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Abstract: The renin-angiotensin-aldosterone system (RAAS) is implicated in hypertension and
kidney disease. The developing kidney can be programmed by various early-life insults by so-called
renal programming, resulting in hypertension and kidney disease in adulthood. This theory is
known as developmental origins of health and disease (DOHaD). Conversely, early RAAS-based
interventions could reverse program processes to prevent a disease from occurring by so-called
reprogramming. In the current review, we mainly summarize (1) the current knowledge on the
RAAS implicated in renal programming; (2) current evidence supporting the connections between
the aberrant RAAS and other mechanisms behind renal programming, such as oxidative stress,
nitric oxide deficiency, epigenetic regulation, and gut microbiota dysbiosis; and (3) an overview
of how RAAS-based reprogramming interventions may prevent hypertension and kidney disease
of developmental origins. To accelerate the transition of RAAS-based interventions for prevention
of hypertension and kidney disease, an extended comprehension of the RAAS implicated in renal
programming is needed, as well as a greater focus on further clinical translation.

Keywords: chronic kidney disease; hypertension; renin-angiotensin-aldosterone system; nitric oxide;
developmental origins of health and disease (DOHaD); oxidative stress; angiotensin-converting
enzyme; nephron

1. Introduction

Hypertension and chronic kidney disease (CKD) are highly prevalent diseases around
the world. The WHO indicate that one in four men and one in five women have hyper-
tension [1]. CKD affects up to ten percent of the world’s population [2]. Hypertension
and CKD are closely interlinked [3], such that CKD is one of the most common causes
of secondary hypertension and hypertension is an important factor related to CKD pro-
gression. The best-known example is renal artery stenosis, which is characterized by
both hypertension and progressive loss of renal function [4]. It was recognized as the
prototype of angiotensin-dependent hypertension, contributing to the discovery of the
renin–angiotensin-aldosterone system (RAAS) [5].

A growing body of evidence suggests that both hypertension and kidney disease may
have their origins in early life [6–8]. During kidney development, an exposure to a subopti-
mal intrauterine environment results in lifelong negative influences on renal structure and
function and on renal compensatory mechanisms by so-called renal programming [9,10].
The developing kidney can be programmed by a diversity of early-life insults, leading to
hypertension and kidney disease in adulthood. The concept that adverse conditions during
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organogenesis increase the vulnerability for developing adult diseases is called fetal origins
hypothesis [11], more recently named “Developmental Origins of Health and Disease”
(DOHaD) [12]. On the other hand, this concept leads to a theoretical shift of therapeutic
approach from adult life to earlier stage, namely reprogramming, to potentially reverse
disease processes before clinical disease becomes evident [13,14].

Blood pressure (BP) is tightly controlled by very complex networks, including the
RAAS, endothelial function, sympathetic nervous system, natriuretic peptides, inflamma-
tion and the immune system [15–17]. The RAAS serves a counter-regulatory role in the
pathogenesis and development of hypertension [17]. Several potential molecular mecha-
nisms involved in developmental programming of hypertension and kidney disease have
been addressed, including aberrant RAAS, oxidative stress, nitric oxide (NO) deficiency,
gut microbiota dysbiosis, dysregulated nutrient-sensing signals, epigenetic regulation,
and reduced nephron number [6–9,13,14,18–20]. Among them, the RAAS not only plays a
vital role in the regulation of BP but also closely interacts with other mechanisms. The RAAS
is a major hormone cascade composed of different angiotensin peptides with a variety of
biological functions mediated by distinct receptors [21]. There are two major pathways in
the RAAS: classical and non-classical pathways. The classical RAAS is mainly made up of
angiotensin-converting enzyme (ACE), angiotensin (ANG) II, and angiotensin II type 1 re-
ceptor (AT1R). Under pathophysiological conditions, the classical RAAS can be activated
to trigger vasoconstriction and inflammation, thus promoting hypertension and kidney
damage [22]. Conversely, the non-classical RAAS composed of the ACE2-ANG-(1-7)-MAS
receptor axis counterbalances the detrimental effects of ANG II signaling.

Of note is that both axes of the RAAS have been linked to fetal programming [23,24].
Although blockade of the classical RAAS provides the rationale for current antihypertensive
and renoprotective therapies [25], there is limited data on whether early targeting on the
RAAS can prevent hypertension and kidney disease of developmental origins.

In the review, therefore, we present a contemporary update of the RAAS, explain-
ing its role on hypertension and kidney disease of developmental origins and empha-
sizing its links to other mechanisms. We also highlight the potential reprogramming
interventions that target the RAAS for prevention of developmental programming of
hypertension and kidney disease. We retrieved related literature from all articles in-
dexed in PubMed/MEDLINE. We used the following keywords and their combinations:
“renin”, “angiotensin”, “chronic kidney disease”, “developmental programming”, “DOHaD”,
“offspring”, “mother”, “nephrogenesis”, “nephron”, “prorenin receptor”, “aldosterone”,
“mineralocorticoid receptor”, “pregnancy”, “progeny”, “reprogramming”, “angiotensino-
gen”, “angiotensin-converting enzyme”, and “hypertension”. Additional studies were
then selected and evaluated based on appropriate references in eligible papers. The last
search was conducted on 30 January 2021.

2. RAAS and the Programmed Kidney
2.1. Intrarenal RAAS

The kidney is a principal target for the various components of the RAAS that in-
clude prorenin/renin, ANG II, ANG III (ANG-(2–8)), ANG-(1–7), ANG IV (ANG-(3–8)),
ANG-(1–9), and aldosterone [26]. Renin starts a cascade of events in the RAAS. The kidney
is the only known organ where prorenin to renin conversion occurs [27]. The substrate
of the RAS, angiotensinogen (AGT) is released from the liver and is cleaved by renin to
generate ANG I. ACE is universally existing in many cell types and tissues/organs. ACE is
primarily known for its ability to cleave ANG I to ANG II, while it cleaves not only ANG
I but also many other substrates including bradykinin [28]. ANG II stimulates the AT1R
to enhance sodium reabsorption and elevate BP [29]. Conversely, ANG II type 2 recep-
tor (AT2R) is the other type of ANG II receptors, which mediates vasodilatation. In the
adrenal cortex, ANG II acts to cause the release of aldosterone. Aldosterone promotes
sodium retention by stimulating sodium transporter in the distal tubules of the kidneys
and, therefore, raises BP. Of note is that the renal RAAS is characterized by the highest
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tissue concentrations of ANG II [30]. In the kidney, ANG II can also be metabolized to
ANG III (ANG-(2–8)) by aminopeptidase A (APA). In turn, ANG III is processed to ANG
IV (ANG-(3–8)) by aminopeptidase N (APN) [30].

