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Abstract
Objective: Postoperative delirium (POD) is a common postoperative complication 
that is relevant to poor outcomes. Therefore, it is critical to find effective methods 
to identify patients with high risk of POD rapidly. Creating a fully automated score 
based on an automated machine-learning algorithm may be a method to predict the 
incidence of POD quickly.
Materials and methods: This is the secondary analysis of an observational study, in-
cluding 531 surgical patients who underwent general anesthesia. The least absolute 
shrinkage and selection operator (LASSO) was used to screen essential features as-
sociated with POD. Finally, eight features (age, intraoperative blood loss, anesthesia 
duration, extubation time, intensive care unit [ICU] admission, mini-mental state ex-
amination score [MMSE], Charlson comorbidity index [CCI], postoperative neutrophil-
to-lymphocyte ratio [NLR]) were used to established models. Four models, logistic 
regression, random forest, extreme gradient boosted trees, and support vector ma-
chines, were built in a training set (70% of participants) and evaluated in the remaining 
testing sample (30% of participants). Multivariate logistic regression analysis was used 
to explore independent risk factors for POD further.
Results: Model 1 (logistic regression model) was found to outperform other classi-
fier models in testing data (area under the curve [AUC] of 80.44%, 95% confidence 
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1  |  INTRODUC TION

Postoperative delirium (POD) is an acute fluctuating neurocogni-
tive syndrome caused by reversible neuronal disruption due to an 
underlying systemic perturbation, which usually occurs a few hours 
to a few days after surgery and mainly manifests as a decline in 
consciousness, attention disorders, and thinking disorders.1 It has 
been reported that the incidence of POD in elderly surgical patients 
ranges from 10% to 70%.2,3

Previous studies have demonstrated that early interventions can 
help reduce or even prevent POD,4 while many patients with POD 
can't be identified efficiently. In clinical settings, the diagnosis of 
POD is still mainly based on clinical observation.5 However, the type 
of hypoactive POD is about 71% and very hard to notice. Therefore, 
it is critical to find methods to identify patients with a high risk of 
POD rapidly.

In recent years, basic and clinical studies have found that many 
risk factors or biomarkers may affect the occurrence of POD.6,7 
For instance, many inflammatory markers investigated in scientific 
and clinical studies, such as CRP, were believed to be associated 
with POD.8–10 Therefore, disease prediction models conveniently 
screen high-risk patients, and the nomogram could be easily used 
in clinical settings. However, some prediction models for POD were 
based on a single statistical method, which may be limited in pre-
dictive performance.11,12 Recently, it has been reported that using 
machine-learning techniques to establish various disease predic-
tion models could improve the predictive performance of these 
models.13,14

Thus, in the current study, we used machine-learning technology 
to extract the clinical data of 531 surgical patients who underwent 
general anesthesia before and on the first day after surgery and es-
tablished four predictive models of POD using different methods. 
Finally, we compared these models and created a model with optimal 
predictive performance, which can assist in diagnosing and identify-
ing patients with a high risk of POD. Furthermore, to increase the 
availability of the optimal model, the optimal model was transformed 
into the form of a nomogram.

2  |  MATERIAL S AND METHODS

2.1  |  Data source and extraction

The secondary analysis was based on an observational study (the 
Ethical Committee of the Affiliated Hospital of Xuzhou Medical 
University approved it, Certification No. XYFY2018-KL091). The 
written informed consent was obtained from all subjects participat-
ing, a legal surrogate, or the parents in this trial. Inclusion criteria 
were as follows: non-history of clear neurological disease; patients 
who underwent major noncardiac or non-neurological surgery with 
general anesthesia; expected a hospital stay of ≥3 days; Exclusion 
criteria were as follows15: significant impairments of vision; hear-
ing or motor skills; history of neurological disease; liver or kidney 
dysfunction (such as severe hepatitis, pyelonephritis); severe trauma 
or surgical history within one year; history of severe physical illness 
and alcoholism; mini-mental state examination (MMSE) score < 17; 
refuse to sign informed consent.

2.2  |  Model endpoint definition

We built classification models to predict the in-hospital incidence of 
POD as a binary outcome.

