of peptides that span the AGO2-interacting region of C-terminal
MSI1, aiming to identify smaller companions at around 15 amino acids long that could
function as decoys to interfere with protein–protein interaction between MSI1 and AGO2,
and to disrupt subsequent oncogenic events in cancer cells thereby conferring therapeutic
efficacies for patients with malignant brain tumors and glioblastoma (GBM) (Figure 1B).

2. Results
2.1. Identifying C-Terminal Motifs Responsible for MSI1/AGO2 Interaction

Previously, the ability of MSI1 to shuttle into cytosol was revealed, where it functioned
to manipulate mRNA stability via its cytosolic binding partner AGO2 thereby promoting
cancer progression [29]. Although deletion mutagenesis implicated the potential of the C-
terminal fragment of MSI1 (aa 200–362) in tumor suppression, the underlying mechanism
remains obscure. In this study, therefore, we first carried out a peptide phage display
in an attempt to identify peptides that could interfere with the binding of AGO2/MSI1
(Figure 2A). A total of 19 peptide sequences of 12-mer were identified after biopanning with
recombinant AGO2 and MSI1, none appeared to impede the binding between AGO2/MSI1.
We next designed a peptide array based on C-terminal MSI1 by securitizing whether
any structural motif within this region could be functionally mimicked. The customized
peptide array contained 27 sequential peptides that overlap one and another until the entire
C-terminus of MSI1 was fully covered (Figure 2B, Table S1). The 27 peptides were then
incubated with His-tagged recombinant AGO2 and the immunoblotting results revealed
that peptides 11 and 26 from C-terminal MSI1 appeared to be two of the strongest binding
peptides to AGO2 among the array (Figure 2C). To investigate whether the identified
peptides could indeed bind with AGO2 in cells, we utilized a 13 amino acid cell-penetrating
peptide (CPP) from HIV-1 TAT(48–60) and conjugated to our candidate peptides, namely
Pep11 and Pep#26, to facilitate their cellular uptake (Figure 3A) [30]. As shown in our
co-immunoprecipitation competition experiments, control peptide (CP) could not interfere
with the binding complex formation between MSI1 and AGO2 (Figures 3B and S1). In
contrast, the MSI1/AGO2 interaction was completely abolished under the presence of
Pep#11 or Pep#26. Furthermore, the binding interaction of CP, Pep#11, and Pep#26 with
AGO2 was next assessed by surface plasmon resonance (SPR). Two representative Biacore
sensorgrams of the binding of the decoy peptides to AGO2 demonstrated that increasing
binding equilibrium between the peptides and the recombinant His-tagged AGO2 coupled
on sensor chip was monitored as concentration of Pep#11 or Pep#26 was increased from 20
to 1280 nM (Figure 3C). These SPR data determined the equilibrium dissociation constant
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(KD) to be 0.515 and 0.674 µM for Pep#11 and Pep#26, respectively. A negative control
peptide (CP) was chosen from the weak binding region of MSI1 and revealed a limited
affinity (106.6 µM) to AGO2 (Table S2).
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Figure 2. Screening strategy for peptidic motifs from the C-terminus of MSI1 that mimic interaction
function with AGO2. (A) A schematic cartoon that illustrates a phage display strategy used to identify
MSI1 or AGO2 binding peptide. (B) A strategy of peptide array that covers the C-terminus of MSI1
(aa 171–362) by 27 sequential peptide sequences of 15 amino acids that overlap with one and another.
(C) Recombinant AGO2 proteins were incubated with nitrocellulose membrane peptide array dotted
with 23 peptide fragments designed from the C-terminus of MSI1. The array revealed two potential
interacting peptides with recombinant AGO2.
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Figure 3. Identification of peptidic motifs from the C-terminus of MSI1 that mimic interaction
function with AGO2. (A) Structural domain of MSI1 (full-length and truncated C-terminus). (B) Cells
respectively treated with 10 µM of the two decoy peptides (Pep#11 and Pep#26) or peptide control
(CP) were subjected to Co-IP immunoblot to demonstrate the efficacy of the two peptides on blocking
the MSI1/AGO2 interaction under hypoxic condition. (C) Binding interaction between Pep#11,
Pep#26 and their target protein AGO2 was determined by surface plasmon resonance (SPR). The
recombinant AGO2 protein was immobilized on CM5 chip and incubated with a serial dilution (from
20 to 1280 nM) of the two peptides as well as a negative control peptide. The association rate constant
(ka), dissociation rate constant (kd), and equilibrium dissociation constant (KD) were calculated and
presented in Table S2.