On the other hand, ACE2, a homologue of ACE, which converts ANG II to ANG-
(1–7) or converts ANG I to ANG-(1–9) [31]. ANG-(1–7) induces natriuretic and diuretic
effects, in favor of vasodilatation via mediation of MAS receptor [24]. ANG I can also be
converted to ANG-(1–7) by the endopeptidase neprilysin (NEP) [30]. In turn, ANG-(1–7)
can be processed to (ANG-(2–7)) by APA, and further metabolized by APN to generate
ANG-(3–7) [30]. Although most studies of the RAS have mainly focused on ANG II, other
peptide fragments Ang-(1-7), ANG III (ANG-(2–8)), ANG IV (ANG-(3–8)), ANG-(2–7),
and ANG-(3–7) were identified as potentially bioactive [30]. Since that different peptides
in the RAAS could work in concert or in opposition, and that pharmacological alterations
of the RAAS result in simultaneous changes of different ANG peptides and compensatory
alterations in the abundance/activity of the participating RAAS enzymes, more extensive
research work is necessary to understand the complexity of the network of RAAS peptides
and how this network system affects renal programming. The processing of various ANG
peptides in the RAAS in the kidney is illustrated in Figure 1.

Figure 1. Schema outlining the renin-angiotensin-aldosterone system cascade including the renal effects of receptor stim-
ulation. AGT, angiotensinogen; ACE, angiotensin-converting enzyme; ACE2, angiotensin-converting enzyme 2; ANG,
angiotensin; ANG I, angiotensin I; ANG II, angiotensin II; ANG III, ANG-(2–8); ANG IV, ANG-(3–8); APA, aminopeptidase A;
APN, aminopeptidase N; AT1R, angiotensin II type 1 receptor; AT2R, angiotensin II receptor; MAS, angiotensin-(1–7) recep-
tor MAS; MR, mineralocorticoid receptor; NEP, neutral endopeptidase; PEP, prolyl endopeptidase; PRR, (Pro)renin- receptor.

2.2. The Programmed Kidney: Cause for Adult Hypertension and Kindey Disease?

The human kidneys are composed of nephrons ranged from 250,000 to 1.1 million per
kidney [32]. Nephron is the functional unit of the kidney, but there is a wide variability
with a 10-fold individual difference [32]. The formation of nephrons, namely nephroge-
nesis, commences at the 9th and continues until 36th week of gestation in humans [33].
The initiation of the kidney development takes place when a ureteric bud outgrowth
from the nephric duct invades a group of mesenchymal cells contained within the cau-
dal end of the nephric cord. The elaboration of the ureteric bud is known as branching
morphogenesis [34], which leads to the formation of the nephrons and urinary collecting



Int. J. Mol. Sci. 2021, 22, 2298 4 of 22

system. The key regulator of primary ureteric bud outgrowth and branching is glial-cell
derived neurotrophic factor (GDNF) [35]. Nephron progenitors epithelialize to form the
renal vesicle, which elongate to S-shaped body before fully developing into a nephron.
There is an exponential increase in nephrons between 18 and 32 weeks. During the third
trimester, nephron development is complete between the 32nd and 36th week of gesta-
tion [32]. Accordingly, normally nephrogenesis is complete at term. Premature infants
thus likely have a reduced nephron endowment at birth. However, nephron number in
preterm infants depends on not only gestational age, but also intrauterine environment and
perinatal care. Impaired branching morphogenesis could cause low nephron endowment
and a wide range of renal maldevelopment, namely congenital anomalies of the kidney
and urinary tract (CAKUT).

Important support for renal programming came from the Dutch famine birth cohort
study, which revealed that malnutrition during gestation has long-lasting consequences for
adult health, including hypertension and kidney disease [36,37]. Several epidemiologic
studies have associated prematurity and low birth weight as risk factors for kidney disease
and hypertension in later life [38–40]. Low birth weight can result from intrauterine growth
restriction (IUGR) or preterm birth associated with low nephron number [32,33,41]. A re-
duced nephron number leads to compensatory glomerular hyperfiltration and glomerular
hypertension. This starts a vicious cycle, with a further nephron loss that results in a rising
BP, decline in renal function, and may end in CKD.

Nevertheless, the number of nephrons cannot be determined in living humans.
Although the use of ferritin-based nanoparticles as targeted magnetic resonance imag-
ing (MRI) contrast agent to measure nephron number in human kidneys has made some
progress [42], validation of a method for non-invasive in vivo assessment of nephron
endowment deserves greater attention.

2.3. Impact of RAAS in Renal Programming

In the developing kidney, constituents of the RAAS are highly expressed and play
a critical role in mediating proper renal morphology and physiological function [43,44].
In rats, all components of RAAS can be detected in the embryonic kidneys from 12 to
17 days of gestation, being higher in fetuses and newborn rats than in adult rats [44].
In humans, drugs interfering with the RAAS (e.g., ACE inhibitors [ACEIs] or angiotensin
receptor blockers [ARBs]) have been avoided in pregnant women due to ACEI/ARB
fetopathy and renal maldevelopment [45]. Prematurity was associated with an increase
in plasma renin and ANG II levels, as well as ACE activity [46]. Animals lacking genes
of the RAAS develop markedly abnormal kidneys [47,48]. On the other hand, animals
transgenic for RAS genes display hypertension [49]. Blockade of the RAAS with ARB
losartan during days 1 to 12 of postnatal life in the rat (during nephrogenesis stage) causes
a reduced number of nephrons and hypertension in adulthood [50].

Some risk factors for developing hypertension and kidney disease were assessed in
human studies. Nevertheless, these observational studies cannot per se directly establish a
causal relationship between the early-life insults and adult disease. Additionally, these hu-
man studies do not illuminate molecular mechanisms by which hypertension and kidney
disease are created and provide a reprogramming strategy. As a consequence of ethical
considerations concerning what is feasible or not in human studies, animal models are of
great importance. Given that human studies have many limitations, animal models were
established to explore the types of insults driving renal programming, potential mech-
anisms of renal programming, the vulnerable periods during the kidney development,
and potential reprogramming strategy.