2.3  |  Delirium assessment

Delirium was assessed using rigorous methodologies. In this trial, 
CAM16 was applied to patients who could be communicated with. 
The CAM-ICU17 was applied to patients admitted to the intensive 
care unit (ICU) and cannot be communicated with due to endotra-
cheal intubation. We assessed for delirium 2 h after the surgery and 
then repeated the assessment twice a day for three days after the 
surgery in the morning, afternoon, or evening. There was at least 6 h 
interval between these two assessments.18 Additionally, evidence 
of delirium, including confusion, agitation, sedation, hallucinations, 
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interval [CI] 72.24%–88.64%) and achieve the lowest Brier Score as well. These vari-
ables including age (OR = 1.054, 95%CI: 1.017~1.093), extubation time (OR = 1.027, 
95%CI: 1.012~1.044), ICU admission (OR  =  2.238, 95%CI: 1.313~3.793), MMSE 
(OR = 0.929, 95%CI: 0.876~0.984), CCI (OR = 1.197, 95%CI: 1.038~1.384), and post-
operative NLR (OR = 1.029, 95%CI: 1.002~1.057) were independent risk factors for 
POD in this study.
Conclusions: We have built and validated a high-performing algorithm to demonstrate 
the extent to which patient risk changes of POD during the perioperative period, thus 
leading to a rational therapeutic choice.
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and delusions, was obtained from the nurses, families, and medical 
records. The evaluation of delirium was carried out by trained re-
searchers who neither knew the patient's perioperative characteris-
tics nor data entry and statistical analysis.

2.4  |  Model input features

Forty-nine potential useful features including basic information such 
as age, sex, BMI, education degree; American society of anesthe-
siologists (ASA) degree; laboratory data obtained before surgery, 
such as serum sodium, potassium, creatinine, and blood cell counts; 
and surgery-specific information such as the surgery type were 
collected.

Least absolute shrinkage and selection operator (LASSO) was 
used to select important features associated with POD. Finally, 
eight features (age, intraoperative blood loss, anesthesia duration, 
extubation time, ICU admission, mini-mental state examination 
score [MMSE], Charlson comorbidity index [CCI], postoperative 
neutrophil-to-lymphocyte ratio [NLR]) were included to established 
models.

To achieve the highest predictive performance, four models 
were established, including logistic regression model (LR), random 
forest (RF), extreme gradient boosted trees (XGB) classifier, and 
support vector machine (SVM) classifier. Furthermore, in order to 
further explore the relationship between the above eight features 
and POD, multivariate logistic regression was used to confirm the 
independent risk factors for POD in this study.

2.5  |  Sample size and statistical analysis

For the two-class prediction model, one of the sample size calcula-
tion methods proposed in the article 

is19
n = exp

(

− 0.508+ 0.259ln(�)+ 0.504ln(P)− ln(MAPE)

0.544

)

, where φ is the pro-

portion of ending events (� = 0.23), P is the number of predictors 
(P = 8), MAPE is the average absolute error between the observed 
and true outcome probability (MAPE = 0.05). According to the above 
formula, the sample size of training set is calculated as at least 330. 
To achieve a sample size of at least 330 in the training set, we ran-
domly split the total dataset (n = 531) into a training set (n = 400) and 
a testing set (n = 131) at a ratio of 7:3 in this study. Any patients who 
appeared in the testing set would be removed from the training set 
in case of information leakage.

All analyses were performed with R version 3.6.1. (R Development 
Core Team). The normal distribution of numeric variables was tested 
by the Shapiro-Wilk test. Continuous variables with a normal distri-
bution were expressed as the mean ± standard deviation (SD) and 
were compared using the independent-sample t-test. The Mann–
Whitney U test presented continuous variables with a non-normal 
distribution. Categorical data were presented as a number (%) and 
were analyzed using the chi-square test or Fisher's exact probability 

test. The importance of each variable in the training datasets was 
assessed by LASSO regression analysis.