2.2. Stress-Induced MSI1/AGO2 Binding Complex by Decoy Peptides

To corroborate whether the identified peptides could act as a decoy, we next developed
a split luciferase complementation assay to detect in vivo protein–protein interactions be-
tween MSI1 and AGO2. As shown in Figure 4A, Gaussia luciferase (Gluc) was split into two
fragments, N-terminus and C-terminus, which were molecularly fused to MSI1 (M-NGluc)
and AGO2 (A-CGluc), respectively. Upon MSI1/AGO2 interaction under stress, the two
Gluc fragments re-associate to reconstitute its luciferase activity that subsequently leads to
light emission in the presence of luciferase substrate. Using an In Vivo Imaging System (IVIS),
our data demonstrated that neither M-NGluc nor A-CGluc was able to exert any luciferase
luminescence, while cisplatin-treated cells that had been overexpressed with both M-NGluc
and A-CGluc showed significantly greater luminescence as compared to PBS-treated group
that showed minimal level of luminescence (Figure 4B). Taking advantage of this MSI1/AGO2
interaction assay using IVIS, we next evaluated whether Pep#11 or Pep#26 could act as decoy
by interfering with the MSI1/AGO2 interaction. Under cisplatin-induced conditions, the
reconstituted luciferase luminescence exerted from Pep#11- or Pep#26-treated cells was signif-
icantly lower than those from non-treated or CP-treated cells (Figure 4C). Further, to visualize
whether the decoy peptides could interact with AGO2, immunofluorescent staining using
5′FAM-tagged Pep#11 and Pep#26 was conducted. The results confirmed that 5′FAM-Pep#11
and 5′FAM-Pep#26 were both not only capable of entering the cells but were also indeed
co-localized with endogenous AGO2 in the cytosol (Figures 4D and S2).
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Figure 4. MSI1 C-terminal peptides Pep#11 and Pep#26 acted as decoys for MSI1/AGO2 interaction
under cellular stress. (A) A schematic illustration that shows in vitro Gaussia luciferase reconsti-
tution assay for the detection of MSI1 and AGO2 protein–protein interaction. (B) Gluc-mediated
MSI1/AGO2 interaction was quantitatively determined using the split luciferase reconstitution assay
as monitored by IVIS imaging system. In total, 30 µM of cisplatin was used to induce cellular stress
that led to MSI1/AGO2 interaction. M-N’Gluc (MSI1-N-terminal-Gluc); A-C’Gluc (AGO2-C-terminal-
Gluc). **, p < 0.01. (C) Under the same cellular stress conditions induced by cisplatin, tat-conjugated
CP (control peptide), Pep#11, and Pep#26 were employed, and luciferase signals were detected and
quantitated by comparison to no treatment control (Ctrl) as normalized results were displayed as
a bar chart. *, p < 0.05. (D) Cells treated with 10 µM of 5′FAM-Pep#11, 5′FAM-Pep#26, or control
peptide (5′FAM-CP) were analyzed under confocal microscopy for subcellular co-localizations (MSI1
peptides, green; AGO2, red). Scale bar = 10 µM. In (B,C), The color spectrum bar represents the
intensity of the luciferase activity (luciferase units): the red color indicates strong luciferase activity,
meaning a strong protein-protein interaction of MSI1 and AGO2; whereas the blue color indicates
weak luciferase activity, meaning a weak interaction between MSI1 and AGO2.
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2.3. Uptake and Degradation of Decoy Peptides Pep#11 and Pep#26

Prior to investigating therapeutic potentials of the decoy peptides further in vivo, in vitro
cellular uptake and degradation rates were measured. The time-lapse confocal microscopy
results revealed that significant increases in cellular uptake of Pep#11 and in DBTRG-05MG
cells were found within the first hour (Figure 5A); while Pep#26 appeared to show a slightly
slower rate of uptake than that of Pep#11 as the highest cellular uptake was reached at 2 h
(Figure 5B). The rate at which Pep#11 or Pep#26 was degraded in the cells was also determined
by monitoring changes in fluorescence emission from 5′FAM (Figure 5C). The data reasonably
showed significant degradation of these 15 amino acid long peptides in the cells within the
first half an hour due to cellularly abundant proteases and peptidases, while fluorescence
detected after 6 h was likely residual 5′FAM cleaved from peptides.