3. Animal Models of Renal Programming: Impact of the RAAS
3.1. RAAS-Related Renal Programming in Animal Models

A growing number of animal models are now being established to study hypertension
and kidney disease of developmental programming. As reviewed elsewhere [6–10,13,14,18–20],
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several environmental influences in early life that can program the kidney resulting in
hypertension and kidney disease in later life, such as maternal malnutrition, maternal
illness, maternal smoking, and exposure to medication or environmental toxins. Table 1
summarizes animal studies demonstrating the association between aberrant RAAS, early-
life insults, and subsequent hypertension and kidney disease in adult offspring [51–88].
The present review is only restricted to environmental insults happening during the
duration of nephrogenesis, with a focus on RAAS-related renal programming.

Table 1. Renal programming related to aberrant renin-angiotensin-aldosterone system (RAAS) in animal models. Studies
tabulated according to animal models, species, and age at evaluation. CKD, chronic kidney disease; L-NAME, L-NG-
Nitro arginine methyl ester; LPS, lipopolysaccharide; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; PDTC, pyrrolidine
dithiocarbamate; DEX, dexamethasone; Cr, creatinine; SD, Sprague Dawley; SHR, spontaneously hypertensive rat; M, male;
F, female; BP, blood pressure; GFR, glomerular filtration rate; ↑, increased; ↓, decreased; ↔, unaltered; PRR, (pro)renin
receptor; PRA, plasma renin activity; ACE, angiotensin-converting enzyme; ACE2, angiotensin-converting enzyme 2; AGT,
angiotensinogen; AT1R, angiotensin type 1 receptor; AT2R, angiotensin type 2 receptor.

Animal
Models

Intervention
Period Species/Gender Age at

Evaluation Renal Phenotype Alterations of the
RAAS Ref.

20% w/v sucrose
in drinking

water
Pregnancy SD rat/M 90 weeks ↑BP ↑AT1R mRNA

and protein [51]

High-fructose
diet, 60%

Pregnancy and
Lactation SD rat/M 12 weeks ↑BP ↓AT2R mRNA [52]

High-fructose
diet, 60%

Pregnancy and
Lactation SD rat/M 12 weeks ↑BP, altered renal

transcriptome ↑Renin mRNA [53]

Protein
restriction, 9% Pregnancy SD rat/M 4 weeks ↑BP,↔GFR

↑AT1R protein and
↓AT2R protein,
↔ANG level

[54,55]

Protein
restriction, 6% Pregnancy SD rat/M and F 4 weeks ↑BP

↓AT1R and AT2R
protein at birth;
↑AT1R and AT2R
protein at 4 wk

[56]

Protein
restriction, 6% Pregnancy SD rat/M and F 8 weeks ↑BP, ↓nephron

number

↓PRA, ↓AT1R mRNA
and protein,
↑Aldosterone

[57]

Protein
restriction, 8% Lactation Wistar rat/M 150 days ↑BP, ↑GFR,

↑Proteinuria
↑AT1R protein

and↓AT2R protein [58]

Protein
restriction, 8.5% Pregnancy SD rat/M 22 weeks ↑BP,↔GFR

↓renin mRNA and
protein; and ↓renal

ANG II level at
1–5 days of age

[59,60]

Protein
restriction, 9%

1 week before
conception and

throughout
pregnancy

FVB/NJ
mouse/F 24 weeks ↑BP ↓ACE2 protein [61]

Protein
restriction

Second half of
pregnancy

SD and Wistar
rat/M and F 11 months ↑BP ↑PRA, ↑AT1R mRNA

and protein [62,63]

50% caloric
restriction

Day 28 to day
78 of gestation Sheep/M and F 9 months ↑BP ↑ACE protein [64]

High-fat
diet, 58%

Pregnancy and
Lactation SD rat/M 16 weeks ↑BP

↑AGT and ACE
mRNA, and
↑AT1R protein

[65]
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Table 1. Cont.

Animal
Models

Intervention
Period Species/Gender Age at

Evaluation Renal Phenotype Alterations of the
RAAS Ref.

High-fat
diet, 58%

5 weeks before
the delivery

and throughout
pregnancy and

lactation

SD rat/M and F 6 months

↔BP, ↓GFR,
↑glomerular injury,
↑tubulointerstitial

injury, altered
renal

transcriptome

↑ACE and AT1R
mRNA in F [66]

High-salt
diet, 8% Pregnancy Wistar rat/F 12 weeks ↑BP ↑ANG II [67]

0.03%
low-salt diet

Last 7 days of
pregnancy SD rat/M and F 12 weeks ↑BP ↑PRA [68]

Maternal
renovascular
hypertension

Pregnancy SD rat/M 16 weeks ↑BP ↑AT1R protein [69]

Maternal
renovascular
hypertension

Pregnancy Rabbit/F 30 weeks ↑BP ↓PRA at 10 week [70]

Maternal
adenine-
induced

CKD

Pregnancy and
lactation SD rat/M 12 weeks ↑BP, renal

hypertrophy
↓AT2R and MAS
receptor mRNA [71]

Maternal
streptozotocin-

induced
diabetes

Pregnancy C57BL/6
mouse/M 20 weeks ↑BP,

microalbuminuria

↑AT1R and ACE
mRNA, ↓ACE2

mRNA
[72]

Maternal
streptozotocin-

induced
diabetes

Pregnancy Wistar rat/M 2 months ↑BP ↑ACE activity [73]

Continuous
light exposure

Pregnancy and
lactation SD rat/M 12 weeks ↑BP

↑Renin, PRR,
AGT, ACE, ACE2,
and AT1R mRNA

[74]

Maternal
L-NAME
exposure

Pregnancy SD rat/M 12 weeks ↑BP ↑Renin and ACE
mRNA [75]

Maternal LPS
exposure Pregnancy SD rat/M and F 24 weeks ↑BP, ↓nephron

number and GFR ↑ACE mRNA [76]

Placenta
insufficiency Pregnancy SD rat/M 16 weeks ↑BP

↓Renin and AGT
mRNA at birth,
↑Renin and AGT

mRNA, ↑ACE activity
at 16 week

[77]

Prenatal
hypoxia

From
embryonic day
14.5 until birth

CD1 mouse/M
and F 12 months

Microalbuminuria,
glomerular

hypertrophy and
renal fibrosis,

↓nephron number

↑Renin and AT1R
mRNA [78]

Maternal
nicotine
exposure

Pregnancy SHR/M 9 weeks ↑BP, ↓Glomerular
mass ↑AT1R mRNA [79]

Maternal
nicotine
exposure

Pregnancy SD rat/M 5 months ↑BP ↑AT1R protein,
↓AT2R protein [80]
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Table 1. Cont.