The selection of model hyperparameters used 10-fold cross-
validation on training datasets. In 10-fold cross-validation, the data-
sets were divided into ten partitions, where nine-tenths of the data 
were used to build the models, and the remaining one-tenths were 
used as the testing datasets. This process was repeated such that 
each partition was used as testing datasets only once and training 
datasets nine times. Cross-validation made ensures a better assess-
ment of model performance by averaging metrics over multiple trials.

The role of missing data imputation is described as follows. If the 
missing value percentage is more significant than 20%, it will be ex-
cluded from the final completed dataset. If the rate of missing value 
is smaller than 20%, the random forest regression method would be 
used for imputation.

Discrimination and calibration were used to verify the predictive 
ability of the model. The AUROC expressed measurement of dis-
crimination, and the Youden index (sensitivity + specificity − 1) was 
used to find the best critical value (cutoff value). The performance 
of models was evaluated by accuracy, sensitivity, specificity, recall, 
and precision. Model calibration was measured by Brier score and 
calibration curve. Brier score was the average squared distance be-
tween the predicted probability of the outcome and the true label, 
and the lower Brier score indicated the better performance of the 
model.

The LR and RF classifiers were implemented with glmnet package 
and randomForest package in R version 3.6.1, and the XGB classifier 
was implemented with the XGBoost package in R version 3.6.1. All 
performance metrics were calculated on the held-out testing data-
sets. We generated confidence intervals (CIs) for performance met-
rics with epiR package of R software in training and testing datasets.

3  |  RESULTS

3.1  |  Patient characteristics

A total of 531 patients were included in this study. Among those 
screened, the incidence of POD was approximately 23.54%. The 
variables, including preoperative C-reaction protein (CRP) and post-
operative CRP, have missing values. Missing parts of these variables 
accounted for 16.9% and 18.8% of the total data, respectively. The 
missing data were imputed by random forest regression. The dataset 
(n = 531) is randomly divided into the training set and testing set at 
the ratio of 7:3. Four hundred patients formed a training dataset. 
One hundred thirty-one patients formed testing datasets. The data 
collected from training datasets were used to assess important vari-
ables associated with POD and to establish the predictive models. 
Patients were divided into POD group (n = 125) and Non-POD group 
(n = 406) according to whether or not delirium occurred within the 
first three days after surgery. The data collected from the testing 
dataset were aimed to validate predictive models. The patients' re-
cruitment flowchart is shown in Figure 1. Detailed information on 
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patient characteristics can be found in Table 1. There was no sig-
nificant statistical difference between the features of patients in 
the training datasets and the testing datasets. The selection of the 
best parameter (lambda) in the LASSO model uses 10-fold cross-
validation. Dotted vertical lines were drawn at the optimal values 
by using the minimum criteria and the 1 SE of the minimum criteria 
(the 1 − SE criteria).

A vertical line was drawn at the value selected using 10-fold 
cross-validation, where optimal lambda resulted in eight features 
with non-zero coefficients (Figure  2A,B). We selected eight non-
zero characteristic variables in the LASSO regression results, includ-
ing age, intraoperative blood loss, anesthesia duration, extubation 
time, ICU admission, MMSE score, CCI score, and postoperative NLR 
(Table 2).

3.2  |  Model performance

We used four algorithms to build predictive models of POD, and 
the following values in the training datasets were found: LR clas-
sifier (AUC value  =  73.99% (95%CI: 67.63%–80.35%), accu-
racy  =  0.708 (95%CI: 0.660–0.752), precision  =  0.701 (95%CI: 

0.652–0.753), recall  =  0.913 (95%CI: 0.872–0.942)); RF classi-
fier algorithm (AUC value  =  99.06% (95%CI: 97.74%–100%), ac-
curacy  =  0.993 (95%CI: 0.978–0.999), precision  =  0.991 (95%CI: 
0.982–1.000), recall  =  1.0000 (95%CI: 0.982–1.000)); XGB clas-
sifier (AUC value  =  89.77% (95%CI: 86.21%–93.32%), accu-
racy  =  0.868 (95%CI: 0.8303–0.899), precision  =  0.931 (95%CI: 
0.892–0.953), recall = 0.911 (95%CI: 0.870–0.941)); SVM classifier 
(AUC value  =  87.39% (95%CI: 82.84%–91.94%), accuracy  =  0.913 
(95%CI: 0.880–0.938), precision = 0.941 (95%CI: 0.910–0.964), re-
call = 0.951 (95%CI: 0.922–0.974)) (Table 3).