2.4. MSI1 Decoy Peptides Elicit Superior Therapeutic Effects in Tumor Suppression and
Prolonging Survival

To determine the efficiency of the decoy peptides on competing AGO2 interaction with
endogenous MSI1, FAM was used to label the HIV-TAT-conjugated (TAT-FAM) peptides
that were then utilized to assess the uptake rate by measuring concentration of decoy
peptide at half-maximal response (EC50) in GBM cells. Our results showed that EC50 con-
centration for 5′FAM-Pep#11 and 5′FAM-Pep#26 was around 9.1 and 9.0 µM, respectively
(Figure 6A,B). We previously reported that under stress condition such as hypoxia, the
MSI1/AGO2 complex induced tumor progression by stabilizing the mRNAs of cell cycle
promoting genes (CCND1, CDK4, and HELLS) and enhanced the mRNA degradation of
cell death related genes (NF2, TP53, and p21) [29]. This effect was reversed by Pep#11 and
Pep#26 transfection in DBTRG-05MG cells (Figure 6C–F), suggesting the peptides not only
block MSI1/AGO2 interaction but also block their effects on downstream mRNA targets.

As the EC50 values from Pep#11 and Pep#26 were nearly identical and not in the
range of sub-micro molarity, these two decoy peptides were used together to investigate
their influence in vivo using MSI1-overexpressed xenografts from DBTRG-05MG cells.
As shown in Figure 6G, Pep#11/Pep#26 together demonstrated a significant reduction
in tumor growth as compared to xenografts treated with control peptide CP. Next, we
further investigated whether the significantly reduced tumor growth could be recapitulated
using primary GBM cells (Pt 3 and Pt 11) from patients. Pep#11/Pep#26 again showed
pronounced capability in tumor suppression as compared to control CP (Figure 6H,I).
Similar results were also observed in the subcutaneous transplanted xenograft model from
MIA-PaCa2 pancreatic cancer cells (Figure S3A).

In addition, an orthotopic xenograft mouse model was developed and the combined
Pep#11/Pep#26 peptides were then injected within the tumor sites (Figure 6J). The tumor
size in mice treated with Pep#11/Pep#26 peptides was strongly reduced compared to that
of the control mice (Figure 6K). Moreover, tumors injected with peptides displayed a severe
reduction of Ki67 expression, a marker associated with cell proliferation (Figure 6K, right
panel). Similar results on tumor growth were obtained with intraperitoneal injection of
Pep#11/Pep#26 peptides in a pancreatic tumor xenograft mouse model (Figure S3B,C).
Analysis of the xenograft tumor samples indicated the effectiveness of Pep#11/Pep#26
peptides on tumor growth (Figure S3C), MSI1/AGO2 interaction (Figures S3D and S4), and
the downstream mRNA targets (Figure S3E).

Moreover, based on these observations of tumor suppression capability of Pep#11/Pep#26,
we hypothesized these decoy peptides could potentially help with lifespan for xenograft-
bearing mice. Interestingly, DBTRG-05MG-bearing mice treated with the peptides along
with cisplatin demonstrated significantly higher survival rate as compared to control groups
including cisplatin alone and CP plus cisplatin (Figure 6L). Moreover, we further employed
the patient-derived xenograft (PDX) established from recurrent GBM tumor. Our results
showed that when treated with Pep#11/Pep#26 peptides, the PDX-bearing mice showed
significantly greater survival as compared to those without Pep#11/Pep#26 treatments
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(Figure 6M). These data thus suggested that Pep#11/Pep#26 peptides could enhance the
sensitivity of tumor cells to chemotherapy drugs through MSI1/AGO2 interaction blockade.
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05MG cells treated with the 5′FAM-labeled decoy peptides, 5′FAM-Pep#11 or 5′FAM-Pep#26, were
analyzed at 0, 0.5, and 1 h by confocal microscopy. Quantitative analyses were performed from
fluorescent intensities detected by ELISA reader (n = 3 at each time point). (C) Cells were respectively
treated with two 5′FAM-labeled decoy peptides for up to 6 h. Cells were observed under microscopy
and fluorescent intensities were measured by ELISA reader at the indicated time points. To facilitate
comparison of intake and degradation dynamics, mean fluorescence values were normalized to stating
fluorescence. All data represent three independent experiments. Scale bar = 10 µM.
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uptake curves for Pep#11 and Pep#26 peptides. The biological activity of peptides was tested in 
DBTRG-05MG cell line. The cells were treated with different concentrations of fluorescein labeled 
peptides and was measured using an ELISA reader. The half-uptake concentration (EC50) values of 
both peptides were 9.1 and 9.0 μM/mL, respectively. (C–F) Cells transfected with control peptide 