Animal
Models

Intervention
Period Species/Gender Age at

Evaluation Renal Phenotype Alterations of the
RAAS Ref.

Maternal
caffeine

exposure
Pregnancy C57BL/6

mouse/M 3 months ↑BP ↑Renin and AT1R
mRNA [81]

Maternal TCDD
and

dexamethasone
exposure

Pregnancy and
Lactation SD rat/M 16 weeks ↑BP ↑ACE mRNA [82]

Neonatal PDTC
administration Lactation Munich-Wistar

rat/M 10 months ↑BP

↑Renin and AGT
mRNA at 3 month;
↓Renin and AGT at

10 month

[83]

Prenstal DEX
exposure Pregnancy SD rat/M 16 weeks ↑BP ↑AGT and AT1R

mRNA [84]

Prenstal DEX
exposure Pregnancy SD rat/M 16 weeks ↑BP ↑Renin and PRR

mRNA [85]

Prenatal DEX
plus

post-weaning
high-fat diet

Pregnancy SD rat/M 16 weeks ↑BP ↑Renin and ACE
mRNA [86]

Neonatal DEX
administration

Day 1 to day 3
after birth SD rat/M 16 weeks ↑BP ↓AGT, ACE,

and ACE2 mRNA [87]

Prenatal
betamethasone

exposure

2 doses, 24 h
apart at

gestational
day 80

Sheep/M 1.8 years ↑BP ↑ACE activity,
↓ACE2 activity [88]

In this review, animal species range from rats [51–60,62,63,65–69,71,73–77,79,80,82–87],
mice [61,72,78,81], rabbits [70], and sheep [64,88]. Rats and mice have been the dominant
animal species used in research to study hypertension and kidney disease of developmental
origins. Unlike human nephrogenesis, which is completed in utero, renal development in
the rodent continues up to 2 weeks after birth [89]. Accordingly, environmental factors not
only during pregnancy but also in early lactation period can impair renal development in
rodents, resulting in renal programming and adult kidney disease. Table 1 demonstrates
the outcomes evaluated in rats ranging from 4 to 90 weeks of age. As one human year
equals to two rat weeks in adulthood [90], most outcomes evaluated are equal to human
ages from infancy to middle adulthood. Nevertheless, essentially no information exists
with regard to large animals to study the impact of RAAS on hypertension and kidney
disease of developmental origin.

Table 1 indicates maternal malnutrition is the most common factor related to kidney
disease and hypertension of developmental origins. A variety of nutritional insults can
cause renal programming, including high sucrose consumption [51], high-fructose diet [52,53],
protein restriction [58–63], calorie restriction [64], high-fat diet [65,66], high- salt diet [67],
and low-salt intake [68]. Second, maternal illness is also interfering with renal program-
ming. These medical conditions during pregnancy include hypertension [69,70], CKD [71],
diabetes [72,73], chronodisruption [74], preeclampsia [75], infection [76], placenta insuffi-
ciency [77], and hypoxia [78]. Another factor disrupting renal programming is exposure
to environmental chemicals or toxins, such as smoking [79,80], caffeine [81], and 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) [82]. Furthermore, renal programming can be trig-
gered by medications like pyrrolidine dithiocarbamate [83] or glucocorticoid [84–88].

The most common adverse renal outcome of renal programming being studied is hy-
pertension [51–65,67–88]. Albuminuria was demonstrated in offspring born of dams with
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protein restriction [58], diabetes [72], or hypoxia [78]. The glomerular filtration rate (GFR),
an index of renal function, was reported as decreased [66,76], unaltered [54,55,59,60], or even
increased [58] in different models of renal programming. Additionally, reduced nephron
number [57,76,78,79], renal hypertrophy [71], glomerular hypertrophy [78], and tubuloint-
erstitial injury [66,78] are major morphological deficits being reported. These observations
indicate that the renal programming does not rely on one particular factor and it displays a
wide range of phenotypes.

3.2. Renin, (Pro)renin, and Their Receptor in Renal Programming

Adverse renal outcomes are related to increased renin [53,74,75,78,81,83,85,86] and/or
PRR [74,85] expression in most but not all animal models (see Table 1). Renin is mainly
synthesized by the juxtaglomerular cells, located in the afferent arterioles of the kidney as
preprorenin [91]. The signal peptide is cleaved off during transfer and generate prorenin.
By cleavage of a 43-amino acid N-terminal fragment, prorenin is then converted to active
renin. The kidney secretes both renin and prorenin into the circulation. Aside from cleaving
AGT to generate ANG I, renin binds the PRR. This receptor also binds prorenin. The PRR
protein is encoded for the Atp6ap2 (ATPase 6 accessory protein 2). The PRR protein exists in
three forms: (1) A full-length 35-39 kDa form consisting of 3 domains, (2) A 28 kDa soluble
form, and (3) a truncated form [91].

As the RAAS cascade starts with renin, it raises the question of can we block the RAAS
at its point of activation (i.e., renin) to prevent renal programming? The first selective renin
inhibitor, aliskiren is noninferior to ACEIs and ARBs for BP reduction and was assessed as
an efficient antihypertensive drug [92]. Aliskiren inhibits renin by binding to its catalytic
site, thus inhibiting renin and prorenin activity, to block the RAS. However, renin and
prorenin levels remain high, which could conceivably induce PRR signaling in an ANG
II-independent manner.

Currently, PRR was identified for its multi-functional aspects, including (1) PRR
enhances the RAAS by catalyzing ANG I production, (2) PRR induces mitogen-activated
protein kinases (MAPK) signal pathway, (3) PRR is required as a subunit of V-ATPase,
which transports protons across plasma membrane, and (4) PRR interacts with both the
canonical Wnt/β-catenin and non-canonical Wnt/planar cell polarity (PCP) pathways,
which are essential for embryonic development [91,93,94].

Many reports have shown that PRR signal pathway can induce ANG II-dependent
hypertension [91]. Prorenin overexpression animals exhibited severe hypertension [95].
Unlike other RAS components, PRR knockout mice are lethal or, even tissue-specific,
and have a short life expectancy [96], indicating a crucial function of PRR that is (pro)renin-
independent. Yet there is currently little evidence about the role of ANG II-independent
PRR signal transduction pathway on programmed hypertension.