For the testing dataset, the following values in the test group 
were found: LR classifier (AUC value  =  80.44% (95%CI: 72.24%–
88.64%), accuracy = 0.687 (95%CI: 0.600–0.765), precision = 0.661 
(95%CI: 0.563–0.754), recall  =  0.891 (95%CI: 0.791–0.950); RF 
classifier (AUC value  =  70.36% (95%CI: 61.35%–79.37%), accu-
racy  =  0.801 (95%CI: 0.723–0.866), precision  =  0.912 (95%CI: 
0.832–0.962), recall  =  0.842 (95%CI: 0.751–0.904); XGB clas-
sifier (AUC value  =  76.83% (95%CI: 66.77%–86.89%), accu-
racy  =  0.779 (95%CI: 0.698–0.847), precision  =  0.881 (95%CI: 
0.792–0.930), recall = 0.832 (95%CI: 0.753–0.901); SVM classifier 
(AUC value  =  68.44% (95%CI: 59.13%–77.74%), accuracy  =  0.702 
(95%CI: 0.616–0.779), precision  =  0.723 (95%CI: 0.622–0.812), 

F I G U R E  1  Patient recruitment 
flowchart
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TA B L E  1  Comparison of demographic characteristics and perioperative and postoperative variables between the training dataset and the 
testing dataset

Property Training dataset Testing dataset p

Patients, n 400 131

Sex 0.324

Female, n (%) 165 (41.2%) 47 (35.9%)

Male, n (%) 235 (58.8%) 84 (64.1%)

Age (median ± IQR) 68.00 (65.00, 73.25) 68.00 (64.00, 72.0) 0.443

Height (median ± IQR) 165.00 (159.80, 170.00) 162.00 (158.00, 170.00) 0.247

Weight (median ± IQR) 62.50 (56.00, 70.00) 61.00 (55.00, 70.00) 0.483

BMI (median ± IQR) 23.80 (21.25, 25.90) 23.40 (21.47, 25.95) 0.867

Education degree, n (%) 0.945

Illiteracy 114 (28.5%) 40 (30.5%)

Primary education 106 (26.5%) 34 (26.0%)

Junior high school education 109 (27.3%) 31 (23.7%)

High school education 53 (13.3%) 21 (16.0%)

University degree 14 (3.5%) 4 (3.1%)

University degree above 4 (1.0%) 1 (0.8%)

ASA degree, n (%) 0.390

Ⅰ 12 (3.0%) 5 (3.8%)

Ⅱ 324 (81.0%) 106 (80.9%)

Ⅲ 64 (16.0%) 19 (14.5%)

Ⅳ 0 (0.0%) 1 (0.8%)

Smoking, n (%) 0.836

None 250 (62.5%) 80 (61.1%)

Yes 150 (37.5%) 51 (38.9%)

Alcohol, n (%) 0.026*

None 296 (74.0%) 83 (63.4%)

Yes 104 (26.0%) 48 (36.6%)

Hypertension, n (%) 0.672

None 265 (66.2%) 84 (64.1%)

Yes 135 (33.8%) 47 (35.9%)

Diabetes, n (%) 0.993

None 349 (87.3%) 115 (87.8%)

Yes 51 (12.8%) 16 (12.2%)