Figure 6. Cellular uptake efficiency and tumor suppression effects of Pep#11/Pep#26. (A,B) Cellular
uptake curves for Pep#11 and Pep#26 peptides. The biological activity of peptides was tested in
DBTRG-05MG cell line. The cells were treated with different concentrations of fluorescein labeled
peptides and was measured using an ELISA reader. The half-uptake concentration (EC50) values of
both peptides were 9.1 and 9.0 µM/mL, respectively. (C–F) Cells transfected with control peptide (CP),
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Pep#11, or Pep#26 were under normoxia or hypoxia condition and subjected to qRT-PCR to determine
the relative expression level of six downstream targets of the MSI1-AGO2 complex. The mRNA
levels under hypoxia versus mRNA levels under normoxia were shown in the bar chart. * p < 0.05
in comparison to normoxia. (G) DBTRG-05MG/MSI1-wt stable cells were subcutaneously trans-
planted in immunocompromised mice. Once the tumor mass reached 50 mm3, CP or a mixture of
Pep#11/Pep#26 (150 µg) was injected at the tumor site six times with 3-day intervals. Tumor size was
monitored every 2 days (n = 6. ** p < 0.01 vs. CP treated control). (H,I) Immunocompromised mice
were subcutaneously transplanted with Pt3 or Pt11 primary GBM cells. Once the tumor mass reached
50 mm3, CP or a mixture of Pep#11/Pep#26 (150 µg) was injected at the tumor site six times with
3-day intervals. Tumor size was monitored every 2 days (n = 6. ** p < 0.01 vs. CP treated control). (J) A
schematic illustrating the animal experiment design to evaluate the effects of orthotropic delivered
Pep#11/Pep#26 (150 µg) on GBM tumor growth. (K) Immunocompromised mice were transplanted
with GFP-tagged DBTRG-05MG/MSI1-wt stable cells through intracranial injection. Twenty days
after transplantation, mice were intracranially injected with control peptide (CP) or Pep#11/Pep#26
(150 µg) for three rounds at 7-day intervals. Mice were sacrificed at day 42 to confirm the GFP
tumor signal in the brain. GFP-labeled GBM tumors in serial brain sections of the same mice were
observed under fluorescent and optical microscopes. The red boxed tumor sections were subjected
to Ki-67 staining and presented in the right panel. Three mice were used in each condition, and the
figure showed a representative mouse of each. (L,M) Survival analyses for mice with orthotopic
xenotransplantation of MSI1-overexpressing DBTRG-05MG cells (L) or primary cultured tumor cells
from recurrent GBM patients (M). Mice received two rounds of treatment with a one-week interval of
CP or Pep#11/Pep#26 (150 µg) with cisplatin by i.v. injection (n = 6).

3. Discussion

GBM has been the most notorious brain cancer known for the worst survival of less
than two years for patients who even received surgery, chemo- and radiotherapy [31].
Although numerous studies and efforts have been directed towards more therapeutically
effective regimens against GBM, there is currently no single therapy or combined regimens
that could fully eliminate GBM in clinics [32]. Over the last decade, MSI1 has emerged as an
oncogenic protein that functions as a stem cell determinant to promote cancer cell survival,
tumor progression, and its expression is closely correlated to drug resistance and cancer
relapse in patients [33,34]. Our previous research also suggested subcellular localization
of MSI1 could be a diagnostic and prognostic biomarker for GBM patients [29]. Although
the C-terminal region of MSI1 was shown to be critical for endogenous MSI1/AGO2
interaction, there is currently no drug that could specifically inhibit the interaction between
MSI1 and AGO2. In this study, therefore, we designed peptide arrays in an attempt to
discover whether any motifs within the MSI1 C-terminus could act as decoy peptides that
are critical for protein–protein interaction with AGO2 (Figure 2A). As a result, Pep#11 and
Pep#26 were identified in the arrays and were demonstrated to be effective in not only the
MSI1/AGO2 complex disruption in vitro, but in vivo as well where the tumor suppression
capability was delineated (Figures 2B,C and 6). The Gluc reporter technology has been
widely used for various bioluminescence-based detection applications [35,36]. By utilizing
this prominent reporter system constituted from Gaussia luciferase and our two interacting
proteins of interest, luminescence signals were restored when recombinant MSI1-Gluc
and AGO2-Gluc interacted with each other (Figure 4). This detection system allowed us
to substantiate bona fide protein–protein interaction between C-terminal-derived decoy
peptides Pep#11/Pep#26 and AGO2 in vitro and in vivo.