Our previous report showed that antenatal dexamethasone (DEX) administration
increased renin (fold change = 2.41) and PRR (fold change = 2.37) mRNA expression
during the stage of nephrogenesis [85]. The increase of renin expression was persistent
until 4 months of age and was associated with elevated BP, indicating the impact of
PRR on DEX-induced programmed hypertension. Next, we observed that maternal high-
fructose increased renal renin expression from 1 day (fold change = 3.05) to 3 months (fold
change = 3.38) of age [97]. These findings are consistent with previous studies showing the
increases of plasma renin activity in offspring in a diversity of programming models [62,63,68].
Little reliable information currently exists with regard to PRR protein and its downstream
signaling in animal models of renal programming. Whether decreased PRR expression
could explain the absence of PRR-dependent effects during RAS inhibition remains to be
further elucidated [94]. Furthermore, we observed that the downstream signal pathways
of PRR, MAPK, and Wnt signal pathways were identified as the significant Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways in the kidney of offspring using next
generation RNA sequencing in an NO inhibition model [98]. All of these findings sug-
gested that the PRR pathway might be a therapeutic target for programmed hypertension.
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The regulatory pathways related to PRR in different programming models are illustrated
in the Figure 2.

Figure 2. Flow diagram of identified pathways from previous models of renal programming, whereby
(pro)renin–PRR pathway is linked to programmed hypertension and kidney disease via ANG
II-dependent and –independent effects. AGT, angiotensinogen; ANG I, angiotensin I; ANG II,
angiotensin II; MAPK, mitogen-activated protein kinases; NO, nitric oxide; RAAS, renin-angiotensin-
aldosterone system, ⊕, enhance.

3.3. Classical RAAS Axis in Renal Programming

Conflicting results exist regarding up- and downregulation of the classical RAAS
components (Table 1), due in large part to the wide age range at which offspring were
evaluated. In the majority of studies, adult offspring developed hypertension and kid-
ney disease coinciding with increased expression of ACE [64–66,72,74,76,82,86] and
AT1R [51,54,55,59,62,63,67,69,72–74,78–81,84], and ACE activity [73,77,88].

Very few studies have examined the RAAS in association with renal programming at
different developmental stages. In a maternal low protein diet rat model [56], renal AT1R
expression was suppressed at birth, whereas its expression was upregulated at 4 weeks of
age. In another renal programming model induced by placental insufficiency in the Sprague
Dawley rat, adult offspring developed hypertension in conjunction with increased renin
and AGT mRNA, as well as increased ACE activity at 16 weeks of age [77]. Conversely,
renin and AGT mRNA expression was decreased at birth [77]. Taken together, these find-
ings in renal programming models suggested a transient biphasic response with downreg-
ulation of classical RAAS components in neonatal stage that becomes normalized with age.
Various early-life insults may disturb this normalization in the adult, so much so that the
classical RAS axis is inappropriately activated leading to the rising BP and development
of kidney disease in adult offspring. Additionally, aberrant neonatal suppression of the
intrarenal RAAS contributes to alterations of renal morphology [9], which is in agreement
with studies reporting that blockade of the RAAS by ACEI or ARB [45].

It is noteworthy that aberrant activation of the RAAS can be transgenerational. In a
maternal high-fructose diet model [99], elevation of BP was observed in the first- and
second-generation offspring, with maximal increases in blood levels of renin, ANG II,
and aldosterone in the third-generation offspring. Additionally, maternal high-fructose
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intake increased the renal mRNA expression of ACE and AT1R over multiple generations
of offspring up until the third one. There will be a growing need to better understand
whether transgenerational activation of the RAAS has potential impact on other models of
renal programming.

3.4. Non-Classical RAAS Axis in Renal Programming

As the non-classical RAAS axis generally opposes the actions of the classical RAAS axis,
a reduced tone of the ACE2-ANG-(1-7)-MAS receptor system is considered to contribute
to those pathologies as well. Like classical RAAS axis, non-classical axis of the RAAS
were also linked to fetal programming [24]. Table 1 shows adult offspring developed
hypertension and kidney disease coinciding with downregulated non-classical RAAS
pathway in several models of renal programming, including maternal low protein diet [61],
maternal CKD [71], maternal diabetes [72], and glucocorticoid exposure model [87,88].
However, the reports were conflicting with increased ACE2 expression in the continuous
light exposure model [74].

3.5. Aldosterone in Renal Programming

Aldosterone is the principal regulator of sodium homeostasis. The serum and glucocorticoid-
regulated kinase isoform 1 (SGK1) is a key mediator of aldosterone action in the distal
nephron to regulate almost all sodium transporters [100]. Compared to other components
in the RAAS, less attention has been paid to evaluate the impact of aldosterone in animal
models of renal programming. As shown in Table 1, only one report demonstrated that
circulating aldosterone level was elevated in 8-week-old offspring born to dams exposed to
a low-protein diet [57]. However, renal sodium transporters were studied in several models
of renal programming, like antenatal glucocorticoid administration [84,101], low-protein
diet [58,102], continuous light exposure model [74], and combined high-fructose and high-
salt diet [103]. Various early-life insults have shown that renal programming is associated
with increases mRNA levels and protein abundance of several sodium transporters like type
3 sodium hydrogen exchanger (NHE3), Na-K-2Cl cotransporter (NKCC2), Na+/K+ATPase
α1 subunit (NaKATPase), and Na+/Cl− cotransporter (NCC). It is noteworthy that SGK1
can be activated by glucocorticoid and salt, except for aldosterone [104]. Therefore, if aber-
rant sodium transporters in above-mentioned animal models of renal programming are
directly regulated by aldosterone or not awaits further clarification. Moreover, emerg-
ing evidence shows that fructose-induced hypertension is related to upregulation of the
sodium transporter NHE3 and the chloride transporter putative anion transporter 1 (PAT1),
to stimulate sodium and chloride absorption [105]. As much of previous work investigating
the actions of RAAS has directly studied sodium transporters, there will be a need to better
understand the interplay between the RAAS and chloride transporter in hypertension.