Hemoglobin (median ± IQR) 130.00 (118.00, 141.00) 131.00 (118.5, 144.0) 0.726

Albumin (median ± IQR) 42.15 (38.70, 45.00) 41.70 (38.0, 44.80) 0.408

ALT (median ± IQR) 16 (12, 24) 16 (11, 22.5) 0.240

AST (median ± IQR) 19 (15, 23.0) 18 (15, 21) 0.093

BUN (median ± IQR) 5.10 (4.19, 6.10) 5.20 (4.25, 6.65) 0.248

Cr (median ± IQR) 62.00 (54.00, 71.00) 64.00 (53.00, 71.5.00) 0.834

Blood volume (median ± IQR) 100 (100, 200) 100 (100, 250) 0.261

Urine volume (median ± IQR) 400 (300, 400) 400 (300, 500) 0.170

Crystalloid solution (median ± IQR) 1250 (1000, 1500) 1350 (1000, 1550) 0.298

Ethoxyl volume (median ± IQR) 500 (500, 500) 500 (500, 500) 0.668

Gelatin volume (median ± IQR) 0 (0, 0) 0 (0, 0) 0.517

Blood transfusion (median ± IQR) 0 (0, 0) 0 (0, 0) 0.087

Surgery time (median ± IQR) 161.00 (110.00, 225.00) 165.00 (120.00, 220.00) 0.875

(Continues)
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Property Training dataset Testing dataset p

Anesthesia duration (median ± IQR) 200.00 (150.00, 260.00) 190.00 (150.00, 252.50) 0.914

Extubation time (median ± IQR) 17.00 (10.00, 23.00) 12.00 (12.00, 24.50) 0.809

ICU admission, n (%) 0.493

None 333 (83.3%) 113 (86.5%)

Yes 67 (16.8%) 18 (13.7%)

MMSE (median ± IQR) 25.50 (23.00, 28.00) 26.00 (23.50, 28.00) 0.737

CCI (median ± IQR) 3.00 (2.00, 4.00) 3.00 (2.00, 4.00) 0.088

PSMS (median ± IQR) 6.00 (6.00, 6.00) 6.00 (6.00, 6.00) 0.334

IADL (median ± IQR) 8.00 (8.00, 8.00) 8.00 (8.00, 8.00) 0.648

QoR40 preoperative (median ± IQR) 195.00 (190.00, 198.00) 196.00 (190.00, 198.00) 0.770

PCA pump, n (%) 0.677

None 149 (37.2%) 46 (35.1%)

Yes 251 (62.7%) 85 (64.9%)

Nerve block, n (%) 1

None 286 (71.5%) 94 (71.8%)

Yes 114 (28.5%) 37 (28.2%)

Surgery type, n (%) 0.229

Thoracic operation 130 (32.5%) 44 (33.6%)

Abdominal operation 183 (45.8%) 57 (43.5%)

Urinary operation 68 (17%) 24 (18.3%)

Orthopedic operation 19 (4.8%) 6 (4.6%)

K+ (median ± IQR) 4.01 (3.75, 4.27) 4.01 (3.75, 4.27) 0.832

Glu (median ± IQR) 5.26 (4.81, 5.96) 5.26 (4.83, 5.91) 0.992

CRP preoperative (median ± IQR) 2.70 (1.10, 11.32) 3.60 (1.20, 10.70) 0.591

CRP postoperative (median ± IQR) 73.45 (42.90, 103.0) 76.80 (37.90, 124.00) 0.251

Cholesterol (median ± IQR) 4.59 (3.87, 5.13) 4.37 (3.79, 5.06) 0.392

Preoperative White blood cell count 
(median ± IQR)

5.90 (4.80, 7.20) 5.50 (4.80, 6.70) 0.394

Preoperative neutrophil count 
(median ± IQR)

3.63 (2.74, 4.72) 3.37 (2.81, 4.24) 0.538

Preoperative lymphocyte count 
(median ± IQR)

1.60 (1.20, 2.00) 1.50 (1.20, 1.90) 0.706

Postoperative White blood cell count 
(median ± IQR)

10.20 (8.40, 12.55) 10.10 (8.25, 12.20) 0.581

Postoperative neutrophil count 
(median ± IQR)

8.80 (7.02, 10.91) 8.34 (6.42, 10.86) 0.294

Postoperative lymphocyte count 
(median ± IQR)

0.90 (0.60, 1.20) 0.90 (0.70, 1.15) 0.701

Postoperative NLR (median ± IQR) 9.98 (6.54, 14.90) 9.66 (5.67, 14.12) 0.349

Preoperative NLR (median ± IQR) 2.27 (1.58, 3.26) 2.19 (1.72, 3.00) 0.934

Postoperative delirium, n (%) 0.040*

None 315 (78.7%) 91 (69.5%)