Cancers of solid tumors such as GBM are highly malignant, and those patients often
suffer from poor prognosis and short survival regardless of regimens [37,38]. In the current
study, we demonstrated that the in vivo therapeutic efficacies of the two decoy peptides
Pep#11 and Pep#26 were not only effective in cell-line derived GBM xenograft models,
but also primary GBM xenografts established from clinical specimens (Figure 6). These
pronounced tumor suppression effects exerted by synthetic Pep#11/Pep#26 were likely
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attributed to the blockade of the oncogenic functions of the endogenous MSI1/AGO2
complex in cancer cells. The region of interference between MSI1 and AGO2 will also be of
great interest. The PIWI domain of AGO2 that is known as an evolutionarily conserved
catalytic domain conducting endonuclease functions [23] was also shown to allow AGO2
to interact with Dicer to regulate small non-coding RNAs (sncRNAs) processing in mam-
malian cells [39]. Of note, Pep#11/Pep#26 were the two peptides identified that showed the
strongest interaction with recombinant AGO2 protein among at least eight other peptides
identified from our peptide arrays. Further work may be required to ascertain whether
these peptides could also target the PIWI domain and interfere with the oncogenic functions
of AGO2. Critical amino acid residues within these peptides including Pep#11/Pep#26
also remain to be identified for future therapeutics development that bases on improving
MSI1/AGO2 interference. Of note, the potential side effects of these peptides on neural
progenitor cells are yet to be investigated, though we did not observe any side effects from
the brains of treated mice during our experiment.

The sequences of Pep#11 and Pep#26 peptides are specific to MSI1 as they are not
conserved in the protein sequence of MSI2. The two peptide sequences are located in the
C-terminal domain of MSI1 and are distant by 90 amino acids. However, the specificity
of the two peptides and whether there are off target effects of the peptide treatments
still need further detailed investigation. Our preliminary prediction of the binding mode
between peptides and AGO2 (using molecular docking website (http://galaxy.seoklab.
org/index.html, accessed on 13 March 2018) suggested that these two peptides may bind
the PIWI domain of AOG2 protein. The PIWI domain is highly conserved in Argonaute
protein family, however, only AGO2 is catalytically active and functions as an endonuclease
in mammals [23]. Through its PIWI domain, AGO2 also binds to Dicer to regulate the
processing of small non-coding RNAs (sncRNA) [39]. The effects of the decoy peptides on
the endonuclease activity and sncRNA processing pathways still need to be clarified and
further experiments have to be performed to verify whether decoy peptides could interfere
with other functions and binding partners of AGO2. Moreover, it is important to determine
what amino acids in these peptides are essential for the MSI1/AGO2 interaction for the
further sequence optimization and therapeutic development. With our peptide array, we
also identified other peptides with a weaker affinity for AGO2; it will be interesting in the
future to determine whether these peptides also target the PIWI domain of AGO2 or can
recognize other domains in the protein.

Peptide-based therapeutics that target protein–protein interaction crucial for can-
cer progression have attracted increasingly enormous attention over conventional small
molecules in the past decade [40,41]. Despite a recent study by Cambuli et al. [42] that
proposed a v-Msi overexpressing MSI1 specifically in the entire intestinal epithelium for de-
termination of drug metabolism, cell cycle, DNA synthesis, and repair in vivo, no molecules
were reported for targeting MSI1. Regarding MSI-targeting, another recent study identified
a small molecule Ro 08-2750 that was effective against acute myeloid leukemia (AML) via
suppression of highly expressed MSI2 [43]. Therapeutic efficacy of this MSI2 inhibitor on
cancers of solid tumor including GBM remains unknown. Nevertheless, numbers of similar
peptidic therapeutics strategized from targeting protein–protein interaction in GBM have
been reported. For instance, a rising hope from a peptide antagonist that targets αv-integrin
receptor through β3 and β5, namely Cilengitide, has entered a phase III trial for treating
recurrent GBM. The underlying mechanism by which Cilengitide effectively reduced GBM
progression and metastasis was the preferential interruption of EGFRvIII/integrin β3 com-
plex formation [44–46]. Interestingly, another recent study of ours that revealed that MSI1
promoted GBM tumorigenesis via upregulation of macrophage inhibitory factor 1 (MIF1)
and M2 polarization [47] may provide another implication for the potential application
of virus-free gene therapy based on blocking M1/M2 polarization of tumor-associated
macrophages (TAMs) [48].