4. The Central Role of the RAAS on Mediating Common Mechanisms Underlying
Renal Programming

In view of various early-life insults that elicit similar renal outcomes in adult offspring,
there might be some common mechanisms of pathogenesis in renal programming. So far,
several specific mechanisms were identified to explain renal programming. These mech-
anisms include aberrant RAAS, oxidative stress, nitric oxide (NO) deficiency, gut micro-
biota dysbiosis, dysregulated nutrient-sensing signals, epigenetic regulation, and reduced
nephron number [6–10,13,18–20]. It is important to note that, among these proposed
mechanisms, the RAAS is closely connected with others as a hub in determining the renal
programming processes. The interplay between the RAAS and other proposed mechanisms
underlying renal programming in response to adverse early-life insults is illustrated in
Figure 3. Each mechanism will be discussed in turn.
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Figure 3. Schema outlining the central role of RAAS on mediating other mechanisms in the kidney leading to hypertension
and kidney disease of developmental origins in response to a variety of maternal insults. Target on the RAAS-based
interventions could be reprogramming strategies to prevent hypertension and kidney in adult offspring. NO, nitric oxide;
RAAS, renin-angiotensin-aldosterone system.

4.1. Oxidative Stress

As reviewed elsewhere [106,107], the key role of oxidative stress implicated in hyper-
tension and kidney disease of developmental origins is supported by many clinical and
experimental studies. The imbalance of antioxidants defense system and the reactive oxy-
gen species (ROS) production causes oxidative stress implicating fetal development [108].
Data from multiple animal models indicates oxidative stress involved in renal program-
ming [106,107]. Among them, aberrant RAAS and oxidative stress are both associated
with renal programming in models of prenatal DEX exposure [84], maternal high-fructose
diet [53], high-fat diet [66], maternal CKD [71], preeclampsia [75], maternal TCDD and
dexamethasone exposure [82], and prenatal DEX plus post-weaning high-fat diet [86]. It is
well known that ANG II acting via AT1R is a potent activator of NADPH oxidase in the
kidney, so much so that it enhances production of ROS implicating in the development of
hypertension [109]. On the other hand, ROS-dependent enhancement of AGT plays a role
in the progression of diabetic nephropathy [110].

In a model of renal programming, we observed inappropriate activation of the RAAS
can be restored by antioxidant therapy [86]. Dimethyl fumarate (DMF) was reported to
activate nuclear factor erythroid-derived 2-related factor 2 (Nrf2, a major player in the
antioxidant defense) and protect against oxidative stress damage [111]. Our previous work
showed DMF administration in pregnancy protects adult offspring against hypertension
programmed by antenatal DEX plus postnatal high-fat diet, which was relevant to down-
regulated mRNA expression of renin, AGT, ACE, and AT1R [86]. Although clinical trials
are utilizing Nrf2 inducers to treat CKD, Nrf2 activation was linked to unfavored effects
like proteinuria and nephrogenic diabetes insipidus [112,113]. To what extent the Nrf2
activation can be beneficial on CKD, and how Nrf2 and oxidative stress are interconnected
with the RAAS, are issues that await further clarification.
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Another report showed that the protective effects of melatonin, a potent antioxi-
dant, against programmed hypertension is attributed to increased renal ACE2 level [75].
Moreover, we previously examined the maternal light exposure-induced hypertension
model and found maternal melatonin therapy protected offspring against hypertension
coincided with increased renal ACE2 expression [74]. Also, melatonin therapy prevented
the rise in offspring’s BPs coincided with increased ACE2 protein abundance in a maternal
caloric restriction model [114]. These observations suggest that interplay between the
RAAS and oxidative stress implicated in renal programming and consequently adverse
renal outcomes.

4.2. Nitric Oxide Deficiency

The role of NO deficiency in mediating hypertension and kidney disease of devel-
opmental origins has received considerable attention [19,115]. One major cause of NO
deficiency is due to increased asymmetric dimethylarginine (ADMA), an endogenous NOS
inhibitor [116]. Targeting an ADMA/NO pathway to lower ADMA and restore NO was
considered as a reprogramming approach to prevent renal programming and consequently
hypertension and kidney disease [19,115].

ANG II can reduce NO bioavailability by promoting oxidative stress, while NO is
able to counterbalance the vasoconstrictive effect of ANG II [117]. In a maternal L-NG-
Nitro arginine methyl ester (L-NAME, an inhibitor of NO synthase) exposure model,
NO depletion caused a rise in BP coinciding with increased mRNA expression of renin
and ACE in offspring kidneys [75]. In another model of renal programming, blockade of
the RAAS by aliskiren protected adult rat offspring against hypertension programmed by
maternal caloric restriction in [118]. The protective effect of aliskiren is not only directed
upon the RAAS, but also through regulation of the NO pathway, represented by decreases
of plasma ADMA levels and increases of urinary NOx (NO2

-+NO3
-) levels [118]. Similar to

renal programming models, early aliskiren therapy was reported to block the development
of hypertension related to decreasing plasma ADMA levels in spontaneously hypertensive
rats (SHRs), the most commonly used model of hypertension [119]. As the balance between
ADMA/NO pathway and the RAAS plays a decisive role in the pathogenesis of renal
programming, there will be a growing need to better understand the mechanisms of the
actions of RAAS on renal programming, with a focus on its interplay with NO.

4.3. Reduced Nephron Number

A deficit in the number of nephrons causes high glomerular capillary pressure and
glomerular hyperfiltration, consequently leading to further nephron loss in later life [8].
Accordingly, low nephron number was considered as a vital mechanism underlying renal
programming. Several epidemiologic studies support that low birth weight and prema-
turity, two clinical surrogate markers of nephron number, are risk factors for adulthood
hypertension and kidney disease [120–122]. In rats, adult offspring displayed reduced
nephron number when DEX administration was for 2 days on embryonic day 13–14 or
17–18 [101]. These findings indicated the existence of developmental windows of vulnera-
bility to environmental conditions during kidney development. As we mentioned earlier,
blockade of the RAAS in lactation, the late stage of nephrogenesis in rodents, leads to
reduced nephron number and hypertension in adulthood [50].

Several animal models of renal programming, as shown in Table 1, indicated that
various adverse intrauterine conditions can lead to low nephron endowment and aberrant
RAAS concurrently, as in the case of maternal protein restriction [56], maternal lipopolysac-
charide (LPS) exposure [76], and prenatal hypoxia [78]. Prenatal hypoxia exposure resulted
in a reduced nephron number by 25% and elevation of BP in male adult mice offspring,
which is related to increases of renal mRNA expression of renin (~2-fold) and AT1R as well
as renin concentrations (~50% increase) [78].

However, low nephron endowment, per se, is not essential for hypertension and
kidney disease of developmental origins [8]. The roles of RAAS altering the nephron
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endowment behind the renal programming still remain to be identified, but are the subject
of great interest.