Yes 85 (21.3%) 40 (30.5%)

Abbreviations: ALT, alanine transaminase; ASA, American society of anesthesiologists; AST, glutamic oxalacetic transaminase; BMI, body mass index 
(kg/m2); BUN, blood urea nitrogen; CCI, Charlson comorbidity index; Cr, serum creatinine; CRP, C-reactive protein; IADL, instrumental activities of 
daily living; MMSE, mini-mental state examination score; NLR, neutrophil-to-lymphocyte ratio; PCA, postoperative analgesia pump; PSMS, physical 
self-maintenance scale; QoR40, recovery quality rating scale.

TA B L E  1  (Continued)
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recall = 0.852 (95%CI: 0.763–0.924)) (Table 4). The ROC of models in 
testing dataset and training dataset is shown in Figure 3A,B, and the 
AUROC for each model is shown in Table 5.

The LR achieved much lower (better) Brier scores compared with 
the other models. Calibration plots of four models in the training 
dataset and testing dataset are shown in Figure 3C,D. The curve at 
45° between the X-axis and the Y-axis indicates good consistency of 
the model.

Finally, the LR model is transformed into a nomogram to un-
derstand and use the model (Figure 4). The two-class prediction 
outcome is generated based on the optimal cutoff value of the 
optimal model. Comparing the prediction outcome with the ac-
tual occurrence of delirium, the optimal model has shown that 
the prediction outcome has good performance. The optimal cut-
off value of the LR model corresponds to the optimal score of 
the nomogram. The optimal score of the nomogram was deter-
mined to be 109 according to the optimal cutoff value of the LR 
model. If the sum of the scores corresponding to each entry in 
the nomogram is greater than 109 points, then the patients who 
underwent surgery have a higher risk of developing POD. At this 
moment, nursing staff and doctors should pay attention to the 
situation of patients. Table  6 presents that these variables in-
cluding age (OR  =  1.054, 95%CI: 1.017~1.093), extubation time 
(OR  =  1.027, 95%CI: 1.012~1.044), ICU admission (OR  =  2.238, 
95%CI: 1.313~3.793), MMSE (OR = 0.929, 95%CI: 0.876~0.984), 
CCI (OR  =  1.197, 95%CI: 1.038~1.384), and postoperative NLR 
(OR = 1.029, 95%CI: 1.002~1.057) were independent risk factors 
for POD in this study (Table 6).

4  |  DISCUSSION

The accumulation of multiple risk factors is critical for the occur-
rence of POD, and there is currently no single treatment to prevent 
the occurrence of POD. The combination of non-drug therapy and 
drug therapy is one of the best methods to treat POD. POD has been 
reported to occur in 10% to 70% of all elderly patients,1–3 causing in-
creased mortality, prolonged hospital stays, reduced functional abili-
ties,20,21 long-term cognitive dysfunction,22 and even dementia.15,23 
Therefore, the prevention and treatment of POD is a clinical problem 
that needs to be solved. In many clinical studies on POD, researchers 
have tried to find powerful biomarkers that can accurately predict 
POD, such as S100β protein,24 neuron-specific enolase (NSE),25 tau 
protein,26 and inflammatory mediators.27 Researchers are also trying 
to find better ways to reduce the occurrence of POD. Although these 
biomarkers have a relatively high ability to predict POD, they cannot 
be popularized clinically because of the complexity and high cost of 
sampling. They are always used to explore scientific questions in clini-
cal trials. Therefore, the emergence of disease prediction models may 
provide a solution for the prevention of POD. Neuroinflammation and 
the oxidative stress response may be involved in the pathophysiologi-
cal process of POD.5,6 Inflammatory markers investigated in scientific 
studies have been associated with delirium.7–9 To further increase the 
general applicability of the model, this study included easily available 
laboratory test items, including some inflammatory mediators, such 
as CRP and the NLR variables.