Moreover, although our current study has clearly revealed that the disruption of
MSI1/AGO2 interaction is a viable therapeutic approach, Pep#11/Pep#26 did not have an

http://galaxy.seoklab.org/index.html
http://galaxy.seoklab.org/index.html
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impact on MSI1 shuttling. Thus, further efforts could be directed towards the understand-
ing and development of the prevention of MSI1 cytosolic translocation from the nucleus
for GBM patients, whose rate of relapse incidence after chemotherapy desperately needs to
be lowered. These examples were clearly in line with our current findings in the synthetic
decoy peptides that were demonstrated to convey therapeutic effects on GBM tumors
via disruption of the MSI1/AGO2 interaction in vivo. Furthermore, our observations in
Pep#11/Pep#26-mediated, dramatically reduced tumor growth of recurrent GMB mice
models that had been treated with chemotherapeutic cisplatin (Figure 6) may suggest
the potential of conquering drug resistance or relapse after chemotherapy by interfering
cisplatin-induced MSI1/AGO2 protein complex formation (Figure 4B).

In summary, peptides Pep#11 and Pep#26 could function by mimicking the MSI1 binding
domain to interact with AGO2 in vitro and in vivo. This mimicking ability of Pep#11 and
Pep#26 resulted in interference to endogenous MSI1/AGO2 interaction, thereby impairing
cellular survival and tumor progression in GMB and PDAC animal models. Our current study
thus offered a new rationale for stratifying GBM patients with recurrent tumors.

4. Materials and Methods
4.1. Cell Culture

The human GBM cell line DBTRG-05MG (Denver Brain Tumor Research Group 05),
human pancreatic ductal adenocarcinoma cell line (MIA-PaCa2), and their derivative stable
cell lines were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Life Technologies
Inc., Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (HyClone Labora-
tories Inc., South Logan, UT, USA), 150 g/mL G418 (SIGMA, Cat#A1720), 100 units/mL
penicillin, and 100 µg/mL streptomycin (Life Technologies Inc., Carlsbad, CA, USA) under
standard culture condition of 37 ◦C with 95% humidified air and 5% CO2. Cells were
sub-cultured with 0.25% trypsin-EDTA (Sigma-Aldrich Co. LLC., St. Louis, MI, USA). All
cell lines were tested for mycoplasma contamination.

The tumor cell cultures were acquired from the Neurological Institute of Taipei Veter-
ans General Hospital. All procedures of tissues acquirements have followed the tenets of
the Declaration of Helsinki and are reviewed by Institutional Review Committee at Taipei
Veterans General Hospital (2016-09-012C, 2017-07-031B).

4.2. Animal Care, Tumor Cell Transplantation, and Non-Invasive Imaging

All procedures involving animals were performed in accordance with the institutional
animal welfare guidelines of Taipei Veterans General Hospital (protocol code: 2019-011).
For subcutaneous transplantation, cells were harvested in 100 µL PBS and injected subcuta-
neously into the dorsolateral side of the flank region of 8-week-old male BALB/C nude
mice (National Laboratory Animal Center, Taipei, Taiwan) bred and maintained following
the Guidelines for Laboratory Animals in the Taipei Veterans General Hospital. Once the
tumor mass reached 50 mm3, CP or a mixture of Pep#11/Pep#26 (150 µg) was injected at
the tumor site six times with 3-day intervals. Tumor size was monitored every 2 days. Six
mice were used for each condition in each experiment. For orthotopic transplantation, cells
were harvested in 10 µL PBS and injected orthotopic into the brain of 8-week-old male SCID
mice (National Laboratory Animal Center, Taipei, Taiwan) bred and maintained according
to the Guidelines for Laboratory Animals in the Taipei Veterans General Hospital. After
20 days of transplantation, CP or a mixture of Pep#11/Pep#26 (150 µg) was injected at the
tumor site for three rounds with 7-day intervals. Mice were sacrificed at day 42 to confirm
the GFP tumor signal in the brain.