4.4. Epigenetic Regulation

Epigenetic regulation is another important mechanism underlying fetal program-
ming [123]. Epigenetic mechanisms consist of DNA methylation, histone modification,
and non-coding RNAs (ncRNA). Global DNA methylation patterns in several organs
were evaluated in different models of developmental programming, such as maternal low-
protein diet [124], maternal smoking [125], and micronutrient deficiency [126]. However,
less attention has been paid to the kidney. Aberrant DNA methylation was linked to hyper-
tension of developmental origins [127]. In SHR, increased AT1R expression is relevant to
progressive hypo-methylation in the AT1R promoter when hypertension occurs at 20 weeks
of age [128]. However, the AT1R gene was reported to be hyper- or hypo-methylated in
different models of programmed hypertension [23,129].

Additionally, epigenetic histone modification occurs when the N-terminal tail is sub-
jected to a diversity of post-translational modifications [130]. One of the most frequent
epigenetic modifications is histone acetylation, which is catalyzed by histone acetyltrans-
ferases (HATs). Conversely, histone deacetylases (HDACs) determine histone deacetylation.
The crosstalk between HDAC and the RAAS was proposed to drive uretic bud branching
during kidney development [18]. HDACs were reported for the regulated expression
of several genes belonging to the RAAS, including AGT, renin, ACE, and AT1R [131].
Our previous study showed that trichostatin A, a HDAC inhibitor, prevented neona-
tal DEX-induced programmed hypertension accompanied with decreases of AGT, ACE,
and ACE2 [87].

The ncRNAs are implicated in several epigenetic processes [132], and microRNAs
(miRNAs) are the most commonly studied small ncRNA. In regards to the RAAS-regulated
genes, analysis of miRNA binding sites by TargetScan [133] suggested that 368 different
miRNA families target RAAS elements, the majority of which share transcripts. In a mater-
nal protein restriction model, renal epithelial-to-mesenchymal transition was associated
with a reduced level of miR-200a, miR-141, and miR-429 [134]. Another report demon-
strated that mmu-miR-27a and mmu-miR-27b upregulated ACE, while mmu-mir-330
downregulated AT2R in offspring born to dams with protein restriction [135]. However,
a single miRNA can regulate numerous mRNAs makes it more challenging to decipher the
exact mechanisms involved in renal programming. Additional human and experimental
studies are required to clarify the exact nature of the mechanisms behind and to develop
potential therapeutic applications.

4.5. Others

There are other reported mechanisms behind renal programming by which the RAAS
might act: (1) dysregulated nutrient-sensing signals, (2) gut microbiota dysbiosis, and (3)
sex differences. First, early-life nutritional insults can impair nutrient-sensing signals
that affect fetal development and consequently program hypertension in later life [136].
Peroxisome proliferator-activated receptor (PPAR), one of the nutrient-sensing signals,
can be mediated by other nutrient-sensing signals to regulate the expression of PPAR target
genes [137]. Of note is that several PPAR target genes belong to the RAAS components or
sodium transporters, like renin and SGK1 [138]. As reviewed elsewhere [138], emerging
evidence has indicated that early intervention by PPAR modulators can prevent hyper-
tension of developmental origins. Thus, it is speculated that the RAAS may interact with
nutrient-sensing signals to program hypertension and kidney disease.

Second, adverse intrauterine conditions can disturb the gut microbial balance, result-
ing in subsequent adverse offspring outcomes, including hypertension [139]. Prior research
showed that ACE2 exerts a non-catalytic role in gut biology and modulates gut microbiota
composition [140]. As dysbiosis of the gut microbiome has been linked to hypertension
by modulating the gut RAAS [141], these findings suggested there might be a relationship
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between gut microbiota and the RAAS underlying the pathogenesis of renal programming,
although this remains speculative.

Last, emerging evidence supports sex-dependent differences exist in hypertension
and kidney disease of developmental origins [142,143]. It is noteworthy that the RAAS
was reported as a sex-specific response to environmental insults [144]. Also, an alteration
in the response of the renal transcriptome to diverse insults is sex-dependent [52,145,146].
However, much of the animal models of renal programming, as shown in Table 1, mainly
investigating males only instead of both sexes. Thus, there will be a growing need to
elucidate the impact of RAAS on sex-dependent mechanisms behind renal programming,
and to be able to develop novel sex-specific strategies targeting the RAAS to prevent
programmed hypertension and kidney disease of developmental origins in both sexes.

Although the multiple mechanistic links outlined above, the RAAS works as a central
connection for hypertension and kidney disease of developmental origins. Better under-
standing interaction between the RAAS and other common mechanisms as well as targeting
on the RAAS to develop reprogramming intervention are key toward early prevention or
treating prehypertension and subclinical kidney disease.

5. Targeting on the RAAS as Reprogramming Strategies

Reprogramming strategies targeting the RAAS to prevent the developmental pro-
gramming of hypertension and kidney disease that were employed in various animal
models are listed in Table 2 [52,63,118,119,147–154]. Currently, several therapeutic in-
terventions have been reported, such as renin inhibitor [52,118,119], ACEI [63,147–150],
ARB [118,151,152], AT1R antisense [153], and ACE2 activator [154]. The major protective
effects of various RAAS-based interventions on adverse renal outcomes are against hy-
pertension [52,63,118,119,147–154], followed by albuminuria [149], renal dysfunction [150],
and renal fibrosis [154]. The reprogramming effects of RAAS-based therapies were ex-
amined in rats ranging from 9 weeks to 6 months of age, which are almost equivalent to
human ages from childhood to young adulthood. However, most studies focused on males
only and did not test different doses. Whether these observed effects appear in a dose- or
sex-dependent manner awaits further studies for clarification.

Table 2. Interventions targeting on the RAAS to prevent hypertension and kidney disease of developmental origins.Studies
tabulated according to types of intervention, animal model, species, and age at evaluation. SD, Sprague Dawley; SHR,
spontaneously hypertensive rat; M, male; F, female; ACE2, angiotensin-converting enzyme 2; AGT, angiotensinogen; Ang II,
angiotensin II; AT1R, angiotensin type 1 receptor; MAS receptor, ANG-(1–7) receptor MAS.

Intervention Animal Model Species/Gender Age at
Evaluation Effects Protective

Mechanism Ref.