F I G U R E  2  Demographic and clinical feature selection using the 
LASSO regression

TA B L E  2  LASSO regression results of important variables 
related to POD (training dataset)

Variables Coefficient Lambda.min

Age 0.011537909 0.0345332

Intraoperative blood 
loss

0.0002223647

Anesthesia duration 0.0017088601

Extubation time 0.004272257

ICU admission 0.951368637

MMSE score 0.0066777804

CCI 0.088073881

Postoperative NLR 0.010530093

Abbreviations: CCI, Charlson comorbidity index; MMSE, mini-mental 
state examination score; NLR, neutrophil-to-lymphocyte ratio.
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TA B L E  3  Performance metrics for four models in training dataset

Model Accuracy
F1 
score Precision Recall Specificity

LR 0.708 (0.660, 0.752) 0.494 0.701 (0.652, 0.753) 0.913 (0.872, 0.942) 0.382 (0.302, 0.464)

RF 0.993 (0.978, 0.999) 0.981 0.991 (0.982, 1.000) 1.000 (0.982, 1.000) 0.971 (0.912, 1.000)

XGB 0.868 (0.8303, 0.899) 0.654 0.931 (0.892, 0.953) 0.911 (0.870, 0.941) 0.682 (0.564, 0.782)

SVM 0.913 (0.880, 0.938) 0.785 0.941 (0.910, 0.964) 0.951 (0.922, 0.974) 0.763 (0.664, 0.851)

Accuracy = (TP + TN)/(TP + TN + FP + FN). Precision = TP/(TP + FP). Recall = TP/(TP + FN). Specificity = TN/(TN + FP). F1 score = 2/([1/
Recall] + [1/Precision]). FN, false negatives; FP, false positives; TN, true negatives; TP, true positives.

TA B L E  4  Performance metrics for four models in testing dataset

Model Accuracy
F1 
score Precision Recall Specificity

LR 0.687 (0.600, 0.765) 0.559 0.661 (0.563, 0.754) 0.891 (0.791, 0.950) 0.442 (0.311, 0.583)

RF 0.801 (0.723, 0.866) 0.567 0.912 (0.832, 0.962) 0.842 (0.751, 0.904) 0.651 (0.442, 0.833)

XGB 0.779 (0.698, 0.847) 0.539 0.881 (0.792, 0.930) 0.832 (0.753, 0.901) 0.592 (0.390, 0.761)

SVM 0.702 (0.616, 0.779) 0.530 0.723 (0.622, 0.812) 0.852 (0.763, 0.924) 0.452 (0.311, 0.602)

Accuracy = (TP + TN)/(TP + TN + FP + FN). Precision = TP/(TP + FP). Recall = TP/(TP + FN). Specificity = TN/(TN + FP). F1 score = 2/([1/
Recall] + [1/Precision]). FN, false negatives; FP, false positives; TN, true negatives; TP, true positives.

F I G U R E  3  ROC of models and calibration plot in training dataset and testing dataset (A and C represented training dataset. B and D 
represented testing dataset)
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There are many ways to build a POD prediction model, but many 
mathematical terms are always involved.12,28 This is not conducive 
to the understanding and use of a model by medical staff. At the 
same time, many disease prediction models are transformed into 
certain formulas, limiting the availability of prediction models.11,12 
Therefore, the model established in this study was transformed into 
a nomogram to increase the availability of the model further.

In this study, we established a predictive model and incorpo-
rated the following eight variables into its construction: age, in-
traoperative blood loss, anesthesia duration, extubation time, ICU 
admission, MMSE score, CCI score, and postoperative NLR. The 
optimal predictive model was represented by a nomogram. It is a 
new concept to use a nomogram to estimate the risk of POD. The 
LR model performed well, with AUCs of 73.99% and 80.44% in 
the training and testing datasets, respectively. The calibrations of 
the models were compared quantitatively using Brier scores. The 
calibration of the LR model showed good agreement between the 
prediction outcome and the actual observed outcome. For the ap-
plication of this model, the sum of the scores corresponding to each 
entry in the nomogram was more significant than 109 points, and 
patients who underwent surgery had a higher risk of developing 

POD. Based on this predictive model, the nomogram can be used as 
a tool to screen out patients with a high risk of POD. Thus, targeted 
interventions can be made for high-risk patients.