4.3. PepSpot High-Throughput Peptide Tiling Array and Peptide Phage Display

To rapidly screen the putative binding hotspots along the C-terminus of MSI1, we
mimicked the epitope screening method by dotting the synthetic short peptides on nitrocel-
lulose membrane and incubated with purified AGO2 protein [49]. The C-terminus of MSI1
(200–362) was divided into 27 individual synthetic peptides with N-terminal amine attached
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on the nitrocellulose. Each peptide is 15 amino acids in length and has eight amino acids
overlapping with the previous neighboring peptide (Table S1). The purchased PepSpot
membrane (JPT peptide technologies, Berlin, Germany) was firstly rinsed in methanol for
5 min, followed by Tris buffer saline supplemented with 0.1% Tween-20 (TBS-T) washing
thrice. The membrane was then blocked by Superblock T20 blocking buffer (Thermo Fisher
Scientific Inc., Waltham, MA, USA) for 2 h and 2 µg His-tagged AGO2 recombinant protein
was added for an overnight incubation. The membrane was washed thrice with TBS-T
and incubated with horseradish peroxidase (HRP)-conjugated 6×His tag primary antibody
(Genetex Inc., Hsinchu, Taiwan) for 4 h under 4 ◦C. Enhanced chemiluminescent reagent
was used for further blotting.

In phage display experiments, after binding incubation with purified MSI1 and AGO2
recombinant proteins, the selection procedure for phages representing peptides was con-
ducted. Briefly, incubation was carried out for 1 h at 4 ◦C. The complexes were captured
with His-Tag dynabeads (Invitrogen Inc., Carlsbad, CA, USA) and Flag-M1 antibody and
washed 10 times at 4 ◦C. Bound phages were eluted according to manufacturers’ recom-
mendations. Purified phages were then plated on LB agar plates incubated overnight at
37 ◦C, cultured and precipitated from the culture supernatant with polyethylene glycol
(PEG) and re-dissolved in PBS. Plaguing was repeated for four rounds, amplified phage
clones were randomly picked and analyzed by ELISA for positive clones followed by DNA
extraction and sequencing for peptide sequences.

4.4. Split Luciferase Reconstitution Reporter Assay

We applied a gaussia luciferase (Gluc) system to detect protein–protein interaction
between MSI1 and AOG2. We split gaussia luciferase into two fragments: the 106 a.a.
N-terminus (NGluc) and the 79 a.a. C-terminus (CGluc) [50,51]. After polymerase chain
reaction (PCR) amplification, the NGluc and CGluc were subjected to construct fusion
protein with MSI1 and AGO2, respectively, in the pcDNA 3.1 and pCMV backbone. Each
fusion protein contains a flexible linker (GGGGS) 2 between the protein and polypeptides
of split luciferase [52,53]. We stably transfected both fusion protein expression plasmids in
DBTRG-05MG GBM cell line and generated a stable cell line with Hygromycin B (Sigma
Aldrich Co., St. Louis, MI, USA) and G418 sulfate (Merck Co., Berlin, Germany). We
established a normalizing standard by transducing multiple reporter genes into the gener-
ated stable cell line for stably expressing green fluorescent protein (GFP), firefly luciferase
(FLuc), and herpes simplex virus type I thymidine kinase (HSV1-tk) using lentivirus as
previously described [54]. For in vitro MSI1/AGO2 interaction study in cells, cell lysates
were prepared with mild reporter lysis buffer (Promega Co., Madison, WI, USA) with a
frozen–thaw cycle. The supernatant was then collected after centrifugation and dispensed
in a 96-well black flat bottom plate. Coelenterazine (Nanolight Technologies, Ltd., Pine-
top, AZ, USA), the substrate of GLuc, was firstly dissolved in methanol and diluted in
reporter assay buffer (15 mM potassium phosphate, 25 mM glycylglycine, 15 mM MgSO4,
4 mM EDTA). D-luciferin sodium salt (Promega Co., Madison, WI, USA) was dissolved in
sterilized water and diluted in reporter assay buffer supplemented with 2mM ATP. The
bioluminescent signals were acquired by Wallac 1420 Victor2 Microplate Reader (Perkin
Elmer, Waltham, MA, USA) equipped with auto-dispenser to avoid rapid decay of Gluc.