Renin inhibitor

Aliskiren (10 or
30 mg/kg/day)

between
4–10 weeks of age

Genetic
hypertension

model
SHR/M 10 weeks

Prevented or
attenuated

hypertension by
30 or 10 mg,
respectively

Restoration of NO
bioavailability [118]

Aliskiren
(10 mg/kg/day)

between 2–4 weeks
of age

Maternal 50%
caloric

restriction
SD rat/M 12 weeks Prevented

hypertension

Decreased renal
AGT mRNA;

Increased renal
ACE2 and MAS
receptor protein

levels

[119]

Aliskiren
(10 mg/kg/day)

between 2–4 weeks
of age

Maternal
high-fructose

diet
SD rat/M and F 12 weeks

Prevented
hypertension in

both sexes

Increased renal
ACE2 and MAS
receptor protein

levels in F

[52]
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Table 2. Cont.

Intervention Animal Model Species/Gender Age at
Evaluation Effects Protective

Mechanism Ref.

ACEI

Captopril
(100 mg/kg/day)

between 2–4 weeks
of age

Maternal
protein

restriction
Wistar rat/M 12 weeks Prevented

hypertension Not evaluated [63]

Captopril
(100 mg/kg

b.w./day) between
4–10 weeks of age

Genetic
hypertension

model
SHR/M 30 weeks Attenuated

hypertension Not evaluated [147]

Enalapril
(100 mg/L) in
drinking water

between 3–6 weeks
of age

Maternal
protein

restriction
SD rat/M 16 weeks Prevented

hypertension Not evaluated [148]

Enalapril
(100 mg/L) in
drinking water

between 3–6 weeks
of age

Maternal
protein

restriction
SD rat/M 6 months

Prevented
hypertension and

albuminuria

Reduced urinary
AGT and ANG II

levels
[149]

Perindopril
(3 mg/kg/day)

between
4–16 weeks of age

Genetic
hypertension

model
SHR/M 28 weeks

Attenuated
hypertension and
renal dysfunction

Not evaluated [150]

ARB

Losartan
(100 mg/L) in
drinking water

between 2–4 weeks
of age

Maternal
protein

restriction
Wistar rat/M 12 weeks Prevented

hypertension Not evaluated [151]

Losartan
(20 mg/kg/day)

between 2–4 weeks
of age

Maternal 50%
caloric

restriction
SD rat/M 12 weeks Prevented

hypertension
Decreased renal

AGT mRNA [118]

Losartan
(20 mg/kg/day)

between 4–9 weeks
of age

Genetic
hypertension

model
SHR/M 9 weeks Prevented

hypertension
Increased renal

ACE2 expression [152]

AT1R antisense

AT1R antisense
delivery at 5 days

of age

Genetic
hypertension

model
SHR/M 3 months Prevented

hypertension
Decreased AT1R

mRNA [153]

ACE2 activator

Diminazene
aceturate in
pregnancy

Maternal
hypertension SHR/M 16 weeks

Attenuated
hypertension and

renal fibrosis

Not evaluated in
the kidney [154]

ANG-(1-7) in
pregnancy

Maternal
hypertension SHR/M 16 weeks

Attenuated
hypertension and

renal fibrosis

Not evaluated in
the kidney [154]

Early blockade of the classical RAAS axis was proposed to reprogram the inappropri-
ately activated RAAS to prevent hypertension and kidney disease of developmental origins.
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Treating the young offspring with renin inhibitor aliskiren [52,118], ACEI captopril [63],
or ARB losartan [118,151] between 2–4 weeks of age are most common therapeutic periods
to offset the effects of developmental programming on BP.

To date, aliskiren is the only one renin inhibitor approved for treating hyperten-
sion. However, aliskiren cannot prevent the interaction between the PRR and its ligand.
Even though beneficial effects for the PRR inhibitory peptide, handle region peptide,
and PRO20 [155,156] were reported in animal models, the efficacy in specificity of these
peptides is questionable [94]. Thus, it is hoped that designing a specific non-peptide
inhibitor of PRR could result in favorable (pro)renin–PRR inhibition in the near future.

All of the prior work investigating reprogramming interventions only studied rats.
As nephrogenesis is completed in the second postnatal week in the rat, almost all RAAS-
blockade interventions to prevent the hypertension and kidney disease start as early as
two weeks after birth. Although AT1R antisense delivery was performed at postnatal day
5 in SHRs [153], its effect on nephron number was not examined yet.

Apart from the classical axis in the RAAS, emerging evidence provides protective
roles of non-classical axis in established hypertension and kidney disease, paving the way
for new therapeutic approaches [21]. Nevertheless, little attention has been paid to apply
this approach on programmed hypertension and kidney disease. According to Table 2,
only one study reported administration with diminazene aceturate (DIZE), a putative
ACE2 activator, or with ANG -(1–7) during pregnancy could attenuate hypertension and
renal fibrosis in adult SHR offspring [154]. Owing to activation of ACE2-ANG-(1-7)-MA
axis having therapeutic potential in established hypertension and kidney disease, there is
an ongoing need for additional study to elucidate its reprogramming effects in renal
programming. What is missing from the literature is a deeper understanding of which the
most important component of the RAAS is for the targeted approach and what time is the
optimal therapeutic window to be used to prevent hypertension and kidney disease of
developmental origins.

6. Conclusions

Current evidence has provided vigorous but incomplete data in regard to the potential
therapeutic role of RAAS-based interventions in hypertension and kidney disease of
developmental origins. This review affords a brief overview on the various RAAS-based
therapies that shows benefits on renal programming, including renin inhibitor, ACEI, ARB,
AT1R antisense, and ACE2 activator.

So far, one major unsolved problem is that almost no studies have taken a holistic
approach to simultaneous quantify the expression/activity of the entire repertoire of the
RAAS components in an experiment. Due to the complex nature of RAAS signaling, the re-
programming effect in response to early-life RAAS-based interventions, either individually
or in combination, are incomplete and difficult to predict. Therefore, future work in devel-
oping ideal methodology is needed to get a more holistic view of the RAAS and ensure
RAAS-based therapy would only apply in the right direction. Moreover, attention will
need to be paid to decide the optimal dosage in a sex-dependent manner to maximize the
benefit without increasing toxicity prior to clinical translation.

Despite significant progress being made in the availability of a broad range of RAAS-
based drugs, less attention has been paid to investigate their reprogramming effects on
hypertension and kidney disease. Another challenge is that specific developmental win-
dows for different RAAS-based therapies to reprogram the processes driving hypertension
and kidney disease still await further clarification.

For now, our review has taken a step forward by linking RAAS to hypertension and
kidney disease of developmental origins, which may yield insights into new RAAS-based
interventions for preventing renal programming-related disorders in a clinical setting.
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