Finally, eight variables were included in the multivariate logistic 
regression analysis. We found that age, extubation time, ICU admis-
sion, MMSE score, CCI score, and postoperative NLR were indepen-
dent risk factors for POD. Advanced age is known to be the most 
relevant risk factor for POD, and some basic systemic diseases be-
fore surgery may also increase the incidence of POD.29,30 Entering 
the ICU after surgery may also increase the incidence of POD, which 
may be related to the ICU environment, long-term mechanical ven-
tilation, and the severity of the patient's disease.31 The MMSE as-
sesses cognitive function in patients and is associated with POD.32 
These findings are consistent with our study. Extubation time is re-
lated to residual anesthetic drugs at the end of the anesthesia main-
tenance period and the patient's disease state before surgery. This 
study also confirmed that extubation time is a risk factor for POD. 
The postoperative NLR is also related to POD, but CRP variable was 
excluded when we screened for important features in this study.

On the one hand, we infer that the NLR, a parameter derived from 
different white blood cell counts, is a synthesized marker of both in-
flammation and oxidative stress and a stronger inflammatory factor 
than CRP variable.7,8 On the other hand, CRP variable has a certain 
amount of missing data. Although we imputed missing data, this 
could still affect the screening of important features. Considering 
the above two aspects, the missing data could lead to the exclusion 
of the CRP variable and the NLR inclusion. However, two variables, 
intraoperative blood loss and anesthesia duration, were excluded by 
multivariate logistic regression. These were inconsistent with some 
previous research findings.33,34 Considering that these two variables 
may be potential risk factors for POD and the principle of the mini-
mum Akaike information criterion (AIC) and the maximum AUROC of 
the prediction model, we finally included these two variables in the 

TA B L E  5  Delirium prediction performance using AUROC

Model
Training sets AUC 
(95%CI)

Testing sets AUC 
(95%CI)

LR 73.99% (67.63%−80.35%) 80.44% 
(72.24%−88.64%)

RF 99.06% (97.74%−100%) 70.36% (61.35%−79.37%)

XGB 89.77% (86.21%−93.32%) 76.83% 
(66.77%−86.89%)

SVM 87.39% (82.84%−91.94%) 68.44% (59.13%−77.74%)

Abbreviations: LR, logistic regression; RF, random forest; SVM, support 
vector machine; XGB, extreme gradient boosting.

F I G U R E  4  Nomogram for estimation 
of POD
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established models. Predictive models built using independent risk 
factors could ignore this principle and fail to achieve the best model.

However, there are still several limitations of this study. First, this 
is a small sample study, and the predictive model requires a larger 
sample for verification. Second, the interpolation of missing data is 
a complex problem because data were considered to be randomly 
missing. In fact, there is a large field of research that builds optimal 
imputation algorithms, and suboptimal imputation algorithms will 
decrease the performance of the predictive model. This may be a 
possible reason why the performance of our model is lower than that 
of the previous models.35 However, our choice to use imputation al-
gorithms,36,37 while not optimal, was better than using mean imputa-
tion. Third, the data in this study came from a single large academic 
medical center. Thus, this model may not have similar effects when 
used in other medical institutions. Most likely, the model will need to 
be recalibrated when used by another institution. The exact weights 
of the features may change through such recalibration. Finally, this 
model requires an independent dataset to test the extrapolation and 
generalization of the model. We hope to collect enough external val-
idation datasets to improve this model in the future further.

The benefits of machine-learning technology are large, espe-
cially in the medical industry. For example, using machine-learning 
technology to establish disease prediction and risk assessment mod-
els can help clinicians better identify the factors that truly drive the 
occurrence and development of diseases.

5  |  CONCLUSIONS

We developed four different POD prediction models and calibrated 
them with Brier Score to select the model with the best perfor-
mance. We believe that the model is an important tool that should 
be utilized to screen out the high-risk group of POD.
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