4.5. Biotinylated Peptide Synthesis and Cell-Penetrating Assay with TAT-Tagged Peptides

In vitro binding assay was carried out with N-terminal biotinylated synthetic pep-
tides (Table S3) based on our peptide array screening. The synthesized peptides (Thermo
Fisher Scientific Inc., Waltham, MA, USA) were dissolved in 10% DMSO by 1 mg/mL
and subjected to incubation with an equal amount of AGO2 recombinant protein (2 µg
each) in T20 blocking solution (Thermo Fisher Scientific Inc., Waltham, MA, USA). After
16 h incubation, the peptides were pulled down with immobilized streptavidin (Pierce
21115, Thermo Fisher Scientific Inc., Waltham, MA, USA). The precipitated peptide/protein
complex was subjected to immunoblotting with 6×His primary antibody (GeneTex Inc.,
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Hsinchu, Taiwan) hybridization and detection. Peptide transfection was carried out with
Proteojuice (Millipore 71281, Merck Co., Darmstadt, Germany) following the manufac-
turer’s instruction. For the in vivo compatible cell-penetrating peptide (CPP)-modified
peptides, we tested two different CPPs at the C-terminal ends, including TAT (48–60) from
HIV [55–57].

4.6. Binding Affinity Measurements between Decoy Peptides and AGO2

Surface Plasmon Resonance (SPR) was utilized using Biacore T200 (GE Healthcare)
to study binding affinities between decoy peptides Pep#11 and Pep#26 peptides with
recombinant His-tagged AGO2 protein. The recombinant His-AGO2 and MSI1 peptides
were diluted in HBS-P buffer (10 mM HEPES, 150 mM NaCl and 0.005% T20, pH 7.4). To
evaluate the binding affinity, recombinant His-AGO2 was immobilized on a CM5 sensor
chip (GE Healthcare, BR100012) via amine coupling (~7000 RU) for 3600 s at a rate of
5 µL/mins, and flow rate for binding analysis was run at 30 µL/mins. After injection
of each peptide, the surface was regenerated with an injection of 10 mM NaOH. All
sensorgrams were double referenced by subtracting the surface effect from the control flow
peptide and the buffer effect form the blank buffer. The kinetic values ka, kd, and KD were
obtained using Biacore T200 Evaluation Software (GE healthcare) assuming the Langmuir
1:1 binding model.

4.7. Other General Cellular Molecular Biology Methods

Other general procedures not detailed above including plasmid constructions [29,58],
transfection, co-immunoprecipitation, RNA extraction, quantitative real-time PCR (qRT-
PCR), gene expression analysis [59,60], Western blotting, immunofluorescence (IF) staining,
and immunohistochemistry staining (IHC) [61] were described previously. All antibodies
used in this study are listed in Table S4.

4.8. Statistical Analysis

Data in the study are expressed as the mean ± SD from at least three independent
experiments. The statistical analysis was performed using Student’s T-test. Difference was
considered significant when * p ≤ 0.05 or ** p ≤ 0.01.

5. Conclusions

Failures of current chemo- and radiotherapy for GBM often attributed to development
of resistance to current regimens, the needs for new drugs and therapies that render less
undesired resistance in GBM have been imminent. Our present study undertook a combina-
torial approach strategized from both molecular dynamics and cell biology methodologies
to discover decoy peptides for specific targeting of the MSI1/AGO2 interaction. The two
decoy peptides Pep#11 and Pep#26 derived from the C-terminus of MSI1 clearly showed
pronounced interference to the binding interaction between MSI1 and AGO2. This inter-
ference was not only supported by SPR that suggested KD at micromolar level but was
also demonstrated to be therapeutically effective in treating both GBM tumors derived
from cell lines and clinical specimens. Of note, the observation from the treatments of
cisplatin/Pep#11/Pep#26 showing significantly greater tumor suppressive effects than
cisplatin alone implicated a potential of conquering chemoresistance when MSI1/AGO2 in-
teraction was disrupted. These remarkable anti-tumorigenesis potentials of Pep#11/Pep#26
we identified could be attributed to disruption of the oncogenic functions of MSI1/AGO2.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14030505/s1, Figure S1: Quantification and original images of Figure 3B, Figure S2:
Quantification of the co-localized AGO2 and peptide in Figure 4D, Figure S3: Decoy peptides block
MSI1/AGO2 interaction and suppress tumor progression in PDAC animal model, Figure S4: Original
images of Figure S3D; Table S1: PepSpot high-throughput peptide array lists, Table S2: Biacore
analysis for peptide binding with AGO2, Table S3: N-terminal biotinylated synthetic peptides lists,
Table S4: Antibody list.